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Simple Summary: Colombia currently has 595,722 oil palm-cultivated hectares, but production is
declining due to phytophagous insects feeding mainly on the leaves; one of them, Durrantia arcanella,
is a recurring pest in the northern palm zone of Colombia, for which we do not have all the essential
information. Therefore, it was proposed to determine its biology, foliar consumption rate, population
fluctuation, and relationship with climatic variables and to identify its main natural enemies in the
department of Cesar. The life cycle under laboratory conditions, including adult longevity, was
48.0 ± 10.1 days, the egg stage lasted 8.0 ± 0.7 days, the larva stage lasted 24.2 ± 6.2 days, the pre-
pupa stage lasted 1.5 ± 0.5 days, the pupa stage lasted 7.1 ± 0.9 and the adult had a longevity of
7.2 ± 2.0 days. At the end of the larval period, it was determined that they individually consumed
8.2 ± 5.3 cm2 of leaflets. Correlation was found between D. arcanella population dynamics and
climatic factors such as temperature and relative humidity, likewise with natural enemies.

Abstract: Durrantia arcanella is a recurring pest insect of oil palm in Colombia. Because the biology
and ecology of D. arcanella are unknown, it was proposed to determine the life cycle and foliar
consumption under laboratory conditions. Furthermore, through sequential sampling for two and a
half years, its population fluctuation and natural enemies were determined in Agustín Codazzi and
El Copey (Cesar, Colombia). Also, temperature, precipitation, and relative humidity were registered.
The life cycle of D. arcanella lasted 48.0 ± 10.1 days, the egg 8.0 ± 0.7 days, larva 24.2 ± 6.2 days,
pre-pupa 1.5 ± 0.5 days, pupa 7.1 ± 0.9 days, and adult 7.2 ± 2.0 days. The larvae consumed
8.2 ± 5.3 cm2 of leaflets. Correlations were found between the population fluctuation in D. arcanella
and the temperature in El Copey (ρ = −0.45; p < 0.0043), relative humidity in Codazzi (ρ = 0.33;
p < 0.034), and with the natural control in both locations ((ρ = 0, 61; p < 0.000044) and (ρ = 0.42;
p < 0.006)). These results suggest monitoring the pest populations in the second semester of the year
and show the importance of promoting native natural enemies.

Keywords: foliar consumption; recurring pest; natural enemy; climatic variables

1. Introduction

Oil palm cultivation is a vast global industry worth over USD 50 billion annually.
Colombia currently has 595,722 cultivated hectares, is the fourth in world production, and
is the first palm oil producer in the American continent [1,2].

The industrialization and planting of large areas of oil palm have transformed not
only the lives of many people and the profits of companies dedicated to palm growing in
tropical America but have also created profound changes in the ecosystem and, in turn,
in the ecology of various phytophagous insects, which have been favored and adapted
to a homogeneous and permanent environment where they maintain a balance of their
populations at the expense of cultivation [3–5]. These insects can attack any plant tissue of
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the oil palm; however, the leaves are the primary food source for many arthropods. Most
correspond mainly to defoliating insects of the order Lepidoptera, which usually cause the
most significant economic losses in crops, decreasing production and increasing costs [3,6].

In oil palm plantations on the Caribbean coast of Colombia, defoliating insects are
one of the main entomological problems to consider when implementing an Integrated
Pest Management (IPM) program, one of them being the oil palm weaver worm, initially
identified as Durrantia aff. arcanella (Busk, 1912), a moth of the Depressariidae family,
microlepidoptera, with more than 3000 species distributed worldwide [3,7,8]. Durrantia
arcanella has been registered to affect oil palm in countries such as Venezuela, Mexico,
Honduras, Costa Rica, Panama, and Ecuador; the larvae cause direct damage by completely
ingesting the leaf blade and indirect damage by generating a gateway to the complex of
phytopathogenic fungi that cause the disease known as leaf blight or Pestalotiopsis [3,9–11].

When selecting an effective management strategy, some aspects are essential, such
as correctly identifying the pest insect, understanding its biology and habits, the seasonal
fluctuation in the population, its most damaging life stages, its foliar consumption rate,
and its economic significance. These will allow for the pest insect’s impact on the crop to be
measured and successful IPM programs to be developed [12–15]. The life cycle and habits
of D. arcanella have been studied by [9,11]; however, updated and complete information on
their biology and ecology in an environment of climate change is necessary [16], as well as
the dynamics of their populations, the quantification of damage, and its natural enemies.
Therefore, this research was carried out to corroborate the taxonomic identity of D. arcanella
and determine the life cycle, population dynamics, foliar consumption rate, and natural
enemies of D. arcanella in oil palm lots in the northern palm zone of Colombia.

2. Materials and Methods

Molecular identification and phylogenetic analysis. The genetic material was ex-
tracted from pupae (Copey_ Colombia 3), larvae (Copey_ Colombia 2), and adults (Copey_
Colombia 1) of Durriantia sp. using the NucleoSpin Plant II commercial kit following
the supplier’s instructions. The extracted DNA was stored at −20 ◦C until further use.
The amplified gene region corresponded to subunit 1 of cytochrome c oxidase (COI) with
the primers LCO-1490 (5′-GGTCAACAAATCATAAAGATATTGG) and HCO-2198 (5′-
TAAACTTCAGGGTGACCAAAAATCA) [17–19]. Reactions were incubated in a T3 ther-
mocycler (Biometra, Gottingen, Germany) with a PCR reaction volume of 25 µL in each one,
containing 12.5 of the GoTaq® Green Master Mix kit (Promega, Madison, WI, USA), 0.5 µL
of each of the primers (10 µM), 2 µL of DNA (200 ng/µL), and 9.5 µL of nuclease-free water.
The reaction conditions were initial denaturation at 95 ◦C (5 min), 35 cycles of denaturation
at 94 ◦C for 1 min, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 1 min, with a final
extension at 72 ◦C for 10 min. After electrophoresis, the bands of the expected size were
cut (fragment approx. 600 bp) and purified using the QIAquick Gel Extraction kit (Qiagen,
Venlo, The Netherlands) and sent for sequencing at the National University of Colombia.

The sequences obtained with each primer were edited using the BioEdit 7.0.5.3 pro-
gram [20], and the consensus sequence was constructed with the CAP contig assembly
accessory for each isolate. Once the sequences were obtained, their identity was con-
firmed by comparing them with the GenBank (http://www.ncbi.nlm.nih.gov/BLAST) and
Boldsystem (https://www.boldsystems.org/) databases accessed on 13 October 2023. Ac-
cording to the literature reported for phylogenetic analysis, the sequences generated in this
study were complemented with additional sequences obtained from other related strains
of Durrantia sp. Subsequently, sequence alignment was performed with the MUSCLE
algorithm included in the MEGAX program [21]. The statistical method was the Maximum
Likelihood method, and evolutionary distances were calculated using the Tamura–Nei
method. This analysis involved 15 nucleotide sequences. Node support was determined us-
ing the bootstrap method with 1000 repetitions. Carystus lota Hewitson, 1877 (Lepidoptera:
Hesperiidae) was used as an external group of the phylogenetic tree.

http://www.ncbi.nlm.nih.gov/BLAST
https://www.boldsystems.org/
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Biology of Durrantia arcanella. Larvae and pupae were collected during the year
2022 in the Palmeras de la Costa plantation, located in the municipality of El Copey (Cesar,
Colombia) at the geographical coordinates 10◦06′03.2′′ N 74◦00′35.0′′ W. The individuals
were transferred to the plantation laboratory in plastic jars; once there, the pupae were
deposited in Petri dishes until the emergence of the adults, and the larvae were reared
separately and fed inside a Petri dish containing a piece (8 × 5 cm) of leaflet taken from
leaf 9 of the oil palm cultivar Compacta × Ghana, which was placed underneath a piece
of absorbent paper moistened with sterile water to hydrate it, the paper and leaflet were
replaced every three days until all larvae reached the pupal stage and adults emerged. The
adults were transferred to 20 × 15 × 15 cm plastic containers with Kraft paper inside to
allow oviposition and a piece of cotton moistened with a mixture of water and honey in a
1:1 ratio. The container was covered with a muslin cloth to prevent the escape of D. arcanella
adults. The time from the laying of the eggs to the larvae hatching was recorded; these were
reared separately in Petri dishes with a piece of leaflet and hydrated absorbent paper. The
different larval instars’ development, morphological changes, and duration were observed
and recorded daily. Subsequently, the duration of the pupae was determined, and, finally,
the longevity of the adults was recorded.

Population fluctuation in D. arcanella. The study was carried out in two oil palm lots:
The first lot of 31 ha planted in 2006 with Elaeis guineensis cultivar Compacta × Ghana, was
located on Palmeras de la Costa plantation (El Copey, Cesar) at the geographic coordinates
10◦06′38.4′′ N 74◦01′39.9′′ W. The second lot, a 25.8 ha plot planted in 2008 with E. guineensis
cultivar Deli × Avross, was located on Palmas Sicarare plantation (Agustín Codazzi, Cesar)
at the geographic coordinates 09◦55′28′′ N 73◦14′10′′ W. Every 20 days, from December
2020 to June 2023, 5× 5 sampling was carried out (every five palms every five lines until the
entire lot was covered). On leaf 17 of each selected palm, the number of alive larvae, pupae,
and those affected by natural enemies were recorded. Parasitized and individuals with
signs of infection by entomopathogens were collected. The parasitoids were identified at
the Fundación Instituto Entoma (Bogotá, D.C., Colombia), and the strains were isolated and
identified in the laboratory of entomopathogenic micro-organisms—MEAPA of Cenipalma.
Precipitation, temperature, and relative humidity were recorded during the sampling in
both lots with Vantage Pro2™ weather stations (Davis Instruments, Hayward, CA, USA).
Finally, Spearman correlations were performed between population fluctuation, climatic
factors, and biological control exerted by natural enemies using the R-studio version 4.1.2
program. Biological control was calculated using the following formula:

B.C. =
(

Individuals afected by the natural enemy
Healthy Individuals

)
× 100 (1)

Foliar consumption rate. In total, 43 larvae of the first instar, 36 of the second and
third instar, 33 of the fourth, and 46 of the fifth instar were evaluated to quantify foliar
consumption. All the larvae were reared separately in Petri dishes, and a 7 × 4 cm piece
of leaflet was taken from leaf 17 of a Compacta × Ghana cultivar palm. The leaflet was
changed every three days, and the leaf area consumed was calculated. For this, photos
were taken before and after the leaflet pieces were offered to the larvae and then analyzed
with the Image J® program developed by Wayne Rasband (Wisconsin, USA). The data were
analyzed through descriptive statistics.

3. Results

Molecular identification and phylogenetic analysis. Each of the Durrantia stages
was molecularly identified with the COI gene, obtaining a percentage of similarity for the
adult stage of 99.51% (Copey_Colombia 1), larva of 99.50% (Copey_Colombia 2), and pupa
of 98.67% (Copey_Colombia 3) with the species Durrantia arcanella. The sequences of adult,
larva, and pupa were related to sequences of samples collected and reported via Boldsystem
from Panama (CCDB-29465-B04 and CCDB-32975-E03), Mexico (CCDB-29465-B03), and
Costa Rica (09-SRNP-103185). According to the Maximum Likelihood phylogenetic tree
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(Figure 1), the Durrantia consensus sequences obtained in this study were grouped in the
same clade with the reference sequences of the species D. arcanella recorded in Boldsystem
(LNAUW2557-17, MHMYK13131-16, LNAUW2558-17, and LNAUX1001-18) with a higher
bootstrap support of 89%. Likewise, D. arcanella was separated from other species of the
same genus.
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Figure 1. Phylogenetic tree obtained by the Maximum Likelihood statistical method based on the
Cytochrome Oxidase 1 (COI) gene for Durrantia sp. species.

Biology of Durrantia arcanella. The total duration of the life cycle of D. arcanella was
48.0 ± 10.1 days under laboratory conditions (28.2 ± 2.5 ◦C, 82.1 ± 10% R.H.).

Eggs. Initially, the eggs are shiny yellowish green in color, oval-shaped, measuring
0.5 ± 0.1 mm long and 0.3 ± 0.08 mm wide. The chorion comprises cells in irregular poly-
gons with a slightly roughened texture (Figure 2A); after 3–4 days, the egg surface changes
to a dull light-yellow color and simple eyes of larvae are perceivable. The completely
developed larvae may be observed through the chorion on days 6–7. Hatching occurs in
about 8.0 ± 0.7 days when neonate larvae move their mouthparts to make an aperture on
the eggshell. They have a viability average of 70.4 ± 5.0%.

Larvae. The larvae go through five instars (Table 1); they have an elongated and
cylindrical body of the eruciform type with the presence of simple setae, they have a
sclerotized brown head of the hypognathous type with chewing mouthparts, stemmata
situated at both epicranial regions formed by six lateral single-lens eyes, five arranged
as a semicircle and one more located ventrally, with short antennae with three segments.
They also present three pairs of well-developed thoracic legs, four pairs of pseudolegs
located on the third, fourth, fifth, and sixth abdominal segments, and one pair of anal
pseudolegs. When hatching, the first instar larvae are light-yellow and have an average
length of 2.1 ± 0.5 mm (Figure 2B). Once they start feeding, they change to a light green
and increase in size. The second instar larvae measure 3.3 ± 0.9 mm in length and are
characterized by four black dots on the dorsal part of the mesothorax and metathorax
(Figure 2C). After ecdysis, the instars III, IV, and V have a pale yellow body and head until
they turn green over time (Figure 2D); they have solitary habits and take refuge under a
white silk tissue that they build on the bundle or the underside of the leaflet (Figure 2E).
They are characterized by a band of four irregular dark lines that start on the prothoracic
shield and run longitudinally along the back until becoming opaque on the anal shield. At
the end of their larval development, they measure 17.9 ± 2.5 mm in length (Figure 2G). At
this point, they stop feeding and begin the pre-pupa stage, which is marked by a reduction
in larva size and by the construction of a thicker line on the underside of the leaflets, woven
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with three reinforced layers at the ends intended for the protection of the pupa (Figure 2K).
The pre-pupa measures 11.4 ± 1.0 mm in length and is yellow-orange. On the dorsal part
of the abdomen, the four irregular bands turn reddish as the insect reduces in size until it
becomes a chrysalis (Figure 2H).
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Table 1. Duration in days (± standard deviation) of the different stages of Durrantia arcanella in oil
palm (Compacta × Ghana) leaflets under laboratory conditions (28.2 ± 2.5 ◦C, 82 ± 10% RH).

Estadio n Average ± S.D. (Days) Min.–Max. (Days)

Egg 389 8.0 ± 0.7 7.0–9.0
Larva I instar 87 4.4 ± 1.2 3.0–7.0
Larva II instar 55 4.3 ± 1.3 3.0–6.0
Larva III instar 55 5.6 ± 1.4 3.0–7.0
Larva IV instar 49 5.0 ± 1.4 3.4–7.0
Larva V instar 47 4.9 ± 1.2 4.0–6.0

Pre-pupa 45 1.5 ± 0.5 1.0–2.4
Pupa 94 7.1 ± 0.9 5.0–9.3
Adult 94 7.2 ± 2.0 4.0–12.0

Total life cycle 48.0 ± 10.1 33.4–65.7

Pupae. The pupae are of the obtect type; their average length is 6.6± 0.6 mm for males
and 8.0 ± 0.5 mm for females; and at the beginning of their development, they are light
orange, turning dark orange and finally brown (Figure 2I). A morphological identification
feature for sex determination is visible on the ventral side of the abdomen: the female
genital suture covers the eighth abdominal segment completely, whereas the male genital
suture is positioned in the middle section of the ninth abdominal segment.

Adult. The adult has a body covered with mostly creamy white scales, simple de-
veloped maxillary palps, long and recurved labial palps, developed proboscis, and oval-
shaped forewings with two dark brown spots in the middle of each wing and a line light
brown that borders the forewing from the apical end and becomes thinner until ending at
the costal margin (Figure 2J). There is also sexual dimorphism: The male has slightly ser-
rated antennae and slender abdomen, measuring 6.6 ± 0.4 mm in length with a wingspan
of 14.1 ± 1.1 mm. In contrast, the female has simple antennae and a wider abdomen, a
length of 8.6 ± 0.5 mm with a wingspan of 17.8 ± 0.7 mm; the ovipositor is visible at the
end of the last abdomen segment. The natural sex ratio is about two females for each male.
Each female of D. arcanella oviposits an average of 143.2 ± 55.3 eggs during its adult stage.

Population fluctuation in Durrantia arcanella. During the 30 months, 41 samples
were taken, where a total of 15953 larvae and 2712 pupae were recorded in the plot located
in El Copey and 21,190 larvae and 2855 pupae in the plot located in Agustín Codazzi. Each
year in both locations, populations were below 800 individuals from February to July, and
values above 1200 were recorded from August to January. The highest population peaks
were observed in the plot in Agustín Codazzi in August–September 2022 (Figure 3A) and
El Copey during December 2020 and September–October 2021 (Figure 3B). During the sam-
pling in both plantations, the presence of natural enemies was recorded, which controlled
11.2% of the total individuals in the lot located in El Copey and 8.1% of those registered in
Agustín Codazzi. The most frequent natural enemy was Gnamptodon sp. (Hymenoptera:
Braconidae), a solitary endoparasitoid of first- and second-instar larvae of D. arcanella
(Figure 4A), responsible for 40.3% of biological control, followed by Brachymeria sp. (Hy-
menoptera: Chalcididae) 29.1%, a solitary endoparasitoid of pupae (Figure 4B–D). The
entomopathogenic fungus Cordyceps sp. (Hypocreales: Cordycipitaceae) was found to affect
pupae, representing 24.9% of the natural control. Finally, Neorharcodes sp. (Hymenoptera:
Ichneumonidae) pupal parasitoid 5.6% (Figure 4C).

There was no association between population density and precipitation; however
(Table 2), in El Copey, negative correlations were recorded between the population dynam-
ics of D. arcanella larvae and pupae and temperature (R = −0.4500; p < 0.0043), positive
correlations were recorded between population dynamics and biological control (R = 0.6100;
p < 0.000044), and negative correlations were recorded between temperature and biological
control (R = −0.6300; p < 0.000024). Meanwhile, in Agustín Codazzi, the population had
positive correlations with relative humidity (R = 0.3300; p < 0.0340) and with biological
control (R = 0.4200; p < 0.0060).
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Table 2. Spearman’s correlation relating the population dynamics of D. arcanella with some climatic
variables and biological control in 2 oil palm plantations.

Localization Precipitation Relative Humidity Temperature Biological Control

El
C

op
ey

D. arcanella −0.0770 0.1700 −0.4500 0.6100

p 0.6500 0.3000 0.0043 ** 4.4 × 10−5 **

Biological Control −0.1900 0.1200 −0.6300

p 0.2400 0.4600 2.4 × 10−5 **

C
od

az
zi

D. arcanella 0.2100 0.3300 −0.2100 0.4200

p 0.1800 0.0340 ** 0.1900 0.006 **

Biological Control 0.0270 0.1500 0.1100

p 0.8700 0.3600 0.5000

** Significance with α = 0.01.
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Foliar consumption rate. The first- to third-instar larvae cause scratches on the un-
derside of the leaf blade on the leaves of levels 9 and 17 of the oil palm (Figure 5A,B); the
fourth- and fifth-instar larvae can completely ingest the leaf blade, mainly on levels 17,
25, and 33 (Figure 4C). Each individual completes its larval development after consuming
8.23 ± 5.3 cm2 of leaf blade (Table 3).
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control (R = −0.6300; p < 0.000024). Meanwhile, in Agustín Codazzi, the population had 
positive correlations with relative humidity (R = 0.3300; p < 0.0340) and with biological 
control (R = 0.4200; p < 0.0060). 

Table 2. Spearman’s correlation relating the population dynamics of D. arcanella with some climatic 
variables and biological control in 2 oil palm plantations. 

Localization Precipitation Relative Humidity Temperature Biological Control  

El
 C

op
ey

 D. arcanella −0.0770 0.1700 −0.4500 0.6100 
p 0.6500 0.3000 0.0043 ** 4.4 × 10−5 ** 

Biological Control −0.1900 0.1200 −0.6300  

p 0.2400 0.4600 2.4 × 10−5 **  

C
od

az
zi

 D. arcanella 0.2100 0.3300 −0.2100 0.4200 
p 0.1800 0.0340 ** 0.1900 0.006 ** 

Biological Control 0.0270 0.1500 0.1100  

p 0.8700 0.3600 0.5000  
** Significance with α = 0.01. 

Figure 4. Natural enemies of Durrantia. arcanella in the department of Cesar: (A) Gnamptodon sp.
(B) Brachymeria sp. (C) Neorharcodes sp. (D) Above: pupae parasitized by Brachymeria sp. Below:
healthy pupae.

Table 3. The foliar consumption rate of the immature stages of Durrantia arcanella under laboratory
conditions (28.2 ± 2.5 ◦C, 82 ± 10% RH).

Larval Instar Mean ± S.D. (cm2)
Interval

Min.–Max. (cm2)

Instar I 0.151 ± 0.06 0.09–0.47
Instar II 0.29 ± 0.10 0.17–0.53
Instar III 1.22 ± 1.28 0.50–5.75
Instar IV 2.44 ± 1.98 0.90–8.60
Instar V 4.13 ± 1.87 2.05–9.66

Total 8.23 ± 5.30 3.71–24.98
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4. Discussion

The information obtained on the duration of the life cycle of D. arcanella, of 48.0± 10.1 days
and with five larval instars, differs from that recorded by other authors; [11] indicates a
total duration of the life cycle of 75 days; meanwhile, ref. [9] recorded that this insect goes
through four larval instars with a duration of 34 to 43 days. These authors recorded the
population parameters through field observations. However, they did not describe the
environmental conditions in which the experiment was carried out, making a more precise
comparison of the results difficult. Relative to other insects in the family Depressariidae, the
life cycle of D. arcanella was similar to that recorded for Cerconota anonella Sepp., 1830, under
laboratory conditions [22] and much lower than that reported for Opisina arenosella Walker,
1864, (75 days) in coconut and Struthocelis semiotarsa Meyrick cultures (82 to 92 days) in oil
palm [11,23].

The morphological description of the different stages of development of D. arcanella
coincides with the characteristics reported in the two studies on the biology of this species.
Other investigations that also reported five larval instars in Depressariidae species also
mentioned how the refuge strategies of the larvae are one of the leading evolutionary
characteristics of this family [3,7,9,11,22–24].

The study of the population fluctuation in D. arcanella in the two localities of the
department of Cesar showed similar cyclical population patterns in the same periods each
year. This pattern could be linked to the insect’s life cycle and, among other things, to
climate factors and agronomic practices [25]. However, no association was found between
population dynamics and precipitation, but a positive correlation with relative humidity
was recorded in Agustín Codazzi and a negative correlation with temperature in El Copey;
this suggests that even when the populations of D. arcanella did not present a direct
relationship with precipitation, it was observed that approximately 20 weeks after the start
of the wet period the number of larvae increased in both locations, indicating that the
population thrives in periods with higher humidity and lower average temperatures. These
conditions allow a generational increase and higher survival rate of the population progeny
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after progeny until reaching high infestations in the second half of the year, bringing
negative implications for the crop. Other studies have already stated that temperature is
one of the climatic factors that affect the dynamics of phytophagous insect populations,
directly impacting the survival, development rates, voltinism, longevity, fecundity, and
oviposition of females [5,12,25–32].

Biological control provided by the natural enemies of D. arcanella presented a strong
positive correlation with the population of the pest insect and a negative correlation with
the temperature; this agrees with studies that report that these biological control agents
respond quickly to changes in the population dynamics of their host and to climatic
variations [30,33]. Additionally, parasitoid insects from the Braconidae, Chalcididae, and
Ichneumonidae families have been reported as important biological controllers not only in
the Depressariidae family but also in other Lepidoptera [22,34–38].

The foliar consumption rate estimated in this study shows that, individually, a larva
of D. arcanella can consume up to 8.23 cm2 of the leaf blade; this value is much lower
compared to other Lepidoptera that are also a pest of oil palm such as Opsiphanes cassina
(425.5 cm2), Euprosterna elaeasa (66 cm2), Stenoma cecropia (36.7 cm2), and Sibine megasomoides
(1427 cm2) [5,12,13,39]. Despite this, the short life cycle compared to these defoliating
insects of Elaeis guineensis allows D. arcanella to be a multivoltine species in oil palm and
produce 7–8 generations per year; this, together with the increase in Pestalotiopsis, can
generate defoliation that could cause severe economic losses if timely detection and control
measures are not taken to counteract the effects that this insect could cause on the crop.
However, it is necessary to determine action thresholds to quantify the economic damage
to which the crop could be exposed [4,10,15,40].
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