Article

Sinoagetopanorpidae fam. nov., a New Family of Scorpionflies (Insecta, Mecoptera) from the Guadalupian of South China

Xinneng Lian (D), Chenyang Cai (©) and Diying Huang *(B)
State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
* Correspondence: dyhuang@nigpas.ac.cn

Citation: Lian, X.; Cai, C.; Huang, D. Sinoagetopanorpidae fam. nov., a New Family of Scorpionflies (Insecta, Mecoptera) from the Guadalupian of South China. Insects 2023, 14, 96. https://doi.org/10.3390/ insects14010096

Academic Editor: Vladimir
A. Lukhtanov

Received: 18 December 2022
Revised: 10 January 2023
Accepted: 12 January 2023
Published: 16 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Simple Summary: Mecopterans have been sparsely reported from the Permian of China, despite their great biodiversity in the fossil record in the world. Herein, we describe and illustrate three genera (two new genera) and eleven species (ten new species) belonging to a new family Sinoagetopanorpidae fam. nov. from the upper Guadalupian Yinping Formation of Anhui Province, China: Sinoagetopanorpa permiana Lin, Nel and Huang, 2010, S. nigra sp. nov., S. rotunda sp. nov., S. lini sp. nov., S. minuta sp. nov., S. elegans sp. nov., S. grimaldii sp. nov., S. magna sp. nov., Raragetopanorpa zhangi gen. et sp. nov., Permoagetopanorpa yinpingensis gen. et sp. nov. and P. incompleta sp. nov. Our new discovery indicates a high diversity of mecopterans in the Permian of China, and Signoagetopanorpidae might have evolved independently on the Yangtze Platform.

Abstract

Mecoptera was in great abundance in the Permian, but little is known from China. A new family, Sinoagetopanorpidae fam. nov., is described and illustrated from the upper Guadalupian Yinping Formation at Yinping Mountain, Chaohu City, Anhui Province, China. Sinoagetopaorpa permiana Lin, Nel and Huang, 2010 was previously attributed to Permochoristidae and now is revised as the type species of Sinoagetopanorpidae fam. nov. Three genera (two new genera) and ten new species of this new family are described and illustrated: Sinoagetopanorpa permiana Lin, Nel and Huang, 2010, S. nigra sp. nov., S. rotunda sp. nov., S. lini sp. nov., S. minuta sp. nov., S. elegans sp. nov., S. grimaldii sp. nov., S. magna sp. nov., Raragetopanorpa zhangi gen. et sp. nov., Permoagetopanorpa yinpingensis gen. et sp. nov. and P. incompleta sp. nov. Some isolated hind wings are described and illustrated, although it is difficult to assign them to any particular species. As a dominant mecopteran lineage in the Yinping Formation, Sinoagetopanorpidae represents an endemic group that might have independently evolved on the Yangtze Platform.

Keywords: diversity; Capitanian; Yangtze Platform; Permochoristidae

1. Introduction

The common name "scorpionflies" of the insect order Mecoptera is derived from the fact that some males bear unturned and bulbous genitalia that resemble the stingers of scorpions. Holometabolous insects have the richest biodiversity among all insect clades and can be dated back to the Pennsylvanian [1]. Mecoptera is one of the most ancient and morphologically generalized holometabolous insect orders, and they represent an important holometabolous group in the Permian. Mecoptera can be traced back to the beginning of the Permian [2] and thrived from the Permian to Cretaceous [3-20]. However, many mecopteran lineages went extinct during the Cretaceous, and a modern-looking mecopteran assemblage emerged in the Cenozoic. Extant mecopterans encompass ca. 700 species and 40 genera assigned to 9 families [21,22]. Bittacidae and Panorpidae are overwhelmingly diverse among mecopterans in the extant fauna. Mecoptera is more prosperous in the fossil record than it is in the Recent, with more than 700 species and 210 genera in approximately 40 families recorded to date [22-24].

Mecopterans were abundant and since the Cisuralian; more than 200 species and 40 genera of Permian mecopterans have been described from Africa, the Americas, Asia, Australia, Europe and India [5,6,25-31]. Rare specimens of Permian mecopterans in China were described from the Yinping Formation [31-33], represented by three reported species: Sinoagetopanorpa permiana Lin, Nel and Huang, 2010, Permica chaohuensis Lian, Cai and Huang, 2022 and Chaohuchorista liaoi Lian, Cai and Huang, 2022. Sinoagetopanorpa permiana is peculiar in its broad wing and costal area, and the apically curved R_{1}. Lin et al. [31] assigned S. permiana to Permochoristidae Tillyard, 1917 originally. However, the holotype of S. permiana is slightly deformed, and the line drawings were probably not precise in the original paper. During the past 12 years, we have collected 56 specimens closely related to S. permiana from the same fossil layer. Some are exquisitely preserved with details of dark color and body structures. Here, we provide a systematic classification based on new specimens and establish a new mecopteran family.

2. Materials and Methods

All specimens were collected from black shales of the lower part of the Yinping Formation near Houdong Village, Sanbing Township, Chaohu City, Anhui Province, China (Figure 1). The Yinping Formation is of the late Capitanian in age [34,35] and it has yielded rich fossils, including sponges, marine bivalves, insects, shrimps, fishes and plants. Fossil insects are diverse, including Orthoptera, Coleoptera, Glosselytrodea, Mecoptera, Hemiptera, Caloneurodea and Megasecoptera [31,36-42].

The specimens were carefully prepared using a sharp knife. Photographs were taken by a digital camera attached to a Zeiss Discovery V20 microscope (Carl Zeiss AG, Oberkochen, Germany). Most specimens are displayed in two pictures; one was taken in vertical reflected light and immersed under 70% alcohol to improve the contrast of dark color, and the other one was taken in oblique reflected light for displaying veins. Line drawings and maps were made using Adobe Illustrator 2019 graphic software. The specimens are housed in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.

The wing venation nomenclature generally follows the scheme of Minet et al. [43] and partly follows Bashkuev and Sukatsheva [3]. Venational abbreviations are as follows: C, costa; Sc, subcosta; R_{1}, first branch of the radius; Rs, radial sector; M, media; CuA , anterior cubitus, CuP , posterior cubitus; A , anal vein; m -cua, the crossvein between media and anterior cubitus.

Figure 1. (A) Paleomap of the late Capitania, showing the South China Block, base map from Scotese [44]; (B) Geographical map of China; (C) Geographical map showing the fossil locality.

3. Systematic Paleontology

Order Mecoptera Packard, 1886
Family Sinoagetopanorpidae fam. nov.
(ZooBank LSID urn:lsid:zoobank.org:act:D66F0AE9-EB35-4672-86D5-6576ED6D1330)
Type genus. Sinoagetopanorpa Lin, Nel and Huang, 2010.
Diagnosis. Male genitalia clip-shaped, medium-sized; wings broad, oval-shaped, covered with dark color, a hyaline rounded triangular spot at apex of interface between each Rs and M branches (occasionally absent). In forewing, costal area broad, Sc armed with three to four elongated branches that evenly developed; R_{1} more or less curved apically; Rs five-branched, Rs_{4} bifurcated into two branches; M six-branched (occasionally fivebranched), M_{2} two-branched, M_{4} two-branched (occasionally single); A_{3} short, occasionally present. In hind wing, costal area broad, Sc single; R_{1} forking into two or three branches; Rs five-branched, Rs_{4} forking into two branches; M five-branched, M_{2} two-branched, M_{4} single.

Genera included. Sinoagetopanorpa Lin, Nel and Huang, 2010, Raragetopanorpa gen. nov. and Permoagetopanorpa gen. nov.

Sinoagetopanorpa Lin, Nel and Huang, 2010.
(ZooBank LSID urn:lsid:zoobank.org:act:26971A6F-9533-43B2-B78B-D4D49955346B).
Type species. Sinoagetopanorpa permiana Lin, Nel and Huang, 2010.
Other species. S. nigra sp. nov., S. rotunda sp. nov., S. lini sp. nov., S. minuta sp. nov., S. elegans sp. nov., S. grimaldii sp. nov. and S. magna sp. nov.

Revised diagnosis. Forewing, Sc with three evenly developed elongated branches; M with six branches, A_{3} present in some cases. Hind wing, R_{1} with two branches or three branches.

Sinoagetopanorpa permiana Lin, Nel and Huang, 2010.
(Figure 2, Figure 3 and Figure 19A; ZooBank LSID urn:lsid:zoobank.org:act:B88A8779-1E3F-4D7F-9D25-B42FCEA742C3).

Figure 2. New line drawing of Sinoagetopanorpa permiana Lin, Nel and Huang, 2010, based on NIGP143428. Scale bar represents 1 mm .

Figure 3. Sinoagetopanorpa permiana Lin, Nel and Huang, 2010. (A) Photograph of part of NIGP143428 (holotype); (B) Photograph of counterpart of NIGP143428 (holotype); (C,D) Photographs of NIGP200888 (paratype); (E,F) Photographs of NIGP200889 (paratype) (mirror image); (G,H) Photographs of NIGP200890 (paratype); (I) Line drawing of NIGP200888; (J) Line drawing of NIGP200890, dark color not illustrated. (A-C,E,G) were taken when specimens were immersed under 70% alcohol in vertical reflected light; ($\mathbf{D}, \mathbf{F}, \mathbf{H}$) were taken in oblique reflected light. Scale bars represent 1 mm in ($\mathbf{A}-\mathbf{J}$).

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Material. Twenty-four specimens, eleven specimens with part and counterpart, and ten complete or nearly so. Holotype, NIGP143428, wing base lacking a small part, with part and counterpart (Figures 2 and $3 \mathrm{~A}, \mathrm{~B}$); from the Yinping Formation, Chaohu City, China (Lin et al. [31], Figures 1-4).

Figure 4. Sinoagetopanorpa nigra sp. nov., NIGP200912 (holotype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Paratypes, NIGP200888 (Figure 3C,D), a complete forewing, with part and counterpart; NIGP200889 (Figure 3E,F), a forewing lacking a small part of apex, with part and counterpart; NIGP200890 (Figure 3G,H), a complete forewing, with part and counterpart. Other unillustrated specimens: NIGP200891, NIGP200892, NIGP200893, NIGP200894, NIGP200895, NIGP200896, NIGP200897, NIGP200898, NIGP200899, NIGP200900, NIGP200901, NIGP200902, NIGP200903, NIGP200904, NIGP200905, NIGP200906, NIGP200907, NIGP200908, NIGP200909, NIGP200910 and NIGP200911.

Revised diagnosis. Forewing moderate in size, covered with dense dark-colored spots, a hyaline rounded triangular spot at apex of each interface between Rs and M branches.

Revised description. Forewing length $5.6-7.9 \mathrm{~mm}$, width $2.9-4.0 \mathrm{~mm}, \mathrm{~L} / \mathrm{W} 1.9-2.2$; apex somewhat rounded; dark color lessening from wing apex toward wing base, a large patch of dark color at apical wing, basal wing with numerous dark-colored spots, costal area with 5-6 hyaline patches that devoid of dark color, a hyaline rounded triangular spot that devoid of dark color at apex of each interface between Rs and M branches; Sc terminated at about $4 / 5$ of wing, with three evenly developed elongated branches; R_{1} single, curved slightly apically; pterostigma large, with almost a half below the apical R_{1}; Rs five-branched, Rs_{4} bifurcated into two branches, Rs_{1} slightly curved upwards, Rs_{1+2} fork does not reach the level of $M_{2 a+b}$ fork; a crossvein connected near Rs_{1+2} fork and Rs_{3},
stem Rs_{3+4} and stem $\mathrm{M}_{1+2}, \mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, respectively; M six-branched, M_{2} bifurcated into two branches; the forking patterns of the three branches of M_{3+4} variable; most specimens with M_{3} single and M_{4} two-branched, some with M_{3} two-branched and M_{4} single, and the other with the three branches of M_{3+4} forking at one point; stem M_{1+2} equal to or longer than stem M_{3+4}, a crossvein connecting stems M_{2} and M_{3}, crossvein m-cua connecting stem M_{4} (or posterior branch of M_{4}) and CuA ; CuA curved apically, CuP single, straight; the crossvein between basal CuA and CuP oblique to horizontal; the holotypic specimen with $\mathrm{R}_{1}+\mathrm{Rs}$ fork proximal to the first fork of Sc and $\mathrm{M}+\mathrm{CuA}$ fork, $\mathrm{M}+\mathrm{CuA}$ fork slightly proximal to the first fork of Sc ; most paratypic specimens with $\mathrm{M}+\mathrm{CuA}$ fork proximal to $R_{1}+R s$ fork and $R_{1}+R s$ fork proximal to the first fork of Sc ; two anal veins visible, a crossvein connecting each other near base.

Remarks. The holotype is slightly deformed, so the original line drawings (see Lin et al. [31]: Figures 3 and 4) are inaccurate. The upper branch of CuA in the original line drawing is in fact the lower branch of $\mathrm{M}_{4}\left(\mathrm{M}_{4 \mathrm{~b}}\right)$.

Sinoagetopanorpa nigra sp. nov.
(Figure 4 and Figure 19B; ZooBank LSID urn:lsid:zoobank.org:act:CAF12387-A3EA-4355-AF15-AAAA840CE460).

Etymology. The specific name is derived from the Latin word nigra, dark, referring to the dark-colored wing.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing almost fully with dark colors, absence of dark-colored spots, absence of a hyaline rounded triangular spot at apex of each interface between Rs and M branches; R_{1+2} fork near the level of $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ fork.

Material. Holotype, NIGP200912, a complete forewing, with part and counterpart (Figure 4 and Figure 19B).

Description. Forewing length 5.6 mm , width $3.0 \mathrm{~mm}, \mathrm{~W} / \mathrm{L} 1.9$; apex rounded and base slightly shrunken; wing almost fully covered with dark color, with three small hyaline patches at costal area and seven small hyaline spots at wing base; Sc terminated at $2 / 3$ of wing, apical Sc_{3} extending with the same direction as basal stem $\mathrm{Sc} ; \mathrm{R}_{1}$ moderately curved apically; Rs five-branched, stem Rs_{1+2} length 1.2 mm , stem Rs_{3+4} length 0.3 mm , stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ shorter than its branches; a crossvein connecting Rs_{1+2} fork and $\mathrm{Rs}_{3} ; \mathrm{Rs}$ merged with R_{1} at a distance of 1.5 mm from wing base; a crossvein connecting stem Rs_{3+4} and stem $\mathrm{M}_{1+2}, \mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, respectively; M with six branches, stem M_{1+2} as long as stem M_{3+4}; both M_{2} and M_{4} bifurcated into two branches; stem M_{4} length 0.2 mm , a crossvein connecting stem M_{2} and M_{3}, crossvein m-cua connecting basal $\mathrm{M}_{4 \mathrm{~b}}$ and $\mathrm{CuA} ; \mathrm{CuA}$ curved after the connection with corossvein m-cua, the crossvein between basal CuA and CuP oblique; CuP straight, apically curved; $M+C u A$ fork proximal to $R_{1}+R s$ fork, $R_{1}+R s$ fork proximal to the first fork of Sc ; two anal veins visible, a crossvein connecting A_{1} and A_{2} near base.

Sinoagetopanorpa rotunda sp. nov.
(Figure 5 and Figure 19C; ZooBank LSID urn:lsid:zoobank.org:act:9E2C0D32-5E2C-44E1-B69D-FDD9907493C6).

Figure 5. Cont

Figure 5. Sinoagetopanorpa rotunda sp. nov. (A,B) Photographs of NIGP200913 (holotype); (C,D) Photographs of NIGP200914 (paratype) (mirror image); (E,F) Photographs of NIGP200915 (paratype); (G) Line drawing of NIPG200914; (H) Line drawing of NIPG200915; (A,C,E) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D,F) were taken in oblique reflected light. Scale bars represent 1 mm in (A-F).

Etymology. The specific name is derived from the Latin rotunda, rounded, indicating the rounded wing shape.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing distinctly oval-shaped, absence of dark-colored spots; a hyaline rounded triangular spot at apex of interface between each Rs and M branches; R_{1} distinctly curved apically.

Material. Three specimens. Holotype, NIGP200913, a complete forewing, with part and counterpart (Figures 5A,B and 19C). Paratypes, NIGP200914, a complete forewing, with part and counterpart (Figure 5C,D,G); NIGP200915, a forewing lacking base, with part and counterpart (Figure 5E,F,H).

Description. Forewing broad, broadest area at the $4 / 5$ of wing, length 7.1 mm , width $4.1 \mathrm{~mm}, \mathrm{~L} / \mathrm{W} 1.7$; some elongated hyaline patches developed at anterior and basal wing, and a hyaline rounded triangular spot at apex of each interface between Rs and M branches; crossveins usually accompanied with a small hyaline patch; pterostigma large, with almost a half below the apical R_{1}; $S c$ terminated at $2 / 3$ of wing, with three evenly developed elongated branches; R_{1} single, curved distinctly in the pterostigma; Rs five-branched, Rs_{1+2} fork proximal to $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ fork; stem $\mathrm{Rs}_{1+2} 4$ times as long as stem $\mathrm{Rs}_{3+4} ; \mathrm{Rs}_{1}$ curved upwards
in middle; stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ as long as its branches; a crossvein connecting basal Rs_{2} and $\mathrm{Rs}_{3} ; \mathrm{M}$ six-branched, M_{2} and M_{4} forking into two branches; stem M_{1+2} slightly longer than M_{3+4} and as long as stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$; basal $\mathrm{Rs}_{4 \mathrm{a}}$ and M_{1}, stem Rs_{3+4} and stem M_{1+2}, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3} connected by a crossvein, respectively, crossvein m-cua connecting basal $M_{4 b}$ and CuA ; CuA and CuP simple, CuA curved after the crossvein m-cua; the crossvein between CuA and CuP curved; $\mathrm{R}_{1}+\mathrm{Rs}$ fork and $\mathrm{M}+\mathrm{CuA}$ fork nearly at the same level and proximal to the first fork of $\mathrm{Sc} ; \mathrm{A}_{1}$ and A_{2} single, a crossvein connecting each other near base.

Paratypes. NIGP200914, a complete forewing, with part and counterpart (Figure 5C,D,G), length 6.9 mm , width 4.0 mm , L/W ratio 1.7; lower margin in the middle concaved obviously; stem Rs_{1+2} twice as long as stem Rs_{3+4}; stem M_{1+2} slightly longer than M_{3+4} and nearly twice as long as stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}} ; \mathrm{M}_{3}$ two-branched, M_{4} single, stem $\mathrm{M}_{3 \mathrm{a}+\mathrm{b}}$ short; crossvein m-cua connecting CuA with basal M_{4}.

NIGP200915 (Figure 5E,F,H), a forewing with wing base not preserved, with part and counterpart, length 6.7 mm (as preserved), width 3.9 mm ; stem $\mathrm{Rs}_{1+2} 3$ times as long as stem $\mathrm{Rs}_{3+4} ;$ stem M_{1+2} as long as stem M_{3+4} and nearly twice as long as stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}} ; \mathrm{M}_{3}$ two-branched, M_{4} single, stem $\mathrm{M}_{3 \mathrm{a}+\mathrm{b}}$ distinctly short; crossvein m-cua connecting CuA and basal M_{4}.

Sinoagetopanorpa lini sp. nov.
(Figures 6-8 and 19D; ZooBank LSID urn:lsid:zoobank.org:act:CFDDAB8C-8A18-4A32-AC84-331AE5E360B9).

Figure 6. Cont.

Figure 6. Sinoagetopanorpa lini sp. nov., NIGP200916 (holotype). (A,B) Photographs of part, showing general habitus; (C,D) Photographs of counterpart, showing general habitus; (E,F) Photographs of right forewing, enlargement from (\mathbf{A}, \mathbf{B}); (\mathbf{G}, \mathbf{H}) Photographs of left hind wing, enlargement from (C,D); (A,C,E,G) were taken when specimens were immersed under 70% alcohol in vertical reflected light; ($\mathbf{B}, \mathbf{D}, \mathbf{F}, \mathbf{H}$) were taken in oblique reflected light. Scale bars represent 1 mm in $(\mathbf{A}-\mathbf{H})$.

C

Figure 7. Cont.

Figure 7. Line drawings of Sinoagetopanorpa lini sp. nov., NIGP200916 (holotype). (A) Line drawing of general habitus; (B) Line drawing of left forewing; (C) Line drawing of right forewing; (D) Line drawing of left hind wing; (E) Line drawing of right hind wing. Scale bar represents 1 mm .

Figure 8. Sinoagetopanorpa lini sp. nov., NIGP200917 (paratype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The specific name is in honor of the late paleoentomologist, Prof. Qibin Lin, for his extraordinary contribution to the paleoentomology of the Yinping Formation.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Wing without dark-colored spots; a hyaline rounded triangular spot at apex of interface between each Rs and M branches; forewing with Rs_{1+2} fork proximal to $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ fork; hind wing devoid of dark color at wing base; R_{1} bifurcating into two terminal branches.

Material. Four specimens, two with part and counterpart. Holotype, sex unknown, NIGP200916, with part and counterpart (Figures 6 and 7), a specimen preserved with part of body and four wings, abdomen segments detected; left forewing and right hind wing overlap with each other, left forewing upturned. Paratypes, NIGP200917, a complete forewing, with part and counterpart (Figures 8 and 19D); other unillustrated specimens: NIGP200918 and NIGP200919.

Description. Body length 5.3 mm (as preserved), head and thorax preserved obscurely, thorax medium size; abdomen with seven clearly discernible segments, length shorter than width, last two segments narrowed; genitalia relatively small compared with abdomen, clip-shaped, basistyles and dististyles lacking details; the left middle leg preserved with
femur, tibia and tarsus; femur robust, length 1.5 mm (as preserved); tibia length 1.9 mm ; five tarsi segments preserved (with total length 1.5 mm); tarsomeres gradually shorten from base towards apex; two front legs and left hind leg partly preserved.

Forewing relatively elongated, broadest at $2 / 3$ of wing, right forewing length 7.5 mm , width 3.5 mm , L/W 2.1 (Figures 6E,F and 7C); three small hyaline patches located at costal area; R_{1} single and curved apically; Rs five-branched, a terminal fork visible at right forewing of holotype (Figure 7C), left forewing (Figure 7B) lacking the terminal fork; stem Rs_{1+2} about twice as long as stem $\mathrm{Rs}_{3+4}, \mathrm{Rs}_{1+2}$ fork proximal to M_{1+2} fork, a crossvein connecting basal Rs_{2} and Rs_{3}, basal $\mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, stem Rs_{3+4} and stem M_{1+2}, respectively; M six-branched, stem $\mathrm{M}_{1+2} 1.5$ times as along as stem M_{3+4}, both M_{2} and M_{4} two-branched; a crossvein connecting stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3}, crossvein m-cua connecting CuA with M near $\mathrm{M}_{4 \mathrm{a}+\mathrm{b}}$ fork; CuA curved after the crossvein m-cua, CuP single, straight; the crossvein connecting basal CuA and CuP nearly horizontal; $\mathrm{R}_{1}+\mathrm{Rs}$ fork at the same level as $\mathrm{M}+\mathrm{CuA}$ fork and proximal to the first fork of Sc ; two anal veins visible, a crossvein connecting A_{1} and A_{2}.

Hind wing smaller than forewing; left hind wing length 6.4 mm , width 3.2 mm , L/W 2.0 (Figures 6G,H and 7D,E); wing with dense dark color, a large hyaline patch stretched from the middle part of wing base to middle wing, a hyaline rounded triangular spot at apex of interface between each Rs and M branches; costal area broad, Sc single, terminated at middle wing, curved apically; R_{1} bifurcated into two branches at middle wing; Rs five-branched, stem Rs_{1+2} more than 3 times as long as stem Rs_{3+4}; stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ longer than its branches, Rs_{1+2} forking at the same level as M_{1+2} fork; a crossvein between $\mathrm{R}_{1 \mathrm{~b}}$ and Rs_{1}, basal Rs_{2} and $\mathrm{Rs}_{3}, \mathrm{Rs}_{3}$ and $\mathrm{Rs}_{4 \mathrm{a}}$, respectively, and the crossveins inside the small spots devoid of dark color; M five-branched, M_{2} two-branched, stem M_{1+2} as long as stem M_{3+4} and $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$; basal stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ and stem $\mathrm{M}_{1+2}, \mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, stem $\mathrm{M}_{2 a+b}$ and M_{3} connected by a crossvein, respectively; crossvein m-cua connecting M_{3+4} fork and CuA ; CuA and CuP straight, the crossvein between basal CuA and CuP oblique; left forewing with $\mathrm{R}_{1}+\mathrm{Rs}$ fork slightly proximal to $\mathrm{M}+\mathrm{CuA}$ fork; right forewing with $\mathrm{R}_{1}+\mathrm{Rs}$ fork distinctly proximal to $\mathrm{M}+\mathrm{CuA}$ fork; two straight anal veins visible.

Paratypes: NIGP200917 (Figure 8 and Figure 19D), forewing, length 6.4 mm , width $3.0 \mathrm{~mm}, \mathrm{~W} / \mathrm{L} 2.1$; three relatively large irregular hyaline patches covered at the area of costa, subcosta and along the R_{1}, a hyaline rounded triangular spot at apex of each interface between Rs_{2-4} and M branches, some crossveins in spots and approximately 10 small spots at wing base; stem M_{1+2} slightly longer than stem M_{3+4} and twice as long as stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$; the three branches of M_{3+4} nearly forking at one point.

Remarks. The dark color inside the forewings of the holotype is too poorly preserved to reconstruct.

Sinoagetopanorpa minuta sp. nov.
(Figures 9 and 19E; ZooBank LSID urn:lsid:zoobank.org:act:512A5737-065F-49D8-BDFB-68F002A18129).

Figure 9. Cont

Figure 9. Sinoagetopanorpa minuta sp. nov., NIGP200920 (holotype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The specific name is derived from the Latin minuta, small, indicating the small wing size.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing small, a hyaline rounded triangular spot at end of each interface of Rs and M branches; Rs_{4} forking late, A_{3} short, the area between A_{3} and wing margin narrow.

Material. Only holotype (NIGP200920) examined, a nearly complete forewing, with part and counterpart (Figures 9 and 19E).

Description. Forewing with apex rounded and broad, length 4.8 mm , width 2.6 mm , L/W 1.9; wing with dark color, more than 10 irregular hyaline patches focused on anterior and basal wing, some crossveins accompanied with small hyaline patches, a hyaline rounded triangular spot at apex of each interface of Rs and M_{1-3} branches; Sc terminated at a distance of $2 / 3$ from wing base; R_{1} single and nearly straight; Rs five-branched, stem Rs_{1+2} length 0.6 mm , stem Rs_{3+4} length 0.3 mm ; Rs_{1+2} forking at the same level as M_{1+2} fork; Rs_{4} forking apically; stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ twice as long as its branches; a crossvein connecting basal Rs_{2} and $\mathrm{Rs}_{3} ; \mathrm{M}$ six-branched, M_{2} and M_{4} both bifurcated into two branches, stem M_{1+2} as long as stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and slightly longer than stem M_{3+4}, stem $\mathrm{M}_{4 \mathrm{a}+\mathrm{b}}$ very short; Rs_{3+4} fork and stem $\mathrm{M}_{1+2}, \mathrm{Rs}_{4 a+b}$ fork and M_{1}, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3} connected by a crossvein, respectively, crossvein m-cua connecting $\mathrm{M}_{4 \mathrm{a}+\mathrm{b}}$ fork and $\mathrm{CuA} ; \mathrm{CuA}$ curved after the crossvein m -cua, CuP straight; the crossvein between CuA and CuP robust and nearly horizontal; $\mathrm{M}+\mathrm{CuA}$ fork proximal to $\mathrm{R}_{1}+\mathrm{Rs}$ fork, $\mathrm{R}_{1}+\mathrm{Rs}$ fork slightly proximal to the first fork of Sc ; three anal veins visible, A_{3} short, very close to wing margin.

Sinoagetopanorpa elegans sp. nov.
(Figures 10, 11 and 19F; ZooBank LSID urn:lsid:zoobank.org:act:7BE01613-3A97-4141-9F94-248339997070).

Etymology. The specific epithet is derived from the Latin elegans, indicating the well-preserved four wings.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing with numerous dark-colored spots, base narrow, a hyaline rounded triangular spot at apex of each interface of Rs and M branches; $\mathrm{Rs}_{4 a+b}$ forked late, A_{3} distinctly developed, the area between A_{3} and wing margin broad. Hind wing with $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ forked very late, R_{1} with three terminal branches.

Material. Holotype, NIGP200921 (Figures 10 and 11), two forewings and two hind wings preserved in one specimen, interpreted as one individual. One forewing is wellpreserved, the other forewing lacking apex; two hind wings overlap with each other, poorly preserved.

Description. Forewing with apex rounded, base obviously shrunken, the complete forewing length 5.6 mm , width 2.6 mm , L/M 2.2; dark color denser at the apical wing than basal wing, costal area with 5-6 hyaline patches; Sc terminated at a distance of 3.9 mm from wing base; R_{1} single, smoothly curved near apex; pterostigma large, half below the apical R_{1}; Rs five-branched, Rs_{4} bifurcated into two terminal branches, Rs_{1} curved upwards, Rs_{1+2} fork at the same level as M_{1+2} fork, stem $\mathrm{Rs}_{1+2} 1.5$ times as long as stem Rs_{3+4}, stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ long and 1.5 times as long as its branches; M six-branched, M_{2} bifurcating into two branches, stem M_{1+2} about 1.5-1.7 times as long as stem M_{3+4}, the three branches of M_{3+4} forking close, resulting in one forewing with M_{3} two-branched and M_{4} single, the other forewing with M_{3} single and M_{4} two-branched; a crossvein connecting stem Rs_{3+4} and M_{1+2}, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3}, respectively, crossvein m-cua connecting basal M_{4} (or $\mathrm{M}_{4 \mathrm{~b}}$) and $\mathrm{CuA} ; \mathrm{CuA}$ curved apically, CuP straight and single; $\mathrm{M}+\mathrm{CuA}$ proximal to $\mathrm{R}_{1}+\mathrm{Rs}, \mathrm{R}_{1}+\mathrm{Rs}$ proximal to the first fork of Sc ; three anal veins, A_{3} short, the area between A_{3} and wing margin broad.

Figure 10. Sinoagetopanorpa elegans sp. nov., NIGP200921 (holotype). (A) Photograph was taken when specimen immersed under 70\% alcohol in vertical reflected light; (B) Enlargement from (A); (C) Photograph was taken in oblique reflected light; (D) Enlargement from (C). Scale bars represent 1 mm in (\mathbf{A}, \mathbf{C}), 0.5 mm in (\mathbf{B}, \mathbf{D}).

Figure 11. Line drawing of Sinoagetopanorpa elegans sp. nov., NIGP200921 (holotype). (A) Line drawing of one forewing; (B) Line drawing of the other forewing; (C) Line drawing of one hind wing, dark color not illustrated. Scale bar represents 1 mm .

Hind wing poorly preserved with dark color; costal area broad, ca. 3 times as wide as subcostal area; Sc abruptly curved to costa apically; R_{1} forking near the same level as apical Sc ; Rs five-branched, Rs_{4} bifurcated into two branches, one hind wing with stem Rs_{1+2} slightly longer than Rs_{3+4}, the other hind wing with Rs_{1+2} nearly twice as long as stem $\mathrm{Rs}_{3+4} ; \mathrm{Rs}_{4 a+b}$ fork distinctly distad to $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ fork; a crossvein connecting stem Rs_{3+4} and stem M_{1+2}; M five-branched, M_{2} with two branches, stem M_{1+2} longer than stem M_{3+4}; CuA and CuP single and straight, anal veins absent.

Sinoagetopanorpa grimaldii sp . nov.
(Figures 12 and 19G; ZooBank LSID urn:lsid:zoobank.org:act:40BB5B06-8910-4165-8253-B7D1591D0E16).

Figure 12. Sinoagetopanorpa grimaldii sp. nov. (A,B) Photographs of NIGP200922 (holotype); (C,D) Photographs of NIGP200923 (paratype); (A,C) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The specific name is dedicated to the famous American paleoentomologist David Grimaldi.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing with two distinct dark stripes across the wing, with some darkcolored spots, apex of each Rs and M branches covered with a dark-colored spots and absence of the hyaline triangular spot.

Material. Four specimens, two of them with part and counterpart. Holotype, NIGP200922, a complete forewing (Figures 12A,B and 19G). Paratypes, NIGP200923, a forewing lacking apex (Figure 12C,D); NIGP200924, a forewing lacking wing base with part and counterpart; NIGP200925, lacking a small part of wing apex, with part and counterpart.

Description. Holotype, NIGP200922, forewing length 8.0 mm , width 4.0 mm , W/L 2.0, widest at middle wing, obviously tapering to base and apex; two dark stripes vertically lined across the wing, the larger one located at apex of R_{1}, the smaller one located at Sc_{3}; many dark-colored spots scattering at wing apex, middle and basal wing, but not combined into stripe; Sc terminated at 3/4 of wing; R_{1} curved apically; Rs five-branched, stem Rs_{1+2} twice as long as stem $\mathrm{Rs}_{3+4}, \mathrm{Rs}_{1+2}$ forking at the same level as M_{1+2} fork, stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ shorter than its branches; M six-branched, stem M_{1+2} slightly longer than M_{3+4} and $M_{2 a+b} ; M_{3}$ two-branched, M_{4} single, stem M_{3} short; a crossvein connecting $\mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, stem M_{1+2} and basal $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and $\mathrm{M}_{3 \mathrm{a}}$, respectively; crossvein m-cua connecting basal M_{4} and $\mathrm{CuA} ; \mathrm{CuA}$ single, curved apically, merged with M at the level of first Sc fork; CuP single, apically curved, the crossvein between basal CuA and CuP oblique; $\mathrm{R}_{1}+\mathrm{Rs}$ fork distinctly proximal to $\mathrm{M}+\mathrm{CuA}$ and the first fork of Sc ; two long anal veins, A_{1} leaned to CuP apically, A_{2} terminated at $1 / 3$ of wing, a crossvein connecting A_{1} and A_{2}.

Paratypes: NIGP200923 (Figure 12C,D), forewing length 6.9 mm (as preserved), width 3.5 mm ; stem M_{1+2} as long as stem M_{3+4}, the three branches of M_{3+4} forking at one point.

NIGP200924, forewing length 6.9 mm (as preserved), width 3.6 mm ; stem $\mathrm{Rs}_{1+2} 3$ times as long as stem $\mathrm{Rs}_{3+4} ; \mathrm{M}_{3}$ single, M_{4} two-branched, stem M_{1+2} distinctly longer than stem M_{3+4}. NIGP200925; forewing length 8.3 mm (as preserved), width 3.9 mm , deformed and overlapped by another wing fragment; M_{3} single, M_{4} two-branched, stem M_{1+2} slightly longer than stem M_{3+4}.

Sinoagetopanorpa magna sp. nov.
(Figures 13 and 19H; ZooBank LSID urn:lsid:zoobank.org:act:D309ED60-3469-4987-AEBA-56BCFF4B615A).

Figure 13. Sinoagetopanorpa magna sp. nov., NIGP200926 (holotype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The specific name is derived from the Latin word magna, large, indicating the large-sized wing.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing relatively large, with two dark stripes, numerous small darkcolored spots at sides of the stripes; a distinct crossvein connecting base of Rs_{1} and R_{1}.

Material. Holotype NIGP200926, with part and counterpart (Figures 13 and 19H), with veins well-preserved but lacking wing apex and part of base.

Description. Forewing length 8.2 mm (as preserved), estimated length 10.0 mm , width 5.0 mm , with two distinct colored stripes vertically lined across the wing, one located at apex of R_{1} and tapering to posterior wing, the other one located at Sc_{3}; numerous small dark-colored spots scattering at sides of the stripes, each spot apart from the others; Sc terminated at a distance of 7.5 mm from wing base; R_{1} curved apically; Rs five-branched, stem Rs_{1+2} length 1.3 mm , stem Rs_{3+4} length 0.8 mm , stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ length $2.2 \mathrm{~mm}, \mathrm{Rs}_{1+2}$ fork
slightly proximal to M_{1+2} fork, a crossvein connecting basal Rs_{1} and R_{1}; M six-branched, stem M_{1+2} length 1.4 mm , stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ length 1.1 mm , stem M_{3+4} length $1.0 \mathrm{~mm}, \mathrm{M}_{3+4}$ three-branched and forking at one point; stem M_{1+2} and Rs_{3+4} fork, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and upper branch of M_{3+4} connected by a crossvein, respectively; crossvein m-cua connecting lower branch of M_{3+4} and $\mathrm{CuA} ; \mathrm{CuA}$ curved after the crossvein m -cua, CuP single and curved apically; the crossvein between basal CuA and CuP robust and nearly horizontal; two anal veins detected, A_{1} leaned to CuP near apex; A_{2} terminated at a distance of 4.3 mm from wing base.

Raragetopanorpa gen. nov.
(ZooBank LSID urn:lsid:zoobank.org:act:61003EF7-F803-4261-9AE0-6CF9B65FD5B9).
Etymology. The generic name combines the Latin word rara, rare, indicating only one specimen has been found, and a mecopteran generic name Agetopanorpa.

Diagnosis. Sc with three evenly developed elongated branches; M five-branched with M_{2} two-branched and M_{4} single.

Type species. Raragetopanorpa zhangi gen. et sp. nov., genus monotypic.
Raragetopanorpa zhangi sp. nov.
(Figures 14 and 19I; ZooBank LSID urn:lsid:zoobank.org:act:54B79578-0A41-4D0C-9983-6D52E4723AFD).

Figure 14. Raragetopanorpa zhangi sp. nov., NIGP200927 (holotype). (A) Photograph was taken when specimen was immersed under 70\% alcohol in vertical reflected light; (B) Photograph was taken in oblique reflected light. Scale bars represent 1 mm in (A,B).

Etymology. The species name zhangi is in honor of the late paleoentomologist, Prof. Junfeng Zhang, for his contribution to Chinese paleoentomology.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. As for the genus.
Material. Holotype, NIGP200927, a nearly complete forewing with base poorly preserved (Figures 14 and 191).

Description. Forewing with apex somewhat rounded, length 6.4 mm , width 3.3 mm , L/W 1.9; wing with dark color, several distinct dark-colored spots at top of middle wing, costal area with four hyaline spots, a hyaline rounded triangular spot at apex of each Rs and M branches, some crossveins inside a small spot; Sc terminated distad to the level of $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ fork; R_{1} single, straight, smoothly curved apically; Rs five-branched, Rs_{1} curved, stem Rs_{1+2} length 1.0 mm , stem Rs_{3+4} length 0.3 mm , stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ as long as its branches; M five-branched, stem M_{1+2} slightly longer than stem M_{3+4}; stem $M_{2 a+b}$ as long as stem M_{3+4}; basal $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ and M_{1+2}, basal stem Rs_{4} and M_{1}, middle of $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3} connected by a crossvein, respectively, crossvein m-cua connecting basal M_{4} and $\mathrm{CuA} ; \mathrm{CuA}$ curved after crossvein m-cua, merged with M at the same level as $R_{1}+R s$ fork and proximal to the first fork of Sc ; CuP single and straight; the crossvein between basal CuA and CuP oblique; two anal veins detected, A_{1} curved at basal half, A_{2} shorter and curved downwards at apex.

Permoagetopanorpa gen. nov.
(ZooBank LSID urn:lsid:zoobank.org:act:C1F1E1AB-A4B2-42DA-A8EF-E225C91641BE).
Etymology. The generic name combines Permo, the Permian period, and mecopteran generic name Agetopanorpa.

Diagnosis. Forewing, Sc with four evenly developed elongated branches; M sixbranched, with M_{2} and M_{4} bifurcated into two branches.

Type species. Permoagetopanorpa yinpingensis gen. et sp. nov.
Other species. Permoagetopanorpa incompleta sp. nov.
Permoagetopanorpa yinpingensis sp. nov.
(Figures 15 and 19J; ZooBank LSID urn:lsid:zoobank.org:act:344ED4C6-A618-4729-B6BC-C77F22D9976A).

Figure 15. Permoagetopanorpa yinpingensis gen. et sp. nov., NIGP200928 (holotype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The species name is derived from the Yinping Formation, where the specimen was collected.

Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing moderately large in this group, Sc branches long, $\mathrm{Sc}_{3}, \mathrm{Sc}_{4}$, and stem Sc forming relatively small angles.

Material. Holotype, NIGP200928, a specimen lacking some part of apex, with part and counterpart (Figures 15 and 19J).

Description. Forewing relatively broad, length 8.0 mm , width 4.3 mm , broadest at $2 / 3$ of wing; wing with dense dark color, five hyaline patches at costal area, a hyaline rounded triangular spot at each apex between $\mathrm{Rs}_{1}, \mathrm{Rs}_{2}$ and $\mathrm{Rs}_{3} ; \mathrm{Sc}$ terminated at a distance of 5.9 mm from wing base, the first fork of Sc at a distance of 2.3 mm from wing base; R_{1} single and curved apically; Rs five-branched, stem Rs_{1+2} length 1.2 mm , stem Rs_{3+4} length 0.3 mm , stem $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ length $1.8 \mathrm{~mm}, \mathrm{Rs}_{1+2}$ fork distad to M_{1+2} fork, Rs_{1} curved upwards, basal Rs_{2} and Rs_{3} connected by a crossvein; M six-branched, M_{2} and M_{4} bifurcated into two branches, stem M_{1+2} length 1.3 mm , stem M_{3+4} length 0.9 mm ; stem Rs_{3+4} and stem M_{1+2}, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3} connected by a crossvein, respectively; the crossvein m-cua indistinct, inferred from the sharply curved $\mathrm{M}_{4 \mathrm{a}+\mathrm{b}}$; CuA curved at apical part; CuA merged with M at the same level as $\mathrm{R}_{1}+\mathrm{Rs}$ fork and proximal to the first fork of Sc ; CuP straight; two anal veins detected; a crossvein connecting A_{1} and A_{2}.

Permoagetopanorpa incompleta sp. nov.
(Figures 16 and 19K; ZooBank LSID urn:lsid:zoobank.org:act:420F6ACA-BA85-49ED-8A51-57B2C5299F4C).

Figure 16. Permoagetopanorpa incompleta sp. nov., NIGP200929 (holotype). (A,B) Photographs of part; (C,D) Photographs of counterpart; (A,C) were taken when specimens were immersed under 70\% alcohol in vertical reflected light; (B,D) were taken in oblique reflected light. Scale bars represent 1 mm in (A-D).

Etymology. The specific name is derived from the incompletely preserved forewing.
Type locality and horizon. Yinping Mountain, Chaohu City, Anhui Province, China; Yinping Formation (Capitanian).

Diagnosis. Forewing relatively small, Sc branches relatively short, $\mathrm{Sc}_{3}, \mathrm{Sc}_{4}$ and Sc stem forming relatively large angles.

Material. Holotype, NIGP200929, lacking a large part of wing base, overlapped by other wing fragment at anal area, with part and counterpart (Figures 16 and 19K).

Description. Forewing covered with dense dark color, wing length 5.2 mm (as preserved), width 3.1 mm , with some small hyaline patches at costal area; a hyaline rounded triangular spot at apex of each interface between Rs and M_{1-3} branches; $\mathrm{Sc}_{3}, \mathrm{Sc}_{4}$ and Sc stem forming nearly 60-degree angles, Sc_{1} and Sc_{2} forming a 30-degree angle, each branch of Sc nearly the same length; R_{1} single and curved apically; Rs five-branched, stem Rs_{1+2} length 0.7 mm , stem Rs_{3+4} length $0.5 \mathrm{~mm}, \mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ longer than its branches, Rs_{1+2} forking at the same level as M_{1+2} fork; a possible crossvein inside a spot connecting basal Rs_{2} and $\mathrm{Rs}_{3} ; \mathrm{M}$ six-branched, with M_{2} and M_{4} forking into two branches, stem M_{1+2} length 0.9 mm , stem M_{3+4} length 0.7 mm , stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ length 0.8 mm , stem $\mathrm{M}_{4 \mathrm{a}+\mathrm{b}}$ short; a crossvein connecting stem Rs_{3+4} and stem M_{1+2}, stem $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ and M_{3}; CuA curved at the apical part; other veins not preserved.

Hind wings of Sinoagetopanorpidae fam. nov.
The hind wings of Sinoageotpanorpidae fam. nov. are often preserved as isolated wings. Fourteen isolated hind wings (NIGP200930, NIGP200931, NIGP200932, NIGP200933, NIGP200934, NIGP200935, NIGP200936, NIGP200937, NIGP200938, NIGP200939, NIGP200940, NIGP200941, NIGP200942 and NIGP200943) were found (four with part and counterpart; NIGP200932 preserved a pair of hind wings). Two hind wings accompanied with forewings (S. lini. sp. nov. and S. elegans sp. nov.), and the rest of hind wings remain elusive in terms of their systematic positions. Similar to forewings, the hind wings are very stable in venation, with two types of venational patterns distinguished. The most common one (13/14) with three-branched R_{1} is represented by S. elegans sp . nov., but the hind wings of S. elegans sp. nov. are too incomplete with poor preservation to compare with other isolated hind wings; thus, no isolated hind wings are reluctantly attributed to S. elegans sp. nov. The rare one (one specimen) with two-branched R_{1} is represented by S. lini sp. nov.

The specimen NIGP200930 (Figures 17A,B and 18A) is a well-preserved hind wing and described as follows: wing broad, base narrow, broadest at near middle wing, length 6.6 mm , width 3.6 mm , L/W 1.8; wing apex with dark color, costal area with three hyaline patches, basal one oval shaped and large; basal wing devoid of dark color; lines of dark color along longitudinal veins; costal area broad, ca. 3 times as wide as subcostal area; Sc abruptly curved to costa near apex; R_{1} with three evenly developed terminal branches, $\mathrm{R}_{1 \mathrm{~b}}$ paralleled to $\mathrm{R}_{1 \mathrm{c}}$, forking near the level of apical Sc ; Rs five-branched, with Rs_{4} bifurcated into two branches, stem Rs_{1+2} more than twice as long as stem Rs_{3+4}, a crossvein connected near Rs_{1+2} fork and Rs_{3}, stem Rs_{3+4} and $\mathrm{M}_{1+2}, \mathrm{Rs}_{4 \mathrm{~b}}$ and M_{1}, respectively; M five-branched, M_{2} two-branched, M_{4} single, stem M_{1+2} as long as stem M_{3+4}; a crossvein connecting stem $M_{2 a+b}$ and M_{3}, crossvein m-cua connecting basal M_{4} and $\mathrm{CuA} ; \mathrm{CuA}$ straight, connected with M near wing base; CuP straight, the crossvein between basal CuA and CuP nearly horizontal; A_{1} straight, connected with CuP near wing base; A_{2} with one long branch and one short branch, forking near wing base; a crossvein connecting basal A_{2} and $\mathrm{A}_{1}, \mathrm{~A}_{3}$ very short and close to wing margin.

Figure 17. Cont.

Figure 17. Hind wings of Sinoagetopanorpidae fam. nov. (A,B) Photographs of NIGP200930; (C,D) Photographs of NIGP200931; (E) Photograph of a pair of hind wings (NIGP200932); (F) Photograph of NIGP200933; (G) Photograph of NIGP200934 (mirror image); (H) Photograph of a NIGP200935; (A,C,E-G) were taken when specimens were immersed under 70% alcohol in vertical reflected light; (B,D,H) were taken in oblique reflected light. Scale bars represent 1 mm in $(\mathbf{A}-\mathbf{H})$.

Figure 18. Line drawings of hind wings of Sinoagetopanorpidae fam. nov. (A) NIGP200930; (B) NIGP200932; (C) NIGP200934 (mirror image); (D) NIGP200933; (E) NIGP200931; (F) NIGP200935; (B-F) with dark color unillustrated. Scale bar represents 1 mm .

Key to genera and species of Sinoagetopanorpidae fam. nov.

1. Sc with four evenly developed elongated branches topanorpa gen. nov.

- Sc with three evenly developed elongated branches \qquad
\qquad

2. Wing relatively large; Sc branches relatively long; $\mathrm{Sc}_{3}, \mathrm{Sc}_{4}$ and stem Sc forming relatively small angles Permoagetopanorpa yinpingensis sp. nov.

- Wing relatively small; Sc branches relatively short; $\mathrm{Sc}_{3}, \mathrm{Sc}_{4}$ and stem Sc forming relatively large angles . Permoagetopanorpa incompleta sp. nov.

3. M six-branched
... 4 Sinoagetopanorpa

- M five-branched

Raragetopanorpa zhangi gen. et sp. nov.
4. Wing covered with numeral dark-colored spots and some spots fused in stripes; a round dark-colored spot at apex of each Rs and M branches \qquad
\qquad

- A hyaline rounded triangular spot at apex of each interface between Rs and M branches \qquad 6
- Absence of the hyaline rounded triangular spot at apex of each interface between Rs and M branches; R_{1+2} fork near the level of $\mathrm{M}_{2 \mathrm{a}+\mathrm{b}}$ fork Sinoagetopanorpa nigra sp. nov.

5. Wing moderately large; fewer dark-colored spots at sides of stripes

Sinoagetopanorpa grimaldii sp. nov.

- Wing relatively large, more dark-colored spots at sides of stripes; a crossvein connecting base of Rs_{1} and R_{1} Sinoagetopanorpa magna sp. nov.

6. A_{3} developed, $\mathrm{Rs}_{4 \mathrm{a}+\mathrm{b}}$ forking late
.............................. 7

- A_{3} absent, $\mathrm{Rs}_{4 a+b}$ forking early
\qquad

7. Wing with dense dark color; the area between A_{3} and wing margin narrow \qquad Sinoagetopanorpa minuta sp. nov.

- Wing with numerous dark-colored spots; the area between A_{3} and wing margin broad; R_{1} with three terminal branches in hind wing
\qquad . Sinoagetopanorpa elegans sp. nov.

8. Wing with dense colored spots

Sinoagetopanorpa permiana Lin, Nel and Huang, 2010
9. Wing with dense dark color; hind wing with R_{1} two-branched Sinoagetopanorpa lini sp. nov.
10. Wing broad, with dense dark color; apex of R_{1} distinctly curved \qquad ... Sinoagetopanorpa rotunda sp. nov.

Figure 19. Cont.

Figure 19. Line drawings of all sinoagetopanorpid species: (A) Sinoagetopanorpa permiana Lin, Nel and Huang, 2010, NIGP200888 (paratype); (B) S. nigra sp. nov., NIGP200912 (holotype); (C) S. rotunda sp. nov., NIGP200913 (holotype); (D) S. lini sp. nov., NIGP200917 (paratype); (E) S. minuta sp. nov., NIGP200920 (holotype); (F) S. elegans sp. nov., NIGP200921 (holotype); (G) S. grimaldii sp. nov., NIGP200922 (holotype) (mirror image); (H) S. magna sp. nov., NIGP20926 (holotype); (I) Raragetopanorpa zhangi sp. nov., NIGP200927 (holotype); (J) Permoagetopanorpa yinpingensis sp. nov., NIGP200928 (holotype); (K) P. incompleta sp. nov., NIGP200929 (holotype). Scale bar represents 1 mm .

4. Discussion

Sinoagetopanorpidae fam. nov. resemble members of the subfamily Agetopanorpinae of Permochoristidae in venation. Both groups are characterized by the following venational characteristics: Sc usually with three evenly developed elongated branches, Rs with five branches and M generally with six branches. However, it is very conspicuous that sinoagetopanorpids possess broad oval-shaped forewings with broad costal area, and the forking patterns of the three branches of the M_{3+4} forks are varied: M_{4} bifurcating into two branches and M_{3} single or M_{3} bifurcating into two branches and M_{4} single, or even three branches of M_{3+4} forking at the same point. With the consideration of these different forewing characteristics, we erected the new family Sinoagetopanorpidae fam. nov.

Sinoagetopanorpidae resemble Choristopsychidae Martynov, 1937 in having broad oval-shaped wings: Sinoagetopanorpidae possess a wing aspect ratio of 1.7-2.2, while 1.5-2.0 in Choristopsychidae, and both families show a broad costal area with three evenly developed branched Sc. Choristopsychidae was placed by many authors in the Permochoristidae family for its venational similarity with Agetopanorpinae [45-47]; however, Qiao et al. [48] discovered numerous exquisite specimens from the Middle-Upper Jurassic (originally assigned to the Middle Jurassic) Daohugou biota, and erected the family Choristopsychidae. Sinoagetopanorpidae differ from Choristopsychidae in a combination of the following characteristics: in terms of forewings, Sinoagetopanorpidae have at least fivebranched Rs instead of four-branched, six-branched M with three-branched M_{3+4} instead of five-branched M with two-branched M_{3+4}; in addition, the hind wings of Sinoagetopanorpidae have single Sc instead of two-branched Sc; furthermore, Sinoagetopanorpidae are confined to the Permian strata, whereas Choristopsychidae occurred in the Jurassic.

Based on our study of abundant new specimens, we found that the venational pattern of Sinoagetopanorpidae is rather stable: Sc generally with three branches (except the
two new species of Permoagetopanorpa); Rs five-branched; M with six branches where M_{2} and M_{4} (or M_{3}) bifurcate into two branches (except for Raragetopanorpa zhangi sp . nov., which possesses a five-branched M with two-branched M_{2} and a single M_{4}) and anal veins generally with two branches, but A_{3} detected in S. elegans and S. minuta. To distinguish these species, dark-colored pattens play another important role in species-level classification. In the forewings, four kinds of colored patterns are recognized: (1) the absence of a hyaline rounded triangular spot at the apex of each interface between Rs and M branches; (2) the apex of each Rs and M vein has a dark-colored spot and two dark-colored stripes across the wing; (3) a hyaline rounded triangular spot at the apex of each interface between Rs and M branches, the wing with a dense dark color; and (4) a hyaline rounded triangular spot at the apex of each interface between Rs and M branches, the wing with numerous colored spots.

Our discovery of two specimens preserved with both forewings has some implications for venational variations. The holotype of S. lini sp. nov. possesses the right forewing with Rs_{1} armed with a terminal fork, while the left forewing with a single R s_{1}. The variation of the terminal fork in the anterior branches of Rs in one individual can be found in other mecopteran families, such as Cimbrophlibiidae [49] and Panorpidae [50,51]. The two forewings of holotype of S. elegans sp. nov. show variation in the forking pattern of the three branches of M_{3+4} : one forewing with M_{3} two-branched and M_{4} single, but the other with M_{4} two-branched and M_{3} single, indicating that the forking pattern of M_{3+4} is unstable. Therefore, we do not regard these characters as an interspecific diagnostic characteristic.

During the Capitanian, the fossil locality was near $32^{\circ} \mathrm{N}$ on the Northeast Yangtze Platform in the eastern Paleotethys, which split from the Gondwana supercontinent during the Silurian $[44,52]$, and it possibly had a lagoonal paleoenvironment under the large-scale regression $[35,38]$. The extant known scorpionflies, with no exception, are weak flyers with low dispersal capacity. Therefore, the endemic mecopteran group Sinoagetopanorpidae fam. nov., the representative mecopterans in the Yinping Formation, might have evolved independently on the Yangtze Platform. The new family from the late Capitanian might have become extinct during the end-Guadalupian mass extinction, which was possibly associated with large-scale volcanic activities [53,54].

Author Contributions: Conceptualization, X.L. and D.H.; resources, D.H.; writing-original draft preparation, X.L.; writing-review and editing, X.L., C.C. and D.H.; validation, D.H. and C.C.; supervision, D.H.; project administration, D.H. and C.C.; funding acquisition, D.H. All authors have read and agreed to the published version of the manuscript.

Funding: Financial support was provided by the National Natural Science Foundation of China (41925008 and 42288201) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB26000000).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All data generated during this study are included in this published article. All the specimens are housed in the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.

Acknowledgments: We are grateful to Jian Gao and Yanzhe Fu for their help in fieldwork. We would like to express our sincere gratitude to E. Krzemińska and the other two anonymous reviewers for their valuable and constructive suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nel, A.; Roques, P.; Nel, P.; Prokin, A.A.; Bourgoin, T.; Prokop, J.; Szwedo, J.; Azar, D.; Desutter-Grandcolas, L.; Wappler, T.; et al. The earliest known holometabolous insects. Nature 2013, 503, 257-261. [CrossRef]
2. Rasnitsyn, A.P.; Aristov, D.S.; Gorochov, A.V.; Rowland, J.M.; Sinitshenkova, N.D. Important new insect fossils from Carrizo Arroyo and the Permo-Carboniferous faunal boundary. New Mex. Mus. Nat. Hist. Sci. Bull. 2004, 25, 215-246.
3. Bashkuev, A.S.; Sukatsheva, I.D. New species of Kamopanorpa Martynov from the Permian of South Siberia with comments on the systematic position of Microptysmatidae (Protomeropina = Permotrichoptera). Palaeoentomology 2021, 4, 453-461. [CrossRef]
4. Bashkuev, A.S. The earliest Mesopsychidae and revision of the family Mesopanorpodidae (Mecoptera). Zookeys 2011, 130, 263-279. [CrossRef]
5. Bashkuev, A.S. New scorpionflies (Insecta: Mecoptera: Permochoristidae) from the Ufimian of Cisuralia. Paleontol. J. 2010, 44, 291-296. [CrossRef]
6. Riek, E.F. Fossil mecopteroid insects from the Upper Permian of New South Wales. Rec. Aust. Mus. 1953, 23, 55-87. [CrossRef]
7. Riek, E.F. New Upper Permian insects from Natal, South Africa. Ann. Natal Mus. 1976, 22, 755-789.
8. Riek, E.F. Upper Triassic insects from the Molteno "Formation", South Africa. Palaeontol. Afr. 1974, 17, 19-31.
9. Lian, X.N.; Cai, C.Y.; Huang, D.Y. New species of Mesopsyche Tillyard, 1917 (Mecoptera: Mesopsychidae) from the Triassic of northwestern China. Zootaxa 2021, 4995, 565-572. [CrossRef]
10. Tillyard, R.J. Kansas Permian insects. Part 7. The order Mecoptera. Am. J. Sci. 1926, 5, 133-164. [CrossRef]
11. Tillyard, R.J. Permian and Triassic insects from New South Wales, in the collection of Mr. John Mitchell. Proc. Linn. Soc. N. S. W. 1918, 42, 720-756.
12. Martynova, O.M. Order Mecoptera: Scorpionflies. In Fundamentals of Paleontology. Vol. 9, Arthropoda, Tracheata, Chelicerata; Rohdendorf, B.B., Ed.; Smithsonian Institution Libraries: Washington, DC, USA, 1962; pp. 283-294.
13. Martynov, A.V. Permian Fossil Insects from the Arkhangelsk District: Part I. The Other Mecoptera. Tr. Zool. Inst. Akad. Nauk. SSSR 1933, 2, 23-62.
14. Ren, D.; Shih, C.K.; Labandeira, C.C. New Jurassic Pseudopolycentropodids from China (Insecta: Mecoptera). Acta Geol. Sin.-Engl. Ed. 2010, 84, 22-30. [CrossRef]
15. Ren, D.; Shih, C.K. The first discovery of fossil eomeropids from China (Insecta, Mecoptera). Acta Zootaxonomica Sin. 2005, 30, 275-280.
16. Qiao, X.; Shih, C.K.; Ren, D. Three new species of aneuretopsychids (Insecta: Mecoptera) from the Jehol Biota, China. Cretac. Res. 2012, 36, 146-150. [CrossRef]
17. Ren, D. Studies on Late Jurassic scorpion-flies from Northeast China. Acta Zootaxonomica Sin. 1997, 22, 75-87.
18. Petrulevičius, J.F.; Jarzembowski, E.A. The First Hangingfly (Insecta: Mecoptera: Bittacidae) from the Cretaceous of Europe. J. Paleontol. 2004, 78, 1198-1201. [CrossRef]
19. Jarzembowski, E.; Soszyńska-Maj, A. The first orthophlebiid scorpionfly (Insecta: Mecoptera) from the Wealden (Lower Cretaceous) of southern England. Earth Environ. Sci. Trans. R. Soc. Edinb. 2017, 107, 191-194. [CrossRef]
20. Grimaldi, D.; Johnston, M.A. The long-tongued Cretaceous scorpionfly Parapolycentropus Grimaldi and Rasnitsyn (Mecoptera: Seudopolycentropodidae): New data and Interpretations. Am. Mus. Novit. 2014, 3793, 1-24. [CrossRef]
21. Bicha, W.J. Biodiversity of Mecoptera. In Insect Biodiversity: Science and Society; Foottit, R.G., Adler, P.H., Eds.; John Wiley \& Sons: Hoboken, NJ, USA, 2018; pp. 705-720.
22. Wang, J.S. Phylogeny and Taxonomy of the World Panorpidae (Mecoptera); Northwest A\&F University: Xianyang, China, 2020.
23. Novokshonov, V.G.; Ross, A.J.; Cook, E.; Krzemiński, W.; Soszyńska-Maj, A. A new family of scorpionflies (Insecta; Mecoptera) from the Lower Cretaceous of England. Cretac. Res. 2016, 62, 44-51. [CrossRef]
24. Ren, D.; Shih, C.K.; Gao, T.P.; Wang, Y.J.; Yao, Y.Z. Rhythms of Insect Evolution: Evidence from the Jurassic and Cretaceous in Northern China; Whiley Blackwell: New York, NY, USA, 2019.
25. Carpenter, F.M. The Lower Permian insects of Kansas. Part I. Introduction and the order Mecoptera. Bull. Mus. Comp. Zool. 1930, 52, 69-101.
26. Martynova, O.M. Order Mecoptera. In Paleozoic Insects from the Kuznetsk Basin; Rohdendorf, B.B., Becker-Migdisova, E.E., Martynova, O.M., Sharov, A.G., Eds.; Publishing House of the Academy of Sciences of the USSR: Moscow, Russia, 1961; Volume 88, pp. 487-592.
27. Pinto, I.D. Permian insects from the Paraná Basin, South Brazil-I. Mecoptera. Rev. Bras. De Geociências 1972, 2, 105-116.
28. Srivastava, A.K. Insect and insect activities in Permian Gondwana of India. Permophiles 1997, 30, 17.
29. Van Dijk, D.E.; Geertsema, H. Permian insects from the Beaufort Group of Natal, South Africa. Ann. Natal Mus. 1999, 40, 137-171.
30. Guo, X.R.; Hong, Y.C. New genus and species of Permochoristidae Tillyard (Insecta, Mecoptera) from the Middle Triassic Tongchuan Formation, Shaanxi Province, China. Acta Zootaxonomica Sin. 2003, 28, 712-715.
31. Lin, Q.B.; Nel, A.; Huang, D.Y. The first agetopanorpine mecopteroid insect from Middle Permian of China (Insecta: Mecoptera: Permochoristidae). Ann. De La Soc. Entomol. De Fr. 2010, 46, 62-66. [CrossRef]
32. Lian, X.N.; Cai, C.Y.; Huang, D.Y. The earliest known species of Permeca (Insecta, Mecoptera, Permochoristidae) from the late Guadalupian Yinping Formation of China. Palaeoentomology 2022, 5, 395-399. [CrossRef]
33. Lian, X.N.; Cai, C.Y.; Huang, D.Y. New discovery of Permochoristidae (Insecta, Mecoptera) from the Guadalupian of Chaohu City, Anhui Province, China. Acta Palaeontol. Sin. 2022, 61, 472-478.
34. Kametaka, M.; Nagai, H.; Zhu, S.Z.; Takebe, M. Middle Permian radiolarians from Anmenkou, Chaohu, Northeastern Yangtze platform, China. Isl. Arc 2009, 18, 108-125. [CrossRef]
35. Zhang, B.L.; Yao, S.P.; Hu, W.X.; Ding, H.; Liu, B.; Ren, Y.L. Development of a high-productivity and anoxic-euxinic condition during the late Guadalupian in the Lower Yangtze region: Implications for the mid-Capitanian extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 531, 108630. [CrossRef]
36. Huang, D.Y.; Nel, A.; Lin, Q.B.; Dong, F.B. The first Glosselytrodea (Insecta) from the latest Middle Permian of Anhui Province, China. Bull. De La Société Entomol. De Fr. 2007, 112, 179-182. [CrossRef]
37. Ponomarenko, A.G.; Yan, E.V.; Huang, D.Y. New beetles (Coleoptera) from the terminal Middle Permian of China. Paleontol. J. 2014, 48, 191-200. [CrossRef]
38. Szwedo, J.; Huang, D.Y. First Dysmorphoptilidae from the Permian of China (Hemiptera: Cicadomorpha: Prosbolomorpha), with notes on the fossil record of the family. Palaeoentomology 2019, 2, 148-170. [CrossRef]
39. Fu, Y.Z.; Huang, D.Y. Sinomorphoptila incompleta gen. et sp. nov., a new dysmorphoptilid from the Middle Permian of China (Hemiptera, Cicadomorpha, Prosbolomorpha). Palaeoentomology 2020, 3, 361-365. [CrossRef]
40. Huang, D.Y.; Fu, Y.Z.; Lian, X.N.; Nel, A. Sinaspidoneura magnifica nov. gen., nov. sp., first Chinese Caloneurodea (Insecta: Archaeorthoptera). Geobios 2020, 63, 33-37. [CrossRef]
41. Huang, D.Y.; Schubnel, T.; Nel, A. A new middle Permian orthopteran family questions the position of the Order Titanoptera (Archaeorthoptera: Orthoptera). J. Syst. Palaeontol. 2020, 18, 217-1222. [CrossRef]
42. Huang, D.Y.; Fu, Y.Z.; Lian, X.N.; Gao, J.; Nel, A. The first Chinese Protohymenidae (Palaeoptera: Megasecoptera). Hist. Biol. 2022, 34, 458-461. [CrossRef]
43. Minet, J.; Huang, D.Y.; Wu, H.; Nel, A. Early Mecopterida and the systematic position of the Microptysmatidae (Insecta: Endopterygota). Ann. De La Société Entomol. De Fr. 2010, 46, 262-270. [CrossRef]
44. Scotese, C.R. Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. Available online: www.earthbyte. org / paleomap-paleoatlas-for-gplates (accessed on 17 December 2016).
45. Martynov, A.V. Liassic insects of Shurab and Kizilkya Mongolia. Tr. Paleontol. Inst. Akad. Nauk. SSSR 1937, 7, 1-178.
46. Willmann, R. Evolution und phylogenetisches system der Mecoptera (Insecta: Holometabola). Abh. Der Senckenberg. Nat. Ges. 1989, 544, 1-153.
47. Novokshonov, V.G. Order Panorpida Latreille, 1802. In History of Insects; Rasnitsyn, A.P., Quicke, D.L.J., Eds.; Kluwer Academic Press: Dordrecht, The Netherlands, 2002; pp. 194-198.
48. Qiao, X.; Shih, C.K.; Petrulevičius, J.F.; Ren, D. Fossils from the Middle Jurassic of China shed light on morphology of Choristopsychidae (Insecta, Mecoptera). ZooKeys 2013, 318, 91-111.
49. Zhang, X.; Shih, C.K.; Zhao, Y.P.; Ren, D. New Species of Cimbrophlebiidae (Insecta: Mecoptera) from the Middle Jurassic of Northeastern China. Acta Geol. Sin.-Engl. Ed. 2015, 89, 1482-1496.
50. Hu, G.L.; Wang, J.S.; Hua, B.Z. Five new species of Dicerapanorpa Zhong \& Hua (Mecoptera, Panorpidae) from Yunnan, China. J. Asia-Pac. Entomol. 2019, 22, 159-166.
51. Wang, J.S.; Hua, B.Z. Taxonomic revision and phylogenetic analysis of the enigmatic scorpionfly genus Leptopanorpa MacLachlan (Mecoptera: Panorpidae). J. Zool. Syst. Evol. Res. 2020, 58, 900-928. [CrossRef]
52. Wang, Y.; Jin, Y.G. Permian palaeogeographic evolution of the Jiangnan basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 160, 35-44.
53. Isozaki, Y. Illawarra Reversal: The fingerprint of a superplume that triggered Pangean breakup and the end-Guadalupian (Permian) mass extinction. Gondwana Res. 2009, 15, 421-432. [CrossRef]
54. Wignall, P.B.; Sun, Y.D.; Bond, D.P.G.; Izon, G.; Newton, R.J.; Védrine, S.; Widdowson, M.; Ali, J.R.; Lai, X.L.; Jiang, H.S. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 2009, 324, 1179-1182. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

