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Simple Summary: The common bed bug (Cimex lectularius L.) experienced a worldwide resurgence
during the last two decades. Chemical control is one of the popular strategies to control bed bug
infestations. Bed bugs developed resistance to insecticides, but the prevalence and levels of insecticide
resistance among local bed bug populations and whether the commonly used insecticide products
are effective on these populations, is unclear. This study tested 13 field populations of bed bugs
collected in the United States and determined their insecticidal resistance levels. We found that seven
populations developed very high level resistance to deltamethrin. Only one population exhibited high
level resistance to neonicotinoids. The performance of three neonicotinoid-pyrethroid mixture sprays
and an inorganic insecticide dust were evaluated using three field populations that exhibited high
levels of resistance to deltamethrin. All three tested populations required much higher concentrations
(55–2017 times higher) than the laboratory strain to induce 90% mortality. Exposure to silica gel
dust caused >95% mortality after 72 h. These findings indicate most resistant bed bugs may not be
effectively controlled by pyrethroids, neonicotinoid, or pyrethroid-neonicotinoid insecticide sprays.
Insecticide dusts containing silica gel are an effective material for control of bed bug infestations.

Abstract: Insecticide resistance is one of the factors contributing to the resurgence of the common
bed bug, Cimex lectularius L. This study aimed to profile the resistance levels of field-collected
C. lectularius populations to two neonicotinoids and one pyrethroid insecticide and the perfor-
mance of selected insecticide sprays and an inorganic dust. The susceptibility of 13 field-collected
C. lectularius populations from the United States to acetamiprid, imidacloprid, and deltamethrin was
assessed by topical application using a discriminating dose (10 × LD90 of the respective chemical
against a laboratory strain). The RR50 based on KT50 values for acetamiprid and imidacloprid ranged
from 1.0–4.7 except for the Linden 2019 population which had RR50 of ≥ 76.9. Seven populations had
RR50 values of > 160 for deltamethrin. The performance of three insecticide mixture sprays and an
inorganic dust were evaluated against three C. lectularius field populations. The performance ratio of
Transport GHP (acetamiprid + bifenthrin), Temprid SC (imidacloprid + β-cyfluthrin), and Tandem
(thiamethoxam + λ-cyhalothrin) based on LC90 were 900–2017, 55–129, and 100–196, respectively.
Five minute exposure to CimeXa (92.1% amorphous silica) caused > 95% mortality to all populations
at 72 h post-treatment.

Keywords: topical assay; insecticide resistance; neonicotinoid-pyrethroid mixture; inorganic dust

1. Introduction

The common bed bug (Cimex lectularius L.) and the tropical bed bug (C. hemipterus F.)
are hematophagous ectoparasites that have been recognized as pests throughout human
history [1]. Common bed bugs are mainly found in temperate climate regions whereas
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tropical bed bugs are mainly restricted to tropical areas. Due to the application of modern
synthetic insecticides, bed bugs had become uncommon for decades. However, bed bug
resurgence occurred around the world in the last two decades [2–7]. Various factors have
contributed to their resurgence including lack of public awareness, exchange of second-
hand items including furniture, increased local and international travel, changes in pest
management practices, and resistance to insecticides. Among these, insecticide resistance
has been cited as the main reason contributing to the resurgence of bed bugs [8–13].

In the United States, pyrethroids are widely used by consumers as well as professionals
for general pest control, with the inclusion of bed bugs. Among 245 interviewed residents
who used insecticides to treat bed bug infestations, 72% used pyrethroids [14]. Among
the top ten insecticide products used by pest management professionals in the U.S., eight
are pyrethroids or contain pyrethroids [15]. Pyrethroids are sodium channel modulators,
causing uninterrupted nerve firing, which results in insects exhibiting shaking and rapid
death [16]. The predominant use of pyrethroid-based products has selected for resistance in
many populations of bed bugs in different parts of the world [11,12,17–20]. Cross-resistance
with DDT, which was previously widely used to control bed bug infestations, may have also
contributed to high levels of resistance in modern day bed bugs [17]. Enhancement of the
detoxification enzymes [21–24] and insensitivity on target sites (kdr mutation) [9,19,25,26]
are the most studied mechanisms for pyrethroid resistance. Further, cuticular modification
was also confirmed in a pyrethroid-resistant bed bug strain [27] which may reduce the
penetration of insecticide into insect’s body.

Over past decade, neonicotinoids have been combined with pyrethroids into for-
mulated insecticides for bed bug management, especially for controlling pyrethroid re-
sistant populations [28–30]. Neonicotinoids mimic the agonist action of acetylcholine
at nicotinic acetylcholine receptors that result in overstimulation of the nervous system
causing involuntary muscle contraction, cessation of feeding, paralysis, and ultimately
leads to death [16,31]. In general, neonicotinoid-pyrethroid mixtures perform better than
pyrethroid-only insecticides [32] due to the dual modes of action. Previous laboratory
and field studies showed outstanding performance of neonicotinoid-pyrethroid mixture
sprays for bed bug control. Transport (acetamiprid + bifenthrin) exhibited ≥ 89.7% resid-
ual efficacy on all tested surfaces (fabric, unpainted wood, painted wood, and vinyl),
whereas pyrethroids were much less effective on all tested substrates when tested against a
moderately resistant field strain bed bugs [32]. Two non-chemical methods (installing en-
casements and applying steam) plus insecticide mixture spray application, namely Tandem
(thiamethoxam + λ-cyhalothrin), Temprid SC (imidacloprid + β-cyfluthrin), and Transport
(acetamiprid + bifenthrin), caused ≥ 87% C. lectularius trap count reduction after eight
weeks in a field study [29].

There are only several reports of high resistance to neonicotinoids. Romero and Ander-
son [33] reported acetamiprid and imidacloprid resistance on C. lectularius collected from
Michigan and Cincinnati in the U.S. Campbell and Miller [34] pointed out that C. lectularius
collected from Richmond and Cincinnati were resistant to neonicotinoid-pyrethroid sprays.
Dang et al. [35] also found that field-collected C. hemipterus have developed various lev-
els resistance to Temprid SC and Tandem (thiamethoxam + λ-cyhalothrin). Additionally,
Gordon et al. [18] reported an increased resistance of bed bug toward Temprid SC and
Transport GHP insecticides after one-generation selection. These studies indicate that the
selection pressure from neonicotinoid-pyrethroid mixtures will and have already caused
resistance development among field bed bug populations.

Besides insecticide sprays, dust formulations are also commonly used by professionals
in the U.S. for the management of bed bugs [15]. One of the advantages of insecticide
dusts is that dusts are more readily picked up by bed bugs compared to dry spray residue
and a potential horizontal transfer effect [36]. Most of the commercial dust formulations
contain pyrethroid or pyrethrin as active ingredients for bed bug management. However,
pyrethroids have a repellent effect on insects and the existing pyrethroid resistance will
affect the efficacy of dusts in bed bug management [37]. Consequently, inorganic dusts



Insects 2023, 14, 133 3 of 12

including diatomaceous earth (DE) dust and silica gel have been recommended to control
bed bug populations [38,39]. DE dust and silica gel kill bed bugs by removing the wax
layer from the cuticle of an insect thus causing desiccation [40–42]. Singh et al. [43] reported
silica gel dust being the most effective among eight commonly used dusts including DE
dust. Further, Ranabhat and Wang [44] reported that silica gel dust performed better than
neonicotinoid-inorganic mixture (0.25% dinotefuran + 99.75% DE) and pyrethroid dust (1%
cyfluthrin) against C. lectularius. According to the previous studies, silica gel dust may be a
viable alternative material for the control of resistant bed bugs.

In spite of the fact that insecticide resistance is widespread and has been reported as
the main factor responsible for bed bug resurgence, chemical control remains the most
common approach in managing bed bugs. Therefore, monitoring insecticide resistance
and performance of formulated insecticides is critical for designing the most effective bed
bug management programs. In 2019, we did preliminary studies and the results showed
that continuous exposure to Suspend SC (4.75% deltamethrin) dry residue caused 2–92%
mortality (median value = 18%) to seven field C. lectularius populations collected in New
Jersey. Exposure to Home Defense (0.05% bifenthrin, 0.0125% cypermethrin) dry residue
caused 0.4–74% mortality (median value = 69%) to four field C. lectularius populations
(three from New Jersey and one from Indiana). Among these 11 field populations, seven
of them exhibited < 90% mortality after exposure to Transport GHP dry residue continu-
ously. To provide a more accurate resistance profile of the field bed bug populations, we
conducted the current studies to: (1) assess the resistance levels of C. lectularius populations
to acetamiprid, imidacloprid, and deltamethrin using topical bioassays; and (2) to evaluate
the performance of three commonly used neonicotinoid-pyrethroid mixture sprays and a
silica gel dust product.

2. Material and Methods
2.1. Bed Bug Populations

A total of 13 field-collected populations and one laboratory strain of C. lectularius were
used in this study (Table S1). Fort Dix is a susceptible laboratory strain that has never been
exposed to insecticides since 1973 [20,45]. Aberdeen, Dehart, and Irvington 624-5G popula-
tions were collected from a single home or apartment. The rest of the bed bug populations
were collected from multiple apartments within the same apartment building. All bed bugs
were maintained in plastic containers (5.0 cm diameter and 4.7 cm height, Consolidated
plastics, Stow, OH, USA) and several pieces of red folded card paper were provided as
harborages. Bed bugs were fed defibrinated rabbit blood (Hemostat Laboratories, Dixon,
CA, USA) every 2–4 weeks using a Hemotek membrane-feeding system (Discovery Work-
shops, Accrington, UK). All bed bug populations were kept in an environmental chamber
at 25 ± 1 ◦C, 45 ± 10% RH, and a photoperiod of 12:12 (L:D) h. Bed bugs were fed to
repletion 3 to 7 d prior to all bioassays.

2.2. Resistance to Two Neonicotinoids and a Pyrethroid Insecticide Using Topical Assays

Three technical grade insecticides belonging to neonicotinoid and pyrethroid groups
were tested: acetamiprid (99.5%), imidacloprid (98.9%), and deltamethrin (93.2%). All
materials were purchased from Chem Service Inc., West Chester, PA, USA. In topical assays,
a feather weight forceps (available at www.amazon.com, accessed on 27 December 2022)
were used to place 10 male adults of unknown age in a clean Petri dish (5.5 cm diameter
and 1.5 cm height, Fisher Scientific, Pittston, PA, USA) lined with filter paper (Grade P8,
Fisher Scientific, Pittston, PA, USA). Only male bed bugs were used in the topical assays
because female bed bugs suffer injuries from traumatic insemination during mating. The
wound on the abdomen of females may affect the results. Bed bugs were then anesthetized
by placing the Petri dish on ice for 1 min prior to topical assay. An insecticide-acetone
solution (1 µL) was applied onto the dorsal surface of the abdomen using a micro-applicator
(Burkard Manufacturing Co. Ltd., Rickmansworth, UK) equipped with a 25-µL glass
syringe (Burkard Manufacturing Co. Ltd., Rickmansworth, UK). Treated bed bugs were
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held with a forceps until the applied insecticide solution had dried then gently placed in
a clean Petri dish. Control insects received 1 µL of acetone only. The concentrations of
insecticides used were acetamiprid: 0.1–50 ppm; imidacloprid: 1–10 ppm; and deltamethrin:
0.04–1 ppm. At least three concentrations causing 1–99% mortality were included for each
chemical. Each concentration was replicated three times. After treatment, insects were
maintained in Petri dishes in an environmental chamber at 25 ± 1 ◦C, 45 ± 10% RH and
12:12 L:D photoperiod. Mortality was recorded after 72 h. An insect was considered dead if
it could not move when touched with a pair of forceps.

After calculating the values of lethal dose (LD) for each insecticide, a discriminating
dose (10 times of LD90; 10 × LD90) [46] of three insecticides was tested against all bed bug
populations using topical assay. Similar to the previous topical assays, ten males were
transferred to a clean Petri dish lined with filter paper. Each insect was treated with 1 µL
insecticide-acetone solution. Insects in the control were treated with 1 µL acetone. Each
population was replicated three times. The number of knockdown and dead insects was
recorded every 5 min for the first hour and subsequently every 10 min until 2 h or until
90% of tested insects were knocked down. A bed bug was considered knocked down if it
could not right itself when gently flipped over with a pair of forceps. Final mortality was
recorded after 72 h. All tests were conducted in 2022.

2.3. Performance of Formulated Insecticides
2.3.1. Neonicotinoid-Pyrethroid Mixture Sprays

Three insecticide sprays were evaluated against three deltamethrin resistant popula-
tions: Bayonne 2015, Irvington, and Irvington 624-5G. The insecticides included Transport
GHP (FMC Corporation, Philadelphia, PA, USA), Temprid SC (Bayer Crop Science LP,
Research Triangle Park, NC, USA), and Tandem (Syngenta Crop Protection, Greensboro,
NC, USA) (Table S2). All three formulations contain a neonicotinoid and a pyrethroid insec-
ticide. A stock solution with the concentration 10 times higher than the label rate was made
for each insecticide. Preliminary tests were conducted to obtain the range of concentration
for each spray. After determining the range, 5 to 6 different concentrations of each spray
were made by serial dilutions with tap water. A Potter Spray Tower (Burkard Scientific
Ltd., Herts, UK) was used to apply the sprays on a Petri dish (5.5 cm diameter) lined with
filter paper with a delivery rate of 4.0–4.2 mg/cm2 (approximately 1.0 gallon/1000 ft2). The
control groups were treated with tap water only. Treated Petri dishes were allowed to air
dry for 24 h before the tests. Ten male adults of unknown age and 10 nymphs (4th to 5th
instar) from each population were introduced onto the treated paper using feather weight
forceps. The Petri dishes were maintained in an environmental chamber and the mortality
was checked every 24 h until 72 h. Dead bed bugs were removed during each examination.
Each concentration was replicated three times. This experiment was conducted in 2019.

2.3.2. Inorganic Dust

Due to the poor performance of mixture sprays on resistant bed bug populations, an
inorganic dust (CimeXa, 92.1% amorphous silica, Rockwell Labs Ltd., North Kansas, MO,
USA) was selected to test against Bayonne 2015, Irvington, and Irvington 624-5G populations.
The dust was applied evenly to an unpainted birch plywood panel (12.54 cm × 12.54 cm,
Revell Inc., Elk Grove Village, IL, USA) using a paint brush. CimeXa dust was applied at label
rate of 0.61 mg/cm2. Twenty male adult bed bugs were placed onto the dust-treated panels
using feather weight forceps and confined with a plastic ring (9 cm diameter) for 5 min.
Control plywood panels did not receive any treatment. After the 5 min exposure, insects
were transferred to a clean Petri dish lined with filter paper and mortality was observed
at 1 h and subsequently at an interval of 24 h until 144 h. Each insecticide treatment was
replicated four times. This experiment was conducted in 2021.
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2.4. Data Analysis

Control knockdown and mortality were corrected using Abbott’s formula [47]. The con-
trol mortality was ≤ 10% for all populations in all tests. The lethal dose (LD) and knockdown
time (KT) to kill 50 and 90% of the tested bed bugs in topical assays were generated using a
natural log probit model in SPSS v. 11.0 (SPSS Inc., Chicago, IL, USA). The lethal concentra-
tion to kill 50% of the tested bed bugs (LC50) was determined by probit analysis using SAS
software version 9.3 (SAS Institute, Cary, NC, USA). The resistance ratio (RR) of field bed
bug populations was calculated by dividing the KT50 of corresponding population by the
KT50 of Fort Dix strain. The classification of insecticide resistance followed Lee and Lee [48]
study: ≤ 1 time = no resistance; > 1 to 5 time(s) = low resistance; > 5 to 10 times = moderate
resistance; > 10 to 50 times = high resistance; > 50 times = very high resistance. Performance
ratio values were calculated for insecticide sprays by dividing the LC50 of corresponding
population by the LC50 of Fort Dix strain. One-way analysis of variance (ANOVA) with
Tukey’s HSD test was used for analyzing the efficacy of dust insecticide. The data were
checked for normal distribution and arsine of the square root transformed if they were not
normally distributed. ANOVA was performed using SPSS v. 11.0.

3. Results
3.1. Resistance to Two Neonicotinoids and a Pyrethroid Insecticide

The lethal dose (LD50, LD90) values of three insecticides against the Fort Dix strain
are shown in Table 1. Fort Dix strain showed the highest value of LD50 (2.64 ng/µL) and
LD90 (18.64 ng/µL) to acetamiprid, followed by imidacloprid with LD50 = 2.41 ng/µL
and LD90 = 6.73 ng/µL. Deltamethrin showed the lowest LD50 (0.90 ng/µL) and an in-
termediate value of LD90 (11.49 ng/µL). The discriminating doses were calculated as
10× LD90 values, which are 186 ng/µL for acetamiprid, 67 ng/µL for imidacloprid, and
115 ng/µL for deltamethrin. In all topical assays, control insects had no mortality after 72 h.

Table 1. Lethal dose (LD50, LD90) value of three insecticides against a laboratory strain C. lectularius
using topical assays.

Insecticide * N
Model Parameters Lethal Dose (ng/µL) Model Fit

** Intercept ± SE Slope ± SE LD50 (95% CI) LD90 (95% CI) χ2 df p

Acetamiprid 150 −0.636 ± 0.162 1.509 ± 0.223 2.64 (1.78–3.80) 18.64 (11.10–43.56) 4.207 3 0.240
Imidacloprid 150 −1.096 ± 0.220 2.873 ± 0.390 2.41 (1.92–2.94) 6.73 (5.21–9.87) 2.151 3 0.542
Deltamethrin 150 0.053 ± 0.188 1.156 ± 0.264 0.90 (0.55–2.78) 11.49 (3.42–250.84) 0.327 3 0.955

* Total number of treated insects with 30 insects in each concentration. ** The intercept and slope parameters are
for models in which the independent variable is natural logarithm of dose.

Topical assays using the discriminating dose of acetamiprid showed the Linden 2019
population had the highest resistance with RR50 of higher than 288 and RR90 higher than
93.9 (Table 2). The mean mortality of Linden 2019 was 13 ± 3% at 72 h post-treatment. The
Aberdeen population was the 2nd most resistant population with RR50 of 4.1 and RR90
higher than 93.9. The mean mortality was 57 ± 3% after 72 h. Other populations had low
detected resistance to acetamiprid with RR50 values ranging from 1 to 3.6 and RR90 ranging
from 1.4 to 5.4. The mean mortality reached 100% at 72 h, except 93 ± 3% mortality for the
New Brunswick population (Table 2).

For imidacloprid, only Linden 2019 population exhibited very high resistance
(RR50 = 76.9, RR90 > 81.5) and a moderate mean mortality (60 ± 6%) after 72 h (Table 3).
New Brunswick was the next most resistant population with RR50 of 4.7 and RR90 of 7.4.
However, the mean mortality was 100% after 72 h. Other populations had low resistance
with values of RR50 ranging from 1.2 to 3.1 and RR90 ranging from 1.3 to 3.3 (Table 3).



Insects 2023, 14, 133 6 of 12

Table 2. Susceptibility (based on knockdown time, KT50 and KT90) of 13 field-collected C. lectularius
populations to topically applied acetamiprid at a discriminating dose of 186 ng per adult.

Population n KT50
(min, 95% CI)

KT90
(min, 95% CI) χ2 (df) Slope ± SE % Mean Mortality

(±SE) at 72 h * RR50 RR90

Fort Dix 30 15 (13–18) 46 (39–56) 9.2 (11) 2.692 ± 0.266 100 ± 0 - -
Aberdeen 30 61 (51–76) >4320 6.9 (12) 1.694 ± 0.210 57 ± 3 4.1 >93.9
Bayonne 30 37 (31–42) 141 (110–200) 4.8 (11) 2.191 ± 0.220 100 ± 0 2.5 3.1

Bayonne 2015 30 16 (12–19) 80 (57–140) 4.4 (7) 1.814 ± 0.257 100 ± 0 1.0 1.7
Canfield 30 21 (17–24) 75 (61–97) 7.4 (12) 2.290 ± 0.222 100 ± 0 1.4 1.6
Cotton 30 32 (28–39) 126 (94–200) 4.4 (10) 2.159 ± 0.258 100 ± 0 2.1 2.7
Dehart 30 11 (7–14) 65 (46–118) 3.6 (7) 1.636 ± 0.262 100 ± 0 1.0 1.4

Hackensack 30 28 (23–33) 71 (54–119) 15.5 (9) 3.125 ± 0.360 100 ± 0 1.9 1.5
Indy 30 39 (35–44) 115 (92–159) 10.9 (12) 2.716 ± 0.288 100 ± 0 2.6 2.5

Irvington 30 16 (8–24) 82 (47–375) 48.4 (11) 1.804 ± 0.207 100 ± 0 1.1 1.8
Irvington 624-5G 30 26 (22–30) 126 (96–188) 14.1 (13) 1.868 ± 0.204 100 ± 0 1.7 2.7

Linden 2019 30 >4320 >4320 - - 13 ± 3 >288 >93.9
Masiello 30 43 (36–50) 239 (174–382) 6.2 (16) 1.711 ± 0.181 100 ± 0 2.9 5.2

New Brunswick 30 54 (46–65) 249 (175–430) 5.1 (10) 1.934 ± 0.232 93 ± 3 3.6 5.4

* RR (resistance ratio based on KT): KT of field population/KT of Fort Dix strain.

Table 3. Susceptibility (based on knockdown time, KT50 and KT90) of 13 field-collected C. lectularius
populations to topically applied imidacloprid at a discriminating dose of 67 ng per adult.

Population n KT50
(min, 95% CI)

KT90
(min, 95% CI) χ2 (df) Slope ± SE % Mean Mortality

(±SE) at 72 h * RR50 RR90

Fort Dix 30 16 (11–20) 53 (42–77) 12.1 (7) 2.445 ± 0.317 100 ± 0 - -
Aberdeen 30 50 (41–62) 136 (98–255) 32.0 (13) 2.928 ± 0.291 100 ± 0 3.1 2.6
Bayonne 30 38 (31–48) 122 (87–218) 14.8 (9) 2.532 ± 0.264 100 ± 0 2.4 2.3

Bayonne 2015 30 20 (16–24) 80 (60–127) 5.7 (6) 2.108 ± 0.272 100 ± 0 1.3 1.5
Canfield 30 19 (16–22) 69 (52–112) 10.3 (7) 2.255 ± 0.309 100 ± 0 1.2 1.3
Cotton 30 26 (21–33) 93 (65–179) 15.5 (9) 2.344 ± 0.263 100 ± 0 1.6 1.8
Dehart 30 34 (30–40) 95 (73–144) 7.8 (7) 2.876 ± 0.365 100 ± 0 2.1 1.8

Hackensack 30 23 (21–26) 53 (43–71) 6.9 (6) 3.627 ± 0.458 100 ± 0 1.4 1.0
Indy 30 38 (31–50) 126 (85–259) 1.5 (5) 2.465 ± 0.381 100 ± 0 2.4 2.4

Irvington 30 19 (16–22) 68 (54–94) 11.2 (9) 2.305 ± 0.263 100 ± 0 1.2 1.3
Irvington 624-5G 30 39 (33–46) 174 (123–302) 15.7 (11) 1.960 ± 0.240 100 ± 0 2.4 3.3

Linden 2019 30 1231 (760–2361) >4320 10.2 (15) 0.856 ± 0.087 60 ± 6 76.9 >81.5
Masiello 20 35 (30–40) 102 (80–148) 6.1 (11) 2.728 ± 0.332 100 ± 0 2.2 1.9

New Brunswick 20 75 (58–108) 394 (223–1194) 4.1 (8) 1.775 ± 0.307 100 ± 0 4.7 7.4

* RR (resistance ratio based on KT): KT of field population/KT of Fort Dix strain.

The majority of the field-collected C. lectularius populations exhibited very high levels
of resistance to deltamethrin. Aberdeen, Bayonne 2015, Canfield, Irvington, Irvington
624-5G, Linden 2019, and New Brunswick populations had RR50 greater than 160 and
RR90 greater than 91.9 (Table 4). The mean mortality of these seven populations were less
than 30% after 72 h. Cotton and Indy had low resistance to deltamethrin based on RR50 of
1.7 and 1.8, but had very high resistance based on RR90 of > 91.9 and moderate mortality
occurred (73% and 67%) after 72 h. The most susceptible field populations were Bayonne,
Dehart, Hackensack, and Masiello with both RR50 and RR90 ranging from 1.0 to 3.4 and the
mean mortality were all higher than 90% after 72 h.

3.2. Performance of Formulated Insecticides
3.2.1. Neonicotinoid-Pyrethroid Mixture Sprays

In Transport GHP treatments, all field populations exhibited significant lower sus-
ceptibility to Transport GHP compared to the laboratory population (Fort Dix). The lethal
concentration (LC90) ranged from 0.54–1.21%. The performance ratios based on LC90
(PR90) against Bayonne 2015, Irvington, and Irvington 624-5G were 1883, 900, and 2017,
respectively (Table 5). In Temprid SC treatments, the LC90 ranged from 0.30–0.71% and
the performance ratios (PR90) against Bayonne 2015, Irvington, and Irvington 624-5G were
129, 75, and 55, respectively. In Tandem treatments, the LC90 values were 0.52–1.02% and
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the PR90 against Bayonne 2015, Irvington, and Irvington 624-5G were 194, 100, and 196,
respectively. In all experiments, the mean mortality in the control was 0–7%.

Table 4. Susceptibility (based on knockdown time, KT50 KT90) of 13 field-collected C. lectularius
populations to topically applied deltamethrin at a discriminating dose of 115 ng per adult.

Population n KT50
(min, 95% CI)

KT90
(min, 95% CI) χ2 (df) Slope ± SE % Mean Mortality

at 72 h * RR50 RR90

Fort Dix 30 27 (24–29) 47 (43–53) 4.8 (10) 5.206 ± 0.467 100 - -
Aberdeen 30 >4320 >4320 - - 17 ± 7 >160 >91.9
Bayonne 30 44 (39–48) 86 (75–105) 2.0 (9) 4.294 ± 0.438 97 ± 3 1.6 1.8

Bayonne 2015 30 >4320 >4320 - - 13 ± 9 >160 >91.9
Canfield 30 >4320 >4320 - - 20 ± 6 >160 >91.9
Cotton 30 44 (377–52) >4320 4.7 (17) 1.508 ± 0.166 73 ± 9 1.6 >91.9
Dehart 30 24 (21–27) 55 (47–69) 2.7 (7) 3.593 ± 0.394 93 ± 3 1.0 1.2

Hackensack 30 27 (21–34) 56 (41–120) 19.3 (7) 4.015 ± 0.493 100 1.0 1.2
Indy 30 48 (40–64) >4320 3.6 (10) 1.699 ± 0.253 67 ± 7 1.8 >91.9

Irvington 30 >4320 >4320 - - 27 ± 7 >160 >91.9
Irvington 624-5G 30 >4320 >4320 - - 0 >160 >91.9

Linden 2019 30 >4320 >4320 - - 3 ± 3 >160 >91.9
Masiello 30 54 (46–59) 162 (137–202) 9.9 (19) 2.687 ± 0.217 90 ± 10 2.0 3.4

New Brunswick 30 >4320 >4320 - - 7 ± 7 >160 >91.9

* RR (resistance ratio based on KT): KT of field population / KT of Fort Dix strain.

Table 5. Performance of three formulated insecticide mixture products against one laboratory strain
(Fort Dix) and three field-collected C. lectularius populations. Bed bug morality was recorded at 72 h.

Spray Population Slope (±SE)
Lethal Concentration (%) Performance

Ratio Model Fit

* LC50 (95% CI) LC90 (95% CI) ** PR50 PR90 χ2 df

Transport GHP

Fort Dix 2.9 ± 0.4 0.0002 (0.0002–0.0003) a 0.0006 (0.0005–0.0009) a - - 2.6 4
Bayonne 2015 2.1 ± 0.3 0.51 (0.31–0.67) b 1.13 (0.93–1.56) b 2550 1883 9.3 4

Irvington 1.1 ± 0.3 0.04 (0.01–0.08) c 0.54 (0.25–4.29) bc 200 900 9.6 4
Irvington 624-5G 1.7 ± 0.2 0.45 (0.35–0.54) b 1.21 (1.08–1.40) b 2250 2017 19.1 4

Temprid SC

Fort Dix 1.9 ± 0.4 0.0012 (0.0005–0.0023) a 0.0055 (0.0028–0.0365) a - - 8.2 4
Bayonne 2015 2.0 ± 0.3 0.16 (0.12–0.22) b 0.71 (0.47–1.39) b 133 129 13.7 4

Irvington 1.1 ± 0.2 0.03 (0.01–0.07) c 0.41 (0.13–15.30) bc 25 75 9.3 4
Irvington 624-5G 2.6 ± 0.3 0.10 (0.08–0.12) d 0.30 (0.23–0.41) c 83 55 4.2 4

Tandem

Fort Dix 1.2 ± 0.1 0.0004 (0.0003–0.0006) a 0.0052 (0.0032–0.0096) a - - 5.3 4
Bayonne 2015 2.5 ± 0.4 0.58 (0.45–0.75) b 1.01 (0.88–1.57) b 1450 194 8.5 4

Irvington 1.6 ± 0.2 0.08 (0.52–0.11) c 0.52 (0.33–1.01) b 200 100 4.9 4
Irvington 624-5G 2.0 ± 0.0 0.24 (0.19–0.30) d 1.02 (0.75–1.59) b 600 196 3.2 4

* LC50 or LC90 values of different populations followed different letters are significantly different based on non-
overlapping values. ** PR (performance ratio based on LC): LC of resistant population/LC of Fort Dix population.

Among the three tested field populations, their susceptibility levels to three tested
mixtures were Irvington < Irvington 624-5G < Bayonne 2015. When comparing the perfor-
mance of the three insecticide mixtures, Temprid SC performed better (with lower PR90)
than Transport GHP and Tandem. Tandem also performed better against Bayonne 2015
and Irvington 624-5G (with lower PR90) than Transport GHP.

3.2.2. Inorganic Dust

CimeXa was highly effective against the laboratory strain (Fort Dix), causing 92% and
100% mortality at 24 h and 48 h after treatment (Figure 1). Among the field populations
in the CimeXa treatment, Irvington 624-5G exhibited slower mortality than the laboratory
strain at 24 h and 48 h. However, all field populations reached > 95% mortality at 72 h
post-treatment. There was no mortality in control treatment.
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Figure 1. Mean mortality (%) of laboratory C. lectularius and three field-collected C. lectularius
populations exposed to CimeXa insecticide for 5 min on unpainted wood panel. For each observation
period, the mean mortality with same letter within same time means no significant difference among
populations (ANOVA, p > 0.05). Control groups had no mortality.

4. Discussion

In the current study, a total of 13 C. lectularius populations were collected from 10 cities
in the U.S. The collection sites were regularly treated with insecticides by pest control
contractors or licensed housing staff supplemented by residents’ self-treatment using
pyrethroids or essential oil-based products. Bayonne and Indy populations were collected
prior to insecticide mixture products becoming widely available and used for bed bug man-
agement. The frequent insecticide treatment may explain the various levels of resistance to
neonicotinoids and deltamethrin in the current study. For the two neonicotinoids tested,
most bed bug populations had low resistance. Only the Linden 2019 population evolved
with very high level resistance to both acetamiprid and imidacloprid. Additionally, the
Aberdeen population had very high level resistance to acetamiprid based on RR90 (> 93.9)
and mortality of 57%. In another study, all three tested bed bug populations were found
moderately to highly resistant to imidacloprid and acetamiprid [33]. The general esterase,
glutathione S-transferase, and cytochrome P450 (CYP450) monooxygenase enzyme activity
were found enhanced in neonicotinoid-resistant populations.

This study used 10× LD90 value of a lab strain as discriminating dose based on
previous studies. After this study was completed, we tested 8 field bed bug populations
using 5× LD90 of Fort Dix strain of acetamiprid to confirm the validity of 10× LD90
as discriminating dose. The results showed that RR50 values were 1.7–3.9 (median 2.5)
based on 5× dose compared to 1.0–4.1 (median 2.0) based on 10× dose. Six out of eight
populations had slightly higher RR50 values than those based on 10× dose. However, seven
out of eight populations had higher RR90 values than those based on 10× dose. The RR90
values were 3.0–41.0 (median 7.9) based on 5× dose compared to 1.4–> 93.9 (median 2.6)
based on 10× dose. Furthermore, one additional population (Canfield) exhibited a < 100%
mortality when tested with 5× dose. Hence, both 5× and 10× could be used for detecting
resistance but using 5× dose may reveal higher RR90 values.

Previous studies have documented bed bug resistance to different pyrethroids includ-
ing deltamethrin [49–52], λ-cyhalothrin [49,52,53], β-cyfluthrin [33], and permethrin [54].
In the current study, 69% (9 out of 13) of field-collected bed bug populations evolved
with high RR90 (> 91.9). Deltamethrin resistance in bed bug field populations from the
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U.S. was mentioned in previous studies [26,55]. Cotton and Indy populations exhibited
RR50 for deltamethrin less than 2.0, but the mortality was only 73% and 67%, respectively.
Similarly, Leong et al. [56] found that bed bugs treated with Tandem insecticide showed a
RR50 value of 1.4 but the mortality was only 53%. The key mechanisms causing pyrethroid
resistance among bed bugs are overexpression of detoxification enzymes and the target
site insensitivity (kdr-type mutation) [57,58]. The heterozygous kdr mutation of bed bug
population may affect knockdown response and lead to low mortality [25].

The bed bug populations used in this study were collected from 2008 to 2021 (Table S1).
It was suggested a possible energy trade-off between insecticide resistance development
and life history parameters will cause the resistance of populations to return to susceptible
rapidly [30]. However, nine field-collected populations still exhibited high deltamethrin
resistance in the current study. One population (Irvington, Table S1) had a RR50 > 160
after being maintained in the laboratory for approximately 10 yr. Likewise, C. hemipterus
exhibited high resistance (RR50 > 600) to neonicotinoid-pyrethroid mixture insecticides
after a 14 yr maintenance without exposure to insecticides [56]. The bed bug resistance to
insecticides may therefore not degrade as rapidly as aforementioned.

In previous studies, neonicotinoids remain effective against bed bugs even though
they had high pyrethroid resistance [12,13,59]. However, the current results suggest
neonicotinoid-based insecticides may not be able to effectively control many bed bug
populations. The label rate for Tandem SC, Temprid SC, and Transport GHP is 0.13, 0.075,
and 0.11%, respectively. Based on the LC90 values as shown in Table 5, none of these
products would be able to cause > 90% mortality to the three tested field C. lectularius
populations after 3 d, suggesting potential control difficulties using these products. Al-
though further observations beyond 3 d may reveal additional mortality, the majority of the
mortality occurred within 3 d after treatment in our previous experiments. Interestingly,
topical assays showed low level resistance to neonicotinoids in the three populations. Thus,
the very high PR of the three insecticide sprays may primarily be due to high deltamethrin
resistance and even the presence of low level resistance to neonicotinoids may render the
neonicotinoid–pyrethroid mixture spray treatment ineffective. Similarly, field-collected
C. lectularius and C. hemipterus populations were found resistant to Temprid SC, Trans-
port GHP, and Tandem [34,60]. Upregulated CYP450 enzymes was reported as the main
mechanism for bed bug deltamethrin resistance [22,61] and can also detoxify neonicotinoid
insecticides [33,62,63]. The mechanisms causing the poor performance of neonicotinoid-
pyrethroid mixture in the three C. lectularius populations requires further investigation in
future studies.

CimeXa is a silicon dioxide-based (SiO2) desiccant dust which can absorb the lipids
from insects’ cuticle and cause them to dehydrate and die [64,65]. In laboratory studies,
CimeXa caused high mortality (> 95%) to bed bug within 24 h [43,66]. In a field treatment,
CimeXa application plus non-chemical methods led to an approximately 60% reduction in
bed bug populations within one month [67]. Lilly et al. [68] also showed that bed bug strain
possessed kdr-type resistance exhibited 100% mortality at 72 h after CimeXa treatment.
Similarly in the current study, CimeXa caused high mortality (> 95%) to bed bugs after 72
h, even in populations with high deltamethrin-resistance. However, significantly delayed
mortality was observed in Irvington 624-5G population at 24 h and 48 h compared with
Fort Dix strain. The modified cuticle may explain the delayed mortality. Increased cuticular
thickness [27,69] was found in resistant bed bugs, therefore it may contribute to the delayed
response of insect to insecticides [70,71]. Whether these mechanisms are responsible for the
delayed response to CimeXa remains to be determined.

In conclusions, the majority of the field-collected C. lectularius populations exhibited
high levels of resistance to deltamethrin. Very high resistance to neonicotinoids was only
found in one of the 13 field populations studied. However, the performance of the insecti-
cide mixtures varied, and all three tested C. lectularius populations showed much lower
susceptibility to neonicotinoid-pyrethroid sprays than the laboratory strain, suggesting
control difficulties may occur using these insecticides in the field. Inorganic insecticide dust
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containing silica gel provided high mortality (> 95% at 72 h) against pyrethroid-resistant
bed bug populations. According to the current study, applying inorganic insecticide dust is
an effective option in managing resistant bed bug populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14020133/s1, Table S1. Information about field-collected
C. lectularius populations; Table S2. Information about formulated insecticide products.
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