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Simple Summary: Cicadomorpha (Hemiptera: Auchenorrhyncha) represent a group of concern
in vineyards since they can cause damage directly through feeding or can be vectors for serious
pathogens such as grapevine yellows or the bacterium Xylella fastidiosa, the causal agent of Pierce’s
disease. Therefore, knowing the diversity and abundance of these insects in Portuguese vineyards
is the first step for implementing appropriate measures to control these pathogens. Vineyards
distributed in mainland Portugal were sampled to investigate species composition, richness, and
diversity of the Cicadomorpha community, focusing on vectors and potential vectors of X. fastidiosa.
A total of 11,834 individuals belonging to 81 different species/morphospecies were collected. Of
these species, only two are confirmed vectors of X. fastidiosa (Philaenus spumarius and Neophilaenus
campestris), and three are considered potential vectors (Cicadella viridis, Lepyronia coleoptrata, and
N. lineatus). Species that cause direct damage to vines and vectors of grapevine yellows’ phytoplasmas
were also collected.

Abstract: Cicadomorpha (Hemiptera) insects are currently responsible for a growing negative impact
on the agricultural economy due to their ability to directly damage crops or through the capacity to
act as vectors for plant pathogens. The phytopathogenic bacterium Xylella fastidiosa, the causal agent
of Pierce’s disease in vineyards, is exclusively transmitted by insects of this infraorder. Therefore,
knowledge of the Cicadomorpha species and understanding their biology and ecology is crucial.
In this work, in 2018 and 2019, the canopy and inter-row vegetation of 35 vineyards distributed
in mainland Portugal were sampled to investigate species composition, richness, and diversity
of the Cicadomorpha community, with a special focus given to vectors and potential vectors of
X. fastidiosa. A total of 11,834 individuals were collected, 3003 in 2018 and 8831 in 2019. Of the
81 species/morphospecies identified, only five are considered vectors or potential vectors of this
pathogen, namely, Cicadella viridis (Linnaeus, 1758), Philaenus spumarius (Linnaeus, 1758), Neophilaenus
campestris (Fallén, 1805), Lepyronia coleoptrata (Linnaeus, 1758), and N. lineatus (Linnaeus, 1758).
Cicadella viridis was the most abundant xylem sap feeder, followed by P. spumarius. In addition,
Cicadomorpha that cause direct damage to vines and vectors of grapevine yellows’ phytoplasmas
were also collected and identified in the sampled vineyards. The results suggested that vectors and
potential vectors of X. fastidiosa and a large proportion of the population of Cicadomorpha have a
positive correction with inter-row vegetation.
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1. Introduction

Viticulture is an important agricultural, environmental, cultural, and economic driving
force in the Mediterranean basin. In Portugal, viticulture is an activity of great economic
importance, with the vine being cultivated throughout the national territory [1]. Unfor-
tunately, this crop, like others, is subject to pests and diseases that threaten production,
quality, and wine typicity [2–5].

Cicadomorpha (Hemiptera: Auchenorrhyncha) is one of the richest and phyletically
diverse infraorders of Hemiptera, with over 30,000 species described worldwide [6]. This
infraorder includes exclusively phytophagous species that feed on mesophyll, xylem,
or phloem sap [7]. Although most Cicadomorpha do not present a threat to the crops,
the infraorder includes several species regarded as economically important pests. These
species can damage plants directly through feeding [3,8–10] and indirectly through the
transmission of plant pathogens [2,4,11,12].

When some individuals of the Cicadomorpha feed, their saliva can induce obstruc-
tions on plant vascular tissues, leading to deformations, a discolouration of leaves, or
even premature death of plants [13]. In vineyards, the green leafhoppers Jacobiasca lybica
(Bergevim and Zanon, 1922) and Empoasca vitis (Göeth, 1875) (Cicadellidae: Typhlocybinae)
are considered key pests due to the direct damage caused when feeding [13,14]. Cicado-
morpha is among the most significant groups of vectors of plant pathogens [2,15–17]. These
hemipterans are considered vectors and potential vectors of two serious plant pathogens in
vineyards: i) the causal agent of the Flavescence dorée of the vineyard, the phytoplasma
‘Candidatus Phytoplasma vitis’, transmitted exclusively by the Cicadellidae Scaphoideus
titanus Ball, 1932 (Cicadellidae: Deltocephalinae) [2]; and ii) the xylem-limited bacterium
Xylella fastidiosa (Wells et al., 1987) (Gammaproteobacteria: Xanthomonadaceae), responsi-
ble for Pierce’s disease [18]. This bacterium is transmitted exclusively by xylem sap feeders
of the infraorder Cicadomorpha, being the subfamily Cicadellinae (Cicadellidae) and the
families Aphrophoridae and Cercopidae, the main groups of potential vectors [12,15]. In
Europe, the spittlebugs Philaenus spumarius (Linnaeus, 1758), P. italosigmus Drosopoulos
and Remane (2000), and the Neophilaenus camprestris (Fallen, 1805), are confirmed vectors of
this pathogen [19].

Xylella fastidiosa is a plant endophyte native to the Americas [20,21], which is currently
responsible for economic losses in the Californian wine sector of around 92 million euros per
year [22]. In Europe, despite a sporadic and unconfirmed report of symptoms of X. fastidiosa
in vineyards in 1997 [23], the bacterium was declared absent on the continent until 2013 [24].
The first official widespread detection of X. fastidiosa was reported in the Lecce Region of
Apulia, Italy, where bacteria have already decimated thousands of olive trees [25]. Since
this first report, the bacterium has spread to other European countries. Outbreaks have
been reported in France, Germany (outbreak eradicated), Spain, and Portugal [26]. In
Portugal, the fastidious bacterium was detected in January 2019, in Vila Nova de Gaia,
in lavender plants (Lavandula dentata Linnaeus) [27]. More recently, new outbreaks were
reported in other regions of the country [28]. Since there is no cure for the bacterium,
detailed knowledge of the abundance and diversity of potential vectors of X. fastidiosa and
the remaining adult community of Cicadomorpha in the Portuguese agrosystems is the
first step in preventing diseases or minimising its potential effects.

With this in mind, the present work is dedicated to studying the Cicadomorpha
community, focusing on the vectors and potential vectors of X. fastidiosa in the canopy and
in the inter-row vegetation of Portuguese vineyards.

2. Materials and Methods
2.1. Study Area

The study was conducted for two consecutive years, 2018 and 2019, in 35 vineyards
(20 vineyards in both years and an additional 15 in the second year) distributed in mainland
Portugal (Table S1). All vineyards were under sustainable producing systems (integrated
or organic), and the inter-rows vegetation was maintained during the sampling periods.
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Additional information regarding the vineyards’ sampling dates and features can be found
in Supplementary Table S1. Each vineyard was surveyed in three different periods: late
spring, summer, and autumn.

2.2. Collection and Identification of Insects

In each vineyard, Cicadomorpha adults were sampled in the inter-row and the canopy
of the vines with a standard entomological sweep net (38 cm). In the inter-row of the
vineyards, 10 samples of 10 consecutive sweepings randomly distributed over 1 ha were
collected. For the canopy, ten samples of 50 successive sweepings were collected. The
content of the sweepings was emptied into a plastic bag properly labelled and sealed.
Arthropods were sorted under a stereoscopic microscope (Leica Microsystems, Wetzlar,
Germany) and conserved in 96% ethanol until further identification. All the adults of
the infraorder Cicadomorpha collected were identified. For species identification, the
male genitalia was dissected and placed in a heated solution of 10% potassium hydroxide
(KOH) for between 20 s and 3 min, depending on the 3clerotization of each specimen.
Subsequently, each genitalia was mounted in glass slides with glycerine and observed
under a stereoscopic microscope. The taxonomic classification was based on appropriate
keys and illustrations [11,29–32]. Females were identified to the lowest possible taxonomic
level. If all males of a genus in a specific sample belonged to one species, then females of
that same genus were considered to be that species. If there were more than one species
in a particular genus, females belonging to that genus were identified as morphospecies
and designated by genus or subfamily, followed by “sp.” and a number according to the
morphotype (e.g., Psammotettix sp.1 or Deltocephalinae sp.1).

2.3. Data Analysis

The community structure was evaluated in terms of the abundance, richness, and di-
versity of species/morphospecies. The data for each year of the study, 2018 and 2019, were
treated independently to avoid bias from the interannual variability. All the statistical anal-
yses were performed in the R software [33]. The mean and the total number of individuals
captured by stratum (inter-row and canopy of the vines) and sampling year were described.
The specific richness and two diversity indices (Shannon–Wiener Diversity Index (H’) and
Pielou Equitability Index (J’)) were determined using the “vegan” package [34]. The specific
richness was calculated as the number of species/morphospecies in each vineyard. The
Shannon–Wiener index (H’) is the most used index, and it gives greater importance to rare
species [35], while the Pielou Equability Index (J’) is derived from the Shannon diversity
index and allows the representation of a uniform distribution of individuals among existing
species [36]. To analyze the effect of the sampled stratum in the Cicadomorpha community,
a permutational multivariate analysis of variance (PERMANOVA) was performed using
the function adonis2 from the package “vegan”. To assess the sampling effort, species
accumulation curves were drawn in function of the number of vineyards sampled per
stratum. Species accumulation curves were computed using the specaccum function of the
“vegan” package. Additionally, a co-inertia analysis (CIA) was performed to determine
the relationship between Cicadomorpha species/morphospecies and the year of sampling
and stratum. This analysis was performed using the “ade4” package and the table.value
function to visualize the results.

3. Results

In total, 11,834 individuals were collected, of which 3003 in 2018 and 8831 in 2019 (Table 1).
Over the two years of study, 81 species/morphospecies were identified. Psammotettix sp.1
(3314 individuals), E. vitis (2866 individuals), and Zyginidia scutellaris (Herrich-Schäffer,
1838) (1079 individuals) were the most abundant species/morphospecies.
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Table 1. Mean and respective standard error (ME ± SE) and total number (N) of Cicadomorpha adults collected in 2018 and 2019 in the vine canopy and
inter-row vegetation.

Family Subfamily Species
2018 2019

Total
Canopy Inter-Row Vegetation Canopy Inter-Row Vegetation

ME ± SE N ME ± SE N ME ± SE N ME ± SE N ME ± SE N

Aphrophoridae C1 Lepyronia coleoptrata (Linnaeus. 1758) 0.0 ± 0.0 0 0.03 ± 0.03 1 0.0 ± 0.0 0 0.17 ± 0.10 6 0.13 ± 0.07 7
C2 Neophilaenus campestris (Fallén. 1805) 0.1 ± 0.1 2 0.10 ± 0.07 2 0.23 ± 0.11 8 1.43 ± 0.50 50 1.11 ± 0.34 62
C3 Neophilaenus lineatus (Linnaeus. 1758) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.06 ± 0.04 2 0.05 ± 0.03 3
C4 Philaenus spumarius (Linnaeus. 1758) 0.2 ± 0.1 5 1.29 ± 0.34 27 0.46 ± 0.16 16 1.83 ± 0.67 64 2.00 ± 0.45 112

Cicadellidae Agalliinae C5 Agallia consobrina Curtis. 1833 0.1 ± 0.1 3 0.05 ± 0.05 1 0.34 ± 0.20 12 0.26 ± 0.10 9 0.45 ± 0.15 25
C6 Agallia sp.1 0.0 ± 0.0 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.09 ± 0.06 3 0.07 ± 0.04 4

C7 Anaceratagallia glabra Dmitriev,
2020 (A. laevis) 0.1 ± 0.1 3 1.57 ± 0.80 33 0.46 ± 0.17 16 7.51 ± 1.67 263 5.63 ± 1.21 315

C8 Anaceratagallia sp.1 0.1 ± 0.1 2 1.19 ± 0.31 25 0.14 ± 0.07 5 0.97 ± 0.40 34 1.18 ± 0.28 66
C9 Anaceratagallia venosa (de Fourcroy. 1785) 0.0 ± 0.0 0 0.10 ± 0.10 2 0.23 ± 0.23 8 0.14 ± 0.08 5 0.27 ± 0.15 15

C10 Austroagallia sinuata
(Mulsant & Rey. 1855) 0.2 ± 0.2 5 0.86 ± 0.42 18 0.34 ± 0.14 12 2.40 ± 0.72 84 2.13 ± 0.55 119

C11 Dryodurgades antoniae (Melichar. 1907) 0.0 ± 0.0 1 1.05 ± 0.61 22 0.09 ± 0.06 3 0.46 ± 0.22 16 0.75 ± 0.28 42
C12 Dryodurgades sp.1 0.0 ± 0.0 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.14 ± 0.06 5 0.11 ± 0.04 6

Aphrodinae C13 Anoscopus albifrons (Linnaeus. 1758) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.02 1
C14 Aphrodes bicinctus (Schrank. 1776) 0.0 ± 0.0 0 0.10 ± 0.07 2 0.00 ± 0.00 0 0.00 ± 0.00 0 0.04 ± 0.03 2
C15 Aphrodes makarovi Zachvatkin. 1948 0.0 ± 0.0 0 0.10 ± 0.10 2 0.00 ± 0.00 0 0.03 ± 0.03 1 0.05 ± 0.04 3
C16 Aphrodes sp.1 0.0 ± 0.0 0 0.10 ± 0.07 2 0.00 ± 0.00 0 0.14 ± 0.06 5 0.13 ± 0.04 7
C17 Aphrodes sp.2 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.46 ± 0.25 16 0.29 ± 0.16 16
C18 Stroggylocephalus sp. 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1

Cicadellinae C19 Cicadella viridis (Linnaeus. 1758) 0.2 ± 0.1 4 0.43 ± 0.18 9 0.06 ± 0.04 2 8.34 ± 4.95 292 5.48 ± 3.12 307
Deltocephalinae C20 Arocephalus punctum (Flor. 1861) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1

C21 Arocephalus sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1

C22 Artianus manderstjernii
(Kirschbaum. 1868) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.51 ± 0.30 18 0.34 ± 0.19 19

C23 Artianus sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.11 ± 0.09 4 0.07 ± 0.06 4
C24 Athysanus argentarius Metcalf. 1955 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.31 ± 0.13 11 0.20 ± 0.08 11
C25 Balclutha frontalis (Ferrari. 1882) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.11 ± 0.07 4 0.07 ± 0.04 4
C26 Balclutha punctata (Fabricius. 1775) 0.0 ± 0.0 0 0.48 ± 0.27 10 0.00 ± 0.00 0 1.57 ± 0.53 55 1.16 ± 0.35 65
C27 Balclutha sp.1 0.0 ± 0.0 0 0.05 ± 0.05 1 0.09 ± 0.05 3 1.11 ± 0.55 39 0.77 ± 0.37 43
C28 Cicadula sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1
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Table 1. Cont.

Family Subfamily Species
2018 2019

Total
Canopy Inter-Row Vegetation Canopy Inter-Row Vegetation

ME ± SE N ME ± SE N ME ± SE N ME ± SE N ME ± SE N

C29 Circulifer sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.06 ± 0.04 2 0.04 ± 0.03 2
C30 Circulifer tenellus (Baker. 1896) 0.0 ± 0.0 0 0.48 ± 0.31 10 0.00 ± 0.00 0 0.00 ± 0.00 0 0.18 ± 0.12 10
C31 Cosmotettix panzeri (Flor. 1861) 0.0 ± 0.0 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.02 1
C32 Doliotettix lunulatus (Zetterstedt. 1838) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.11 ± 0.07 4 4.94 ± 2.89 173 3.16 ± 1.84 177
C33 Doratura homophyla (Flor. 1861) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.49 ± 0.38 17 0.32 ± 0.24 18
C34 Doratura stylata (Boheman. 1847) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.06 ± 0.06 2 0.04 ± 0.04 2
C35 Enantiocephalus sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1
C36 Euscelidius schenckii (Kirschbaum. 1868) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.38 1
C37 Euscelidius variegatus (Kirschbaum. 1858) 0.0 ± 0.0 0 0.38 ± 0.10 8 0.06 ± 0.04 2 1.14 ± 0.57 40 0.89 ± 0.02 50
C38 Euscelidius sp.1 0.0 ± 0.0 0 0.10 ± 0.07 2 0.06 ± 0.06 2 0.06 ± 0.06 2 0.11 ± 0.91 6
C39 Euscelis incisus (Kirschbaum. 1858) 0.0 ± 0.0 1 3.29 ± 1.76 69 0.03 ± 0.03 1 3.57 ± 0.99 125 3.50 ± 0.04 196
C40 Euscelis lineolatus Brullé. 1832 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.06 ± 0.06 2 0.04 ± 0.08 2
C41 Euscelis ohausi W.Wagner. 1939 0.0 ± 0.0 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.23 ± 0.11 8 0.16 ± 0.61 9
C42 Euscelis sp.1 0.0 ± 0.0 1 1.57 ± 0.82 33 0.20 ± 0.09 7 2.09 ± 0.80 73 2.04 ± 4.42 114
C43 Exitianus capicola (Stål. 1855) 0.9 ± 0.7 18 17.48 ± 9.46 367 0.06 ± 0.06 2 9.46 ± 3.70 331 12.82 ± 0.41 718
C44 Exitianus sp.1 0.0 ± 0.0 0 1.62 ± 0.99 34 0.00 ± 0.00 0 0.40 ± 0.26 14 0.86 ± 0.21 48

C45 Goniagnathus brevis
(Herrich-Schäffer. 1835) 0.0 ± 0.0 0 0.29 ± 0.17 6 0.00 ± 0.00 0 0.63 ± 0.32 22 0.50 ± 0.45 28

C46 Goniagnathus guttulinervis
(Kirschbaum. 1868) 0.0 ± 0.0 0 0.57 ± 0.31 12 0.03 ± 0.03 1 2.17 ± 0.68 76 1.59 ± 0.10 89

C47 Goniagnathus sp.1 0.0 ± 0.0 1 0.05 ± 0.05 1 0.00 ± 0.00 0 0.29 ± 0.16 10 0.21 ± 0.02 12
C48 Hardya sp.1 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.03 1
C49 Hardya tenuis (Germar. 1821) 0.0 ± 0.0 0 0.05 ± 0.05 1 0.03 ± 0.03 1 0.00 ± 0.00 0 0.04 ± 0.07 2
C50 Macrosteles alpinus (Zetterstedt. 1828) 0.0 ± 0.0 0 0.10 ± 0.10 2 0.03 ± 0.03 1 0.11 ± 0.09 4 0.13 ± 0.08 7
C51 Macrosteles sexnotatus (Fallén. 1806) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.17 ± 0.12 6 0.11 ± 0.05 6
C52 Macrosteles sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.09 ± 0.06 3 0.06 ± 0.06 2 0.09 ± 0.06 5
C53 Deltocephalinae sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.77 ± 0.77 27 0.48 ± 0.48 27

C54 Neoaliturus
fenestratus (Herrich-Schäffer. 1834) 0.2 ± 0.1 5 0.62 ± 0.23 13 0.37 ± 0.14 13 3.34 ± 0.70 117 2.64 ± 0.52 148

C55 Phlepsius ornatus (Perris. 1857) 0.0 ± 0.0 1 0.10 ± 0.07 2 0.00 ± 0.00 0 0.71 ± 0.20 25 0.50 ± 0.13 28
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Table 1. Cont.

Family Subfamily Species
2018 2019

Total
Canopy Inter-Row Vegetation Canopy Inter-Row Vegetation

ME ± SE N ME ± SE N ME ± SE N ME ± SE N ME ± SE N

C56 Phlepsius sp.1 0.0 ± 0.0 0 0.24 ± 0.14 5 0.03 ± 0.03 1 0.06 ± 0.06 2 0.14 ± 0.06 8
C57 Platymetopius major (Kirschbaum. 1868) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.06 ± 0.06 2 0.04 ± 0.04 2
C58 Psammotettix sp.1 1.9 ± 0.5 39 37.81 ± 11.44 794 3.09 ± 0.76 108 67.80 ± 15.43 2373 59.18 ± 10.79 3314
C59 Rhopalopyx vitripennis (Flor. 1861) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.63 ± 0.23 22 0.39 ± 0.15 22
C60 Sardius argus (Marshall. 1866) 0.0 ± 0.0 0 0.38 ± 0.13 8 0.09 ± 0.05 3 1.26 ± 0.39 44 0.98 ± 0.25 55
C61 Scaphoideus titanus Ball. 1932 0.0 ± 0.0 0 0.00 ± 0.00 0 0.09 ± 0.06 3 2.34 ± 2.03 82 1.52 ± 1.27 85
C62 Selenocephalus sacarroi Rodrigues. 1968 0.0 ± 0.0 0 0.05 ± 0.05 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.02 1
C63 Sonronius binotatus (Sahlberg. 1871) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.03 ± 0.03 1 0.04 ± 0.04 2
C64 Stegelytra putoni Mulsant & Rey. 1875 0.0 ± 0.0 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.11 ± 0.06 4 0.09 ± 0.05 5
C65 Eupelix cuspidata (Fabricius. 1775) 0.0 ± 0.0 0 0.19 ± 0.09 4 0.09 ± 0.05 3 0.57 ± 0.21 20 0.48 ± 0.06 27

Idiocerinae C66 Idiocerus lituratus (Fallén. 1806) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.00 ± 0.00 0 0.02 ± 0.02 1
C67 Idiocerus sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.14 ± 0.12 5 0.03 ± 0.03 1 0.11 ± 0.05 6

Megophthalminae

C68 Megophthalmus scabripennis
Edwards. 1915 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1

Typhlocybinae C69 Alebra coryli Le Quesne. 1977 0.0 ± 0.0 0 0.00 ± 0.00 0 0.63 ± 0.63 22 0.06 ± 0.06 2 0.43 ± 0.39 24
C70 Arboridia sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.06 ± 0.04 2 0.04 ± 0.03 2
C71 Empoasca sp.1 8.2 ± 3.9 172 2.05 ± 1.25 43 7.83 ± 1.68 274 0.86 ± 0.33 30 9.27 ± 1.82 519
C72 Empoasca vitis (Göthe. 1875) 18.4 ± 6.1 386 6.29 ± 2.50 132 59.97 ± 17.18 2099 7.11 ± 1.94 249 51.18 ± 11.87 2866
C73 Eupteryx sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.14 ± 0.07 5 0.14 ± 0.12 5 0.18 ± 0.10 10
C74 Fruticidia bisignata (Mulsant & Rey. 1855) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.11 ± 0.05 4 0.00 ± 0.00 0 0.07 ± 0.03 4

C75 Jacobiasca lybica
(de Bergevin & Zanon. 1922) 13.8 ± 7.4 289 0.00 ± 0.00 0 13.29 ± 12.12 465 0.26 ± 0.19 9 13.63 ± 8.06 763

C76 Ribautiana tenerrima
(Herrich-Schäffer. 1834) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.46 ± 0.21 16 0.06 ± 0.06 2 0.32 ± 0.15 18

C77 Zygina lunaris (Mulsant & Rey. 1855) 0.0 ± 0.0 1 0.00 ± 0.00 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.02 ± 0.02 1
C78 Zygina ordinaria (Ribaut. 1936) 0.0 ± 0.0 0 0.00 ± 0.00 0 0.14 ± 0.06 5 0.03 ± 0.03 1 0.11 ± 0.05 6
C79 Zygina sp.1 0.0 ± 0.0 0 0.10 ± 0.10 2 1.43 ± 1.40 50 0.00 ± 0.00 0 0.93 ± 0.87 52

C80 Zyginidia scutellaris
(Herrich-Schäffer. 1838) 2.6 ± 0.6 55 14.52 ± 5.13 305 2.43 ± 0.47 85 18.11 ± 3.75 634 19.27 ± 3.11 1079

Ulopinae C81 Uteca sp.1 0.0 ± 0.0 0 0.00 ± 0.00 0 0.00 ± 0.00 0 0.03 ± 0.03 1 0.02 ± 0.02 1

Total 12.01 ± 6.12 987 24.30 ± 11.11 2016 39.46 ± 25.97 2099 66.94 ± 29.92 5556 146.10 ± 65.13 11834
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In the canopy of the vines, a total of 4262 individuals were recovered (987 in 2018 and
3275 in 2019). The population was dominated by individuals of the subfamily Typhlocybi-
nae, which represents 92% of the total recovered in the canopy of the vines.

In the inter-row vegetation, 7572 individuals were recovered (2016 in 2018 and 5556
in 2019). The inter-row vegetation was dominated by individuals of the subfamily Delto-
cephalinae, representing 68% of the total individuals captured in this stratum.

Concerning vectors and potential vectors of X. fastidiosa, five species were captured,
namely: C. viridis (307 individuals), P. spumarius (112 individuals), N. campestris (62 indi-
viduals), Lepyronia coleoptrata (7 individuals), and N. lineatus (3 individuals); the highest
abundance of individuals was observed in the inter-row vegetation in the year 2019.

The specific richness and the Shannon—Wiener Diversity Index (H’) were significantly
higher in the inter-row vegetation (Table 2). However, the Pielou Equitability Index (J’)
showed no significant differences between the canopy and inter-row vegetation, indicating
a uniform species distribution (Table 2).

Table 2. Cicadomorpha richness and diversity indices for each stratum sampled per year. Mean
Richness, Shannon—Wiener Diversity Index (H’), and Pielou Equitability Index (J’).

2018 2019

Richness
Canopy 4.95 ± 0.5 6.43 ± 0.68
Inter-row vegetation 9.62 ± 0.9 13.86 ± 0.10
p-value <0.001 <0.001

H’
Canopy 1.00 ± 0.10 1.01 ± 0.10
Inter-row vegetation 1.44 ± 0.09 1.75 ± 0.11
p-value 0.002 <0.001

J’
Canopy 1.48 ± 0.60 1.42 ± 0.41
Inter-row vegetation 1.55 ± 0.40 1.60 ± 0.43
p-value 0.64 0.14

According to the NMDS analysis based on the Bray–Curtis index (Figure 1) and the
PERMANOVA analysis (df = 1; F = 2; p = 0.001 for 2018, and df = 1; F = 5; p = 0.001 for
2019), the sampling stratum significantly influences the Cicadomorpha community.
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In both years and stratum, the species accumulation curves showed a tendency toward
stabilisation (Figure 2), which indicates that the sampling effort was sufficient to detect
most of the species of the Cicadomorpha community present in the vineyards.
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The majority of the Cicadomorpha species, including vectors and potential vectors of
X. fastidiosa, showed a positive correlation with inter-row vegetation (Figure 3).
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4. Discussion

Sustainable agriculture requires knowledge of the abundance and diversity of pests
and vector insects to protect crops and implement long-term and safe control measures. This
principle is the basis of the present work that allowed the identification of the Cicadomorpha
community in Portuguese vineyards together with its preference for the different strata.

All insects that feed exclusively on xylem are considered potential vectors of X. fastidiosa [15].
In the European continent, 96 species specialised in xylem have been recorded [37]. Among
them, only five were captured in the sampled vineyards, namely, P. spumarius, N. campestris,
N. lineastus, L. coleoptera, and C. viridis. Species such as Aphrophora sp., Cercopis intermedia
Kirschbaum 1868, and Philaenus tesselatus Melichar, 1899, reported in other Portuguese
agroecosystems [38–41], can be considered potential vectors of this pathogen [15], but were
not collected in the sampled vineyards. Until now, only P. spumarius and N. campestris, were
shown to be competent vectors of X. fastidiosa [19]. Several studies have demonstrated
that P. spumarius can efficiently transmit X. fastidiosa to vineyards [42–44]. Little is known
about the other three species’ ability to transmit the bacteria. Nonetheless, according to
Bodino et al. [45], when acquiring the pathogen through an artificial diet, C. viridis is an
inefficient vector of X. fastidiosa, since it can transmit the pathogen to periwinkle with
very low efficiency but with no successful transmission from plant to plant. Since this
insect was the most abundant xylem feeder captured in the sampled Portuguese vineyards,
a particular effort should be made to clarify and understand the potential role of the
sharpshooter in spreading the fastidious bacterium within this agroecosystem.

Philaenus spumarius was the most abundant spittlebug in the sampled vineyards,
consistent with other studies carried out in European and Californian vineyards [42,46,47].
However, in the present work, the registered abundance was much lower than those
reported in the bibliography.

All the vectors and potential vectors of X. fastidiosa collected showed a higher abun-
dance in the inter-row vegetation. In fact, the co-inertia analysis (Figure 3) indicated that
all the xylem sap feeders present a positive correlation with the inter-row vegetation,
which is in line with the literature [48–53]. Spittlebugs and C. viridis spend a large part
of their life cycle in the vegetation cover, mainly in grasses, where they feed, mate, and
lay eggs [15,46,51,54]. Nevertheless, with the exception of N. lineatus and L. coleoptrata, the
remaining xylem feeders recovered were also present in the canopy of the vines. Previous
studies have also reported the presence of these insects in the canopy of vines [15,42,46,47].
One factor influencing their distribution between the vine canopy and inter-row vegetation
is the hour of the day. It is expected that the movement of the insects from the different
strata during the day would occur, but we don’t have observations that corroborate this.

The remaining species of Cicadomorpha captured in the vineyards are phloem or mes-
ophyll feeders. Some studies have reported that some phloem sap feeders of the subfamily
Deltocephalinae, the most abundant subfamily in the sampled vineyards, presented to be
infected with the bacteria [50,55,56]. However, there is no evidence that they can transmit
the pathogen [19,57]. As a result, all the remaining species of Cicadomorpha captured in the
sampled vineyards most likely do not threaten the vineyards regarding the transmission
of X. fastidiosa. Further studies on the ability of these individuals to transmit the bacteria
are required.

Nonetheless, it should be noted that in addition to vectors and potential vectors of
X. fastidiosa, some of the species collected in the sampled vineyards are also considered
vectors or potential vectors of yellow disease phytoplasmas responsible for destructive
damage in the vineyard. Among these, S. titanus, the main vector of the Flavescence dorée
phytoplasma [2], should be highlighted. Euscelidius variegatus (Kirschbaum, 1858) is another
species with potential importance; it demonstrated the ability to acquire and transmit the
Flavescence dorée phytoplasma under laboratory conditions [58] and also tested positive
for Candidatus Phytoplasma solani [59,60]. Neoaliturus fenestratus (Herrich-Shaffer, 1834) has
been reported to carry the ‘Candidatus Phytoplasma solani’ [61–63]. Anaceratagallia glabra
Dmitriev, 2020 (=A. laevis), A. sinuata (Mulsant and Rey, 1855), and Z. scutellaris have also
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been established as potential vectors of the phytoplasmas of yellow grapevine diseases [61].
It is also noted that the main vector of X. fastidiosa, P. spumarius, tested positive for the
phytoplasma ‘Ca. P. solani’, but there was no evidence of transmission to grapevine [60].

Within the Cicadomorpha community, some species recovered in the sampled vine-
yards can also cause physical damage to the plants, consequently leading to economic
losses. E. vitis and J. lybica, commonly known as green leafhoppers, are key pests in several
European wine-producing regions [3,13]. These green leafhoppers feed by puncturing the
phloem vessels of the leaves. This induces an obstruction of the vessels, a reddening, and
necrosis of leaves, thus reducing photosynthesis and resulting in delayed maturity [13].

A great abundance, richness, and diversity of Cicadomorpha individuals were ob-
served in the inter-row vegetation over the two years of study. In fact, the co-inertia analysis
showed that most of the captured individuals exhibited a positive correlation with the
inter-row vegetation, with only 14 species, mostly belonging to the family Typhlocybinae,
showing a positive correlation with the vine canopy (Figure 3). Data in agreement with
the analysis of PERMANOVA and NMDS showed differences between the communities of
the sampled strata. A study by Carpio [49], whose objective was to understand the role
of herbaceous vegetation in structuring the Cicadomorpha community, showed that olive
groves with herbaceous vegetation showed higher diversity and abundance of Cicadomor-
pha compared to olive groves without herbaceous vegetation. Other studies also highlight
the importance of vegetation cover in structuring the Cicadomoprha community [64–68].
Herbaceous vegetation can provide a wide range of food sources, shelter, mating places,
and substrates for laying eggs [69]. Tillage or mowing of the vegetation cover can be one
solution to reduce Cicadomorpha population levels in agroecosystems; however, these
techniques might have significant side effects. The vegetation cover also provides shelter
and food to a wide range of beneficial fauna that performs essential ecosystem services
in the vineyard, such as pollination, decomposition, regulation of the nutrient cycle, and
control of pests and diseases.

5. Conclusions

In conclusion, this study focused on the species composition, richness, and diversity
of the Cicadomorpha community in vineyards distributed in mainland Portugal, with
special emphasis on vectors and potential vectors of X. fastidiosa. The results demonstrate
that vectors and potential vectors of this pathogen are present in Portuguese vineyards.
Cicadella viridis was the more abundant potential vector in the sampled vineyards. Fur-
ther studies on transmission rates are necessary to better understand this insect’s role in
X. fastidiosa epidemiology. Philaenus spumarius, the main European vector, was the most
abundant spittlebug.

Additionally, vectors of phytoplasmas of yellow grapevine diseases and species that
can physically damage vines were also collected and identified in the sampled vineyards.

Vectors and potential vectors of X. fastidiosa and a large part of the population of
Cicadomorpha showed a positive correction with inter-row vegetation.

Further research on how the landscape, agricultural practices, application of phytosan-
itary treatments, the variety present at the sampling site, and environmental conditions
shape the Cicadomorpha community is essential to design new techniques to prevent the
spread of this pathogen in Portuguese vineyards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14030251/s1, Table S1. Vineyard information: sampling
dates (2018 and 2019), metric characteristics, and management data.
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