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Simple Summary: Coffee is an essential agricultural product in the worldwide economy. Unfortu-
nately, the coffee berry borer (CBB), the crop’s primary pest, significantly impacts the bean’s quantity
and quality. One strategy for controlling this insect is to use biological control agents, such as ants,
some known for naturally living on coffee plantations and consuming CBB throughout all stages of
development. Our paper examines a predator–prey interaction between these two insects using a
novel mathematical model based on differential equations, where state variables correspond to adult
CBBs, immature CBBs, and ants.

Abstract: Coffee is a relevant agricultural product in the global economy, with the amount and
quality of the bean being seriously affected by the coffee berry borer Hypothenemus hampei (Ferrari),
CBB, its principal pest. One of the ways to deal with this beetle is through biological control agents,
like ants (Hymenoptera: Formicidae), some of which are characterized by naturally inhabiting
coffee plantations and feeding on CBB in all their life stages. Our paper considers a predator–
prey interaction between these two insects through a novel mathematical model based on ordinary
differential equations, where the state variables correspond to adult CBBs, immature CBBs, and ants
from one species, without specifying whether preying on the CBB is among their feeding habits,
in both adult and immature stages. Through this new mathematical model, we could qualitatively
predict the different dynamics present in the system as some meaningful parameters were varied,
filling the existing gap in the literature and envisioning ways to manage pests. Mathematically,
the system’s equilibrium points were determined, and its stability was studied through qualitative
theory. Bifurcation theory and numerical simulations were applied to illustrate the stability of the
results, which were interpreted as conditions of the coexistence of the species, as well as conditions
for eradicating the pest, at least theoretically, through biocontrol action in combination with other
actions focused on eliminating only adult CBBs.

Keywords: predator–prey model; coffee berry borer; ants; biological control; net reproductive rate;
nonhyperbolic equilibrium points; transcritical bifurcation

1. Introduction

The coffee berry borer (CBB), Hypothenemus hampei (Ferrari, 1867) (Coleoptera: Cur-
culionidae: Scolytidae), has become a critically important pest in the coffee industry world-
wide. Its devastating impact on coffee production and quality has attracted the attention of
farmers, scientists, and decision-makers. This tiny beetle, considered the primary coffee
pest [1–3], is the size of the head of a pin and penetrates the beans by reproducing inside
them, directly affecting the yield and quality of the crop. Furthermore, the CBB represents
a significant economic and social threat, as it reduces farmers’ incomes, decreases the
competitiveness of coffee-growing regions, and affects communities dependent on this
critical industry.
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The CBB destruction cycle begins when an adult female CBB enters through the navel
of a coffee bean and, once in the endosperm, makes galleries where it deposits its eggs.
These hatches give rise to two other immature stages: larva and pupa, with the larval
stage affecting the grain the most. First, CBBs emerge from the pupae in the adult state,
in an approximate ratio of 1:10 in favor of females to males. Then, sibling CBBs mate
(a phenomenon known as inbreeding), and the fertilized female CBBs leave the grain to
continue the cycle. Some of these new adult female CBBs oviposit in the exact grain where
they hatched but to a lesser extent than the founder borer. The males, for their part, remain
inside the grain until they die, fulfilling an exclusively reproductive function since their
wings and jaws are atrophied, preventing them from flying and perforating grains [4–6].

The ability of CBBs to develop within the coffee bean makes it challenging to control
this pest. The protection the grain provides to the immature stages of CBBs (egg, larva,
prepupa, pupa) makes detecting and applying effective control measures difficult. In
addition, the ability of adult females to enter other grains to oviposit increases the spread
of the pest within the crop [2,4,5]. Only through a comprehensive approach, combining
scientific research and the development of effective control strategies, can this challenge
be met and a sustainable future for the coffee industry ensured. Some of these control
techniques are described below. (1) Chemical control consists of using insecticides to
eliminate adult CBBs found outside the bean and which are prepared to infest another
bean [5,7]. (2) Cultural control aims to minimize the pest’s availability of food and shelter
by implementing distinct manual practices, such as using handmade traps with alcoholic
attractants [3,5]. (3) Biological control, based on diminishing the effects of the CBB through
the introduction into coffee plantations of other animals, is classified into four groups:
parasitoids, predators, entomopathogens, and entomonematodes [5,8]. Finally, (4) inte-
grated borer management (IBM), corresponding to a strategic combination of chemical,
cultural, and biological controls, granting preference to the latter, aims to diminish the
CBB population to levels that do not cause significant damage to coffee production while
protecting the crops and minimizing the damage caused to the environment [3,5,8].

Biological control is very relevant in the fight against the CBB, not only due to its
importance within IBM but because it can be carried out with a large variety of living beings,
among which predators stand out, constituting the largest group of natural enemies of the
CBB. One predator that deserves special attention is the ant (Hymenoptera: Formicidae).
Ants are very effective in CBB control due to their size and the ease of introducing them
into the affected bean, where they find CBB available in all its life stages [2,5]. However,
once the ant enters the coffee bean, it does not necessarily prey on all stages; some prefer
adult CBBs, like, for example, the species Solenopsis picea, according to [9], or the species
Pseudomyrmex simplex, Pseudomyrmex ejectus, and Pseudomyrmex sp., according to [10].
In addition, ants from the species Crematogaster sp. contribute to biological control by
consuming immature CBBs inside the coffee beans [11]. Other ants, which cannot enter the
beans, concentrate their predation on adult CBBs that have exposed >50% of their body
when they are perforating the fruit or simply on adult CBBs that walk among beans, on
the branches of the coffee plants, or on the soil, such as the species Solenopsis invicta and
Gnamptogenys annulata, according to [12,13], respectively. Other studies have revealed that
certain ant species that feed on CBB attack this pest in all its life stages, like the species
Solenopsis geminata [13], without this being the only case. According to [14], the species
Wasmannia auropunctata preys on immature CBBs inside the coffee beans, but [12], a more
recent study, stated that this same species consumes adult CBBs, also inside the beans.
According to these reports, it may be said that ants of the species Wasmannia auropunctata
have in their diet immature CBBs and adult CBBs.

Bearing in mind the aforementioned details, this work proposed and analyzed a
mathematical model comprising three ordinary differential equations to theoretically study
the interaction between the CBB and ants that prey on the CBB as part of their feeding
habits, in the adult and immature stages. Each of the equations is described according
to the characteristics of the three populations in question: adult CBBs, immature CBBs,
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and CBB-preying ants. One of the purposes of this study was to interpret the stability
of the results as conditions of species coexistence, as well as conditions to eradicate the
pest, at least theoretically, by biocontrol action in combination with other actions focused
on eliminating only adult CBBs; in particular, the influence of the death rate of adult
CBBs due to factors other than predation on the population dynamics was studied. Based
on these considerations, we wished to answer two specific questions: (1) Under what
conditions could the population of CBBs coexist with the population of ants despite their
role as predators? (2) Under what conditions might the CBB population be eradicated by
ant biological control combined with other control methods? In other words, we desired
to analyze, using a mathematical model, the reduction and hypothetical elimination of
CBBs when biological control based on ants was implemented and the additional death
factor of adult CBBs was systematically varied. In this sense, our study is novel in that we
introduced both ant biological control and other mortality factors for CBBs, unlike works
such as [15,16], where the CBB population dynamics were also modeled using systems
of ordinary differential equations. The first of these references studied the effects of a
biological control consisting of an entomopathogenic fungus. The second analyzed the
synergy of chemical and cultural controls, specifically bioinsecticides and capture traps.

From the proposed mathematical model, a region of biological sense was deduced and
shown to be positively invariant, that is, a set wherein the solutions for non-negative values
of the independent variable time remained. Next, the equilibrium points of the system of
differential equations were determined, and its stability was studied through the qualitative
theory for continuous dynamical systems, that is, from the sign of the eigenvalues of the
Jacobian matrix evaluated in each equilibrium, a sign that in some cases depended on
one of the two thresholds found, referred to in the population ecology literature as net
reproduction rate. Some of the stability results are discussed according to bifurcation theory.
Thereafter, numerical simulations of the system of differential equations were carried out,
and the respective interpretations are provided. Finally, the benefits of the work carried out
and the results obtained are discussed.

2. Materials and Methods

This section proposes a mathematical model constituting three ordinary differential
equations to study a prey–predator interaction, with CBBs and ants playing the respective
roles. Each of the equations is described according to the characteristics of the three
populations in question: adult CBBs, immature CBBs, and ants whose feeding habits
include CBB predation.

An initial assumption was that the CBBs are divided into two populations: adult
and immature, although ecologically they continue to be part of the same population. In
addition, no sex distinction was made. The work also considered a population of ants
that consume CBBs as part of their diet, notwithstanding the development stage. Other
typical assumptions regarding the ecology of populations were considered in this model,
as follows:

• The generations of the population overlapped, that is, in the population it was possible
to find individuals of different ages.

• The population was homogeneously distributed, which is why position was irrelevant.
• No migration phenomena were considered.

Let A = A(t) designate the average number of adult CBBs at time t, I = I(t) the
average number of immature CBBs at time t, and H = H(t) the average number of ants
at time t. Thus, derivates dA

dt , dI
dt , and dH

dt represent the variation of each population with
respect to time.

The model’s approach started by formulating a differential equation for the variation
of the average number of adult CBBs; for this, three aspects that influence the dynamics
were taken into account. In the first place, we considered the transition from immature
stages to adult stages. If we denote with ω the rate of development from the immature
stage to the adult stage, the term ωI corresponds to the average number of immature CBBs
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undergoing this transition per unit of time. In the second place, we considered the death of
adult CBBs, with parameter µ assumed as the mortality rate of adult CBBs due to factors
other than predation, such as natural death or death due to the effect of insecticides; thus,
the term µA represents the average number of adult CBBs that die per unit of time. Third,
we considered predation by ants from a certain species, which, without being explicitly
identified, could be any of those mentioned in the introduction, as long as it feeds on the
CBB at any moment of its life stage as part of its feeding habits. This interaction could be
described by the law of mass action, a typical consideration in predator–prey-type models,
which in this case is represented by the term αAH, where parameter α corresponds to
the death rate due to the predation of adult CBBs by ants. According to the above, the
population dynamics of adult CBBs was modeled by the following differential equation:

dA
dt

= ωI − µA− αAH. (1)

Now, a differential equation was proposed that modeled the variation in the average
number of immature CBBs. The starting point was a common fact explained in the literature:
that the product of the rate at which the eggs are produced and the variable corresponding
to the population of adult CBBs describes the growth in the population of immature
CBBs; in this case, said product is represented by φA, where φ is the CBB oviposition rate.
However, immature CBBs do not increase in number indefinitely; this is because they have
a carrying capacity, denoted in this case by q and defined in this context as the maximum
number of immature CBBs that the cultivation area can withstand, a number that varies
according to the plantation’s characteristics. It is important to recall that immature CBBs
always remain in the coffee beans. When the average number of immature CBBs is close to
the carrying capacity, the dynamic is stabilized, that is, growth is prevented. To model this
situation, we multiplied the term φA by the factor F = (1− I/q), which evidently lacks
units, because these were simplified in the quotient. The regulatory effect of this factor is
clear; when the number of immature CBBs is very close to the carrying capacity, that is,
when I → q, then F → 0, and, hence, growth is inhibited. This regulation factor has been
used in different contexts, such as population dynamics studies of the dengue-transmitting
mosquito Aedes aegypti, as in [17,18], and a demographic structure study of the plant Emilia
sonchifolia, as in [19]. Moreover, the mortality rate of immature CBBs due to environmental
factors is denoted by the parameter θ; then, the term θ I represents the average number of
immature CBBs that die per unit of time. It is worth mentioning that insecticides have a
significantly negative effect on the population of CBBs inside the beans [2,5]. Lastly, the law
of mass action was once again taken into account to describe the predation of immature
CBBs I at a rate δ by the same species of ants H considered in the prior differential equation,
a dynamic summarized in the term δIH. In sum, the population dynamics of the immature
CBBs were modeled by the following differential equation:

dI
dt

= φA
(

1− I
q

)
−ωI − θ I − δIH. (2)

Finally, for the population dynamics of the average number of ants that prey on CBBs at
both the adult and immature stages, logistical growth was considered, where k and r denote the
carrying capacity and the intrinsic growth rate, respectively. This assumption was admissible
given that in the CBBs’ absence, the ants are not extinguished, because they have other sources of
food in the coffee plantations. Following the methodology proposed in [18,20–22], an additional
increase was considered for the intrinsic growth of the ants attributed to the predation of
adult CBBs εαA and immature CBBs εδI, where parameter ε corresponds to the biomass
conversion rate through predation and indicates that there is no total consumption of the
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adult and immature CBBs that die due to attacks by ants. According to the aforementioned,
the population dynamics of the ants were modeled by the following differential equation:

dH
dt

= (r + εαA + εδI)H
(

1− H
k

)
. (3)

Thus, the system (4) formed by differential Equations (1)–(3) describes, according to the
assumptions proposed, a predator–prey-type interaction between the CBB (Hypothenemus
hampei) and one of the species of ants that have as part of their diet adult and immature CBBs.

dA
dt

= ωI − µA− αAH

dI
dt

= φA
(

1− I
q

)
−ωI − θ I − δIH (4)

dH
dt

= (r + εαA + εδI)H
(

1− H
k

)
.

3. Results
3.1. Region of Invariance

The study of model (4) started with Proposition 1, where the region of invariance Ω
was determined. This is a set of biological interest that is positively invariant with respect
to the system’s flow, that is, every solution of the system (4) that starts in Ω remains there
throughout t ≥ 0.

Proposition 1. Set Ω, given in the following, is a positively invariant region:

Ω =
{
(A, I, H) ∈ R3 : 0 ≤ A ≤ ωq

µ , 0 ≤ I ≤ q, 0 ≤ H ≤ k
}

. (5)

Proof. When considering H = 0 and then H = k in the third differential equation of the
system (4), we obtained

dH
dt

∣∣∣∣
H=0

=
dH
dt

∣∣∣∣
H=k

= 0.

This indicated that in those cases there was no variation in H; thereby, the population
dynamics were determined by variables A and I on planes H = 0 and H = k, respectively.
Thus, trajectories with initial conditions on planes H = 0 or H = k remained in said planes,
as illustrated in Figure 1, where the initial conditions were in the form (A(0), I(0), H(0)) =
(A0, I0, 0) and (A(0), I(0), H(0)) = (A0, I0, k). In other words, planes H = 0 and H = k
were invariant.

Now, in the first differential equation of the system (4), it was assumed that A = 0 and
then A = ωq

µ , which yielded

dA
dt

∣∣∣∣
A=0

= ωI ≥ 0 y
dA
dt

∣∣∣∣
A=

ωq
µ

= ω(I − q)− qαω

µ
H ≤ 0,

respectively, where the last result was guaranteed because I ≤ q. This meant that trajectories
with initial conditions on planes A = 0 or A = ωq

µ entered region Ω, where the initial condi-

tions were in the form (A(0), I(0), H(0)) = (0, I0, H0) or (A(0), I(0), H(0)) =
(

ωq
µ , I0, H0

)
,

with I0 and H0 non-negative.
Finally, if in the second differential equation of the system (4) I = 0 and then I = q

were considered, we obtained

dI
dt

∣∣∣∣
I=0

= φA ≥ 0 y
dI
dt

∣∣∣∣
I=q

= −(ω + θ + δH)q < 0,
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respectively. This meant that trajectories with initial conditions on planes I = 0 or I = q
entered region Ω, where the initial conditions were in the form (A(0), I(0), H(0)) =
(A0, 0, H0) or (A(0), I(0), H(0)) = (A0, q, H0), with A0 and H0 non-negative.

(A) (B)

Figure 1. Trajectories of system (4). In (A), the trajectories and initial conditions were found on plane
H = 0, and in (B), the trajectories and initial conditions were found on plane H = k. The use of colors
aims to differentiate the trajectories on the relevant planes, which were colored in yellow.

3.2. Equilibrium Points and Stability

An equilibrium point (equilibrium solution) was reached when the rates of change
of all system variables were equal to zero. This meant that the variables were neither
increasing nor decreasing at that point, resulting in a constant population in equilibrium.
To obtain the equilibrium points of the model (4), we set the derivatives equal to zero, and
the following was obtained:

E1 = (0, 0, 0)

E2 =

(
qω

µ

(
B0 − 1

B0

)
, q
(

B0 − 1
B0

)
, 0
)

(6)

E3 = (0, 0, k)

E4 =

(
qω

kα + µ

(
Ψ0 − 1

Ψ0

)
, q
(

Ψ0 − 1
Ψ0

)
, k
)

. (7)

Here, B0 and Ψ0 are the thresholds on which the biological sense depends with
equilibrium points E2 and E4, respectively, and are given explicitly by

B0 =
φω

µ(θ + ω)
(8)

Ψ0 =
φω

(kα + µ)(kδ + θ + ω)
. (9)

Expressions like (8) and (9) are sometimes used in studies of population ecology, for
example, in [23], where this type of threshold was denoted net reproduction rate and whose
definition, adapted to the context of the CBB, corresponded to the number of female CBBs
produced by a female CBB in the absence of the predator. Additionally, they have been
used in works on the CBB, such as [24,25]. The stability analysis of the equilibrium points
was performed based on these thresholds. An equilibrium point is considered local and
asymptotically stable if the solutions of the system of differential equations, starting near
that point, converge to it as time tends to infinity. This implies that if a population is
near a local and asymptotically stable equilibrium point, over time the population will
stabilize at that point. In ecological terms, this means that the population will remain at
that equilibrium point in the long term. An equilibrium point is considered unstable if
the solutions of the system of differential equations, starting near that point, move away
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from it as time progresses. In other words, any perturbation in the population will cause it
to move away from the equilibrium point. In the context of population ecology, this may
imply that the population cannot sustain itself at that point and will experience significant
changes over time.

Now that the model’s equilibrium points (4) are known explicitly, stability aspects
are omitted momentarily to illustrate, in Figure 1, the invariance of the lower and upper
boundaries of region Ω given in (5). Figure 1 was elaborated keeping in mind the values
of the parameters consigned in Table 1 and considering µ = 0.03, showing the trajectories
of system (4) with initial conditions on planes H = 0 (Figure 1A) and H = k (Figure 1B),
surfaces that contained the lower and upper boundaries, respectively, of the invariance
region Ω. In the first case, the trajectories tended to the equilibrium point E2 on plane
H = 0 and, in the second case, they tended to the equilibrium point E4 on plane H = k.

The following subsection presents and proves Proposition 2, whereby the stability,
collision, and biological sense of the equilibrium points E1, E2, E3, and E4 were studied
using the values assumed by the positive thresholds B0 and Ψ0 given in (8) and (9), re-
spectively, following the methodology applied in works like [18,26]. The analysis of the
equilibrium point E3 when Ψ0 = 1 is left out, because it will be discussed independently
in Proposition 4.

Proposition 2. The stability of equilibrium points E1, E2, E3, and E4 of system (4) depends on
thresholds B0 and Ψ0 given in (8) and (9), respectively, in the following manner:

1. Equilibrium point E1 is unstable.
2. Equilibrium point E2 has no biological sense if B0 < 1, collides with E1 if B0 = 1, and is

unstable if B0 > 1.
3. Equilibrium point E3 is local and asymptotically stable if Ψ0 < 1 and is unstable if Ψ0 > 1.
4. Equilibrium point E4 has no biological sense if Ψ0 < 1, collides with E3 if Ψ0 = 1, and is

local and asymptotically stable if Ψ0 > 1.

Proof. The Jacobian matrix of system (4), denoted by J(A, I, H), is given by
−µ− αH ω −αA
φ
(

1− I
q

)
− φA

q −ω− θ − δH −δI

εαH
(

1− H
k

)
εδH

(
1− H

k

)
(r + εαA + εδI)

(
1− 2H

k

)
 (10)

The demonstration consisted in evaluating the Jacobian matrix (10) in each equilibrium
point and determining the eigenvalues. For equilibrium points that were hyperbolic,
stability conclusions were obtained from the sign of the real parts of the eigenvalues,
following a methodology based on the application of the Hartman–Grobman theorem [27].
For nonhyperbolic equilibrium points, the direct method of Liapunov was used. It is
important to clarify that the expression λ

(j)
i with i = 1, 2, 3 and j = 1, 2, 3, 4 corresponds to

the eigenvalue i of the Jacobian matrix (10) evaluated in equilibrium point Ej.

1. The Jacobian matrix (10) evaluated in equilibrium point E1 = (0, 0, 0) has the follow-
ing eigenvalues:

λ
(1)
1 = r

λ
(1)
2 = −1

2

[
(θ + µ + ω) +

√
(θ − µ + ω)2 + 4φω

]
(11)

λ
(1)
3 = −1

2

[
(θ + µ + ω)−

√
(θ − µ + ω)2 + 4φω

]
. (12)

By the form of the radicand, it was concluded that the three eigenvalues were real.
All the more, the signs of some of the eigenvalues were evident, particularly λ

(1)
1 > 0

and λ
(1)
2 < 0. However, the sign of λ

(1)
3 could not be determined immediately, which



Insects 2023, 14, 675 8 of 20

is why the radicands were expressed in terms of threshold B0 to establish conditions,
that is:

λ
(1)
2 = −1

2

[
(θ + µ + ω) +

√
(θ + µ + ω)2 + 4µ(θ + ω)(B0 − 1)

]
λ
(1)
3 = −1

2

[
(θ + µ + ω)−

√
(θ + µ + ω)2 + 4µ(θ + ω)(B0 − 1)

]
.

Note that if B0 < 1, then λ
(1)
3 < 0; if B0 > 1, then λ

(1)
3 > 0; but, as λ

(1)
1 > 0 y λ

(1)
2 < 0,

it was concluded that in any case, E1 is an unstable hyperbolic equilibrium point of
the saddle type. However, for the case B0 = 1, E1 is a nonhyperbolic equilibrium
point, since λ

(1)
3 = 0. In effect, the eigenvalues are now:

λ
(1)
1 = r, λ

(1)
2 = −(θ + µ + ω), λ

(1)
3 = 0.

Bearing in mind the stability results obtained above, it was plausible to think that if
B0 = 1, equilibrium point E1 would be unstable, but the classical qualitative theory
was insufficient to verify this idea due to the loss of hyperbolicity; hence, the instability
of equilibrium point E1 was shown using the direct method of Liapunov [28], whose
conclusion was valid independently of threshold B0.
Let U be a open set given by

U = {(A, I, H) ∈ R3 : H > 0},

for which E1 = (0, 0, 0) belongs to the closure of U. Let S be a neighborhood of E1
given by

S =

{
(A, I, H) ∈ R3 : A2 + I2 + H2 <

ρ2

4

}
, (13)

where

ρ = min
{

r√
ε2α2 + ε2δ2

, k
}

,

and r√
ε2α2+ε2δ2 is the distance from the origin to the line of equation r + εαA + εδI = 0,

shown in Figure 2. And let V be the scalar field

V(A, I, H) = H,

which satisfies

(a) V > 0 en U ∩ S\{E1};
(b) V̇(A, I, H) = Ḣ = (r + εαA + εδI)H

(
1− H

k

)
> 0 en U ∩ S\{E1};

(c) V(0, 0, 0) = 0;
(d) V = 0 on that part of the boundary of U inside S.

Therefore, the equilibrium point E1 is unstable, according to the direct method of
Liapunov for instability.
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I

A

( ), 0
αε
r

( ),0
δε
r

ρ
ρ
2

r εαA εδI 0

Figure 2. Projection of the neighborhood S (13) to the plane AI when ρ = r√
ε2α2+ε2δ2 .

2. From (6), it is evident that equilibrium point E2 loses its biological sense in the first and
second component if B0 < 1. To analyze the other two cases, the Jacobian matrix (10)
was evaluated in equilibrium E2, whose eigenvalues were used to obtain the real
value, as observed in the following:

λ
(2)
1 =

qε

φω
(θ + ω)(αω + δµ)(B0 − 1) + r

λ
(2)
2 = − 1

2µ

[
µ2 + φω +

√
(µ2 − φω)2 + 4µ3(θ + ω)

]
(14)

= − 1
2µ

[
µ2 + φω +

√
(µ2 + ωφ)2 − 4µ3(θ + ω)(B0 − 1)

]
.

λ
(2)
3 = − 1

2µ

[
µ2 + φω−

√
(µ2 − φω)2 + 4µ3(θ + ω)

]
(15)

= − 1
2µ

[
µ2 + φω−

√
(µ2 + ωφ)2 − 4µ3(θ + ω)(B0 − 1)

]
.

Now, λ
(2)
2 < 0 in all cases, and condition B0 > 1 is sufficient for λ

(2)
1 > 0 and

implies λ
(2)
3 < 0, which allowed us to conclude that E2 is unstable and, specifically, a

saddle. In addition, if B0 = φω
µ(θ+ω)

= 1, we could determine from (6) that E1 = E2,
i.e., the equilibriums collide. Further, the prior expressions were simplified in the
following manner:

λ
(2)
1 = r

λ
(2)
2 = − 1

2µ

(
µ2 + φω + µ2 + φω

)
= −µ2 + µ(θ + ω)

µ
= −(θ + µ + ω)

λ
(2)
3 = − 1

2µ

[
µ2 + φω−

(
µ2 + φω

)]
= 0,

which coincides with the results from the previous case that have already been discussed.
3. The Jacobian matrix (10) evaluated in equilibrium E3 = (0, 0, k) has the follow-

ing eigenvalues:
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λ
(3)
1 = −r

λ
(3)
2 = −1

2

[
∆ +

√
(kα + µ− kδ− θ −ω)2 + 4φω

]
(16)

λ
(3)
3 = −1

2

[
∆−

√
(kα + µ− kδ− θ −ω)2 + 4φω

]
(17)

= −1
2

[
∆−

√
∆2 + 4(kδ + θ + ω)(kα + µ)(Ψ0 − 1)

]
, (18)

where ∆ = kα + kδ + θ + µ + ω, and it is clear from (16) and (17) that the eigenvalues
are real. It is observed that λ

(3)
1 < 0 and λ

(3)
2 < 0 in all cases, and in (18) it is noted

that the condition Ψ0 < 1 implies that λ
(3)
3 < 0; then, equilibrium E3 is local and

asymptotically stable. Furthermore, note from (18) that if Ψ0 > 1, then λ
(3)
3 > 0, and

since λ
(3)
1 < 0 and λ

(3)
2 < 0, it was concluded that equilibrium E3 is unstable and,

specifically, a saddle.
4. It is immediately obvious from (7) that equilibrium point E4 loses its biological sense

in the first and second component if Ψ0 < 1. To study the two other cases, the Jacobian
matrix (10) was evaluated in equilibrium E4, obtaining, as in previous cases, a J(E4)
matrix whose eigenvalues are

λ
(4)
1 = − 1

φω
[qε(kδ + θ + ω)(αω + kαδ + δµ)(Ψ0 − 1) + rφω]

λ
(4)
2 = −

Λ2 + φω +
√
(Λ2 − φω)

2 + 4(kδ + θ + ω)Λ3

2Λ
(19)

λ
(4)
3 = −

Λ2 + φω−
√
(Λ2 − φω)

2 + 4(kδ + θ + ω)Λ3

2Λ
, (20)

where Λ = kα + µ and, equivalently,

λ
(4)
3 = −

Λ2 + φω−
√
(Λ2 + φω)

2 − 4(kδ + θ + ω)Λ3(Ψ0 − 1)

2Λ
. (21)

From (19) and (20), it was deducted that the eigenvalues are real. Note in (7) that if
Ψ0 = 1, then E4 = E3, that is, E4 collides with E3. Finally, if Ψ0 > 1 in (21), it is easy to
see that λ

(4)
3 < 0, but since λ

(4)
1 < 0 and λ

(4)
2 < 0, it was concluded that equilibrium

point E4 is local and asymptotically stable.

Remark 1. In the demonstration of the four cases contemplated in Proposition 2, it was verified
that all the eigenvalues are real; specifically, in expressions (11), (12), (14)–(17), (19), and (20), it
was evidenced that no possibility exists of having complex eigenvalues, because all the radicands
are positive.

Proposition 3 analyzed the stability results obtained, but now having as reference
parameter µ, the death rate of adult CBBs due to factors other than predation. As such,
the stability conditions of Proposition 2, expressed in terms of thresholds B0 and Ψ0, were
rewritten isolating parameter µ, which, as observed in Table 1, had no fixed value, given
that it corresponded to the bifurcation (branch) parameter. Note that µ is present in both
thresholds and is important from the agricultural-ecological point of view, given that its
variation is supported in the modification of its value by the intervention of the coffee
grower in the plantation implementing cultural and/or chemical control. It is important to
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keep in mind in Proposition 3 the inequality Ψ0 < B0; in effect, from (8) and (9), we obtained

Ψ0 =
φω

kα(kδ + θ + ω) + kδµ + µ(θ + ω)
<

φω

µ(ω + θ)
= B0. (22)

Furthermore,

B0 = 1⇔ µ = µ∗∗ =
φω

θ + ω

Ψ0 = 1⇔ µ = µ∗ =
φω

kδ + θ + ω
− kα, (23)

and it is clear that

µ∗ =
φω

kδ + θ + ω
− kα <

φω

θ + ω
= µ∗∗.

From the perspective of population ecology, Proposition 3 shows the influence of the
value of the parameter µ, the death rate of adult CBBs due to factors other than predation,
on population dynamics. In the first case, when µ < µ∗, the equilibrium point of coexistence
E4 is local and asymptotically stable. This means that, over time, the populations of adult
CBBs, immature CBBs, and ants tend to move towards the respective components of
the equilibrium point E4 given in (7), the only one of the four equilibrium points whose
components are all different from zero; that is, µ < µ∗ is the condition that had to be
satisfied so that the three populations can coexist. Then, by increasing the value of the
parameter µ, the population dynamics are modified by the collision of the equilibrium
points or by the loss of its biological sense; however, note that the persistence equilibrium
point E3 = (0, 0, k) remains locally and asymptotically stable, which means that with time,
the populations of adult CBBs, immature CBBs, and ants tend towards the respective
components of the equilibrium point E3, leading to the extinction of the CBB population
and the persistence of the ant population, at least under the considerations of this model.
This situation translates into a good outlook for coffee growers, because the condition
µ ≥ µ∗ (the case µ = µ∗ was studied in Proposition 4) is relatively easy to guarantee, since
the value of µ∗ is low due to the presence of the carrying capacity of the predatory ant
k in the expression µ∗ = φω

kδ+θ+ω − kα. However, this very favorable situation for coffee
growers is due to predation by ants, which is a fact discussed later. All this discussion is
complemented in the corresponding section on numerical simulations.

Proposition 3. The stability of equilibrium points E1, E2, E3, and E4 of the system (4) depends on
parameter µ, the death rate of adult CBBs due to factors other than predation, in the following manner:

1. If µ < µ∗ or, equivalently, 1 < Ψ0 < B0, then equilibrium points E1, E2, and E3 are unstable,
and equilibrium point E4 is local and asymptotically stable.

2. If µ = µ∗ or, equivalently, 1 = Ψ0 < B0, then equilibrium points E1 and E2 are unstable,
and equilibrium point E4 collides with E3.

3. If µ∗ < µ < µ∗∗ or, equivalently, Ψ0 < 1 < B0, then equilibrium points E1 and E2 are
unstable, equilibrium point E3 is local and asymptotically stable, and equilibrium point E4
lacks biological sense.

4. If µ = µ∗∗ or, equivalently, Ψ0 < B0 = 1, then equilibrium point E1 is unstable, equilib-
rium point E2 collides with E1, equilibrium point E3 is local and asymptotically stable, and
equilibrium point E4 lacks biological sense.

5. If µ > µ∗∗ or, equivalently, Ψ0 < B0 < 1, then equilibrium point E1 is unstable, equilibrium
point E2 lacks biological sense, equilibrium point E3 is local and asymptotically stable, and
equilibrium point E4 lacks biological sense.

Note that in Propositions 2 and 3, no conclusions were obtained for the stability of
the equilibrium point E3 when (23) is satisfied. This is because a bifurcation occurs in
equilibrium point E3, and µ = µ∗ is the bifurcation parameter, as shown in the follow-
ing proposition:
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Proposition 4. System (4) experiences a transcritical bifurcation in equilibrium point E3 when
parameter µ goes through the bifurcation value µ = µ∗ = φω

kδ+θ+ω − kα.

Proof. The demonstration of this consisted in verifying that the conditions of the Sotomayor
theorem [27] are satisfied, specifically for case (ii). In the first place, we observed from
(18) that when (23) is satisfied, equilibrium point E3 is nonhyperbolic given that λ

(3)
3 = 0.

Moreover, the Jacobian matrix J(E3) has the following eigenvalues:

λ
(3)
1 = −r, λ

(3)
2 = −(kα + kδ + θ + µ + ω), λ

(3)
3 = 0.

In this case, v = ((kδ + θ + ω)/φ, 1, 0)T and w = ((kδ + θ + ω)/ω, 1, 0)T are the
eigenvectors associated with the null eigenvalue of matrices J(E3) and JT(E3), respectively.
Additionally, fµ(A, I, H, µ) = (−A, 0, 0)T , where f is the system’s (4) vector field; thus,

wTfµ(0, 0, k, µ∗) =

(
kδ + θ + ω

ω
, 1, 0

) 0
0
0

 = 0. (24)

Secondly, we determined that

wT[Dfµ(0, 0, k, µ∗)v
]
=

(
kδ + θ + ω

ω
, 1, 0

)
 −1 0 0

0 0 0
0 0 0


 kδ+θ+ω

φ

1
0




= − 1
φω

(kδ + θ + ω)2 6= 0. (25)

Finally, the methodology used in [27] was used to obtain the following result:

D2f(A, I, H, µ)(v, v) =

 0
− 2(kδ+θ+ω)

q
0

,

where D2f(x)(v, v) = D(Df(x)v)v. Then,

wT
[

D2f(0, 0, k, µ∗)(v, v)
]
=

(
kδ + θ + ω

ω
, 1, 0

) 0
− 2(kδ+θ+ω)

q
0


= −2(kδ + θ + ω)

q
6= 0. (26)

Upon verifying conditions (24)–(26), the proposition was demonstrated according to
Sotomayor’s theorem [27].

To summarize, Figure 3 condenses the stability results obtained in Propositions 3 and 4.
It is important to clarify that equilibrium point E4 does not disappear after colliding with
equilibrium point E3 when µ = µ∗; in reality, it is unstable but lacks biological sense
according to Proposition 3; hence, this situation was not considered in Figure 3.
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E1

E2

E3

E4

μ*

Ei

μ μ**

Figure 3. Bifurcation diagram summarizing the stability results of Propositions 3 and 4. The conti-
nuous line and the solid circle indicate that the equilibrium point is local and asymptotically stable,
while the broken line and hollow circle indicate that the equilibrium point is unstable. In this case, µ∗

and µ∗∗ are bifurcation values.

This section ends with a result that allowed us to achieve the full stability analysis
of system (4). Note in Figure 1A that on plane H = 0, equilibrium E1 is unstable and
equilibrium E2 is local and asymptotically stable. However, under certain conditions, this
situation can be modified; in fact, bifurcation occurs, as shown in Proposition (5).

In Proposition 5, system (4) on plane H = 0 is analyzed, giving rise to system (27)
and translating into a population dynamic with no ant population. On the other hand,
the trivial equilibrium point E1 = (0, 0) is the only equilibrium point of system (27) if
µ = µ∗∗ = φω

θ+ω . It is the only point of the equilibrium of system (27) with a biological sense
if µ > µ∗∗; in addition, it is local and asymptotically stable. In other words, in the absence
of a predatory ant, the condition µ ≥ µ∗∗ = φω

θ+ω must be satisfied (i.e., the parameter µ
must reach a value much higher than that exhibited in Proposition 4) in order to eradicate
the CBB, under the considerations of this model. For coffee farmers, this means having to
guarantee that control methods other than biological approaches significantly increase the
death rate of adult CBBs due to factors other than predation.

Proposition 5. On plane H = 0, system (4) experiences a transcritical bifurcation in equilibrium
point E1 when parameter µ goes through the bifurcation value µ = µ∗∗ = φω

θ+ω .

Proof. The dynamic of system (4) on plane H = 0 is described by the following reduced system:

dA
dt

= ωI − µA

dI
dt

= φA
(

1− I
q

)
−ωI − θ I,

(27)

whose equilibrium points are

E1 = (0, 0) E2 =

(
qω

µ

(
B0 − 1

B0

)
, q
(

B0 − 1
B0

))
where B0 is given by (8). It is evident that equilibrium point E2 loses its biological sense if
B0 < 1, but it is biologically admissible if B0 ≥ 1; specifically, equilibrium E2 collides with
E1 if B0 = 1.

Proceeding with the classical stability analysis, the Jacobian matrix associated with sys-
tem (27) was evaluated in equilibrium point E1, that is, J(E1), and the following eigenvalues
were obtained:
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λ
(1)
1 = −1

2

[
(θ + µ + ω) +

√
(θ − µ + ω)2 + 4φω

]
= −1

2

[
(θ + µ + ω) +

√
(θ + µ + ω)2 + 4µ(θ + ω)(B0 − 1)

]
λ
(1)
2 = −1

2

[
(θ + µ + ω)−

√
(θ − µ + ω)2 + 4φω

]
= −1

2

[
(θ + µ + ω)−

√
(θ + µ + ω)2 + 4µ(θ + ω)(B0 − 1)

]
Conducting the same process with equilibrium point E2, the eigenvalues of J(E2) were

obtained, which are given by:

λ
(2)
1 = − 1

2µ

[
µ2 + φω +

√
(µ2 − φω)2 + 4µ3(θ + ω)

]
= − 1

2µ

[
µ2 + φω +

√
(µ2 + ωφ)2 − 4µ3(θ + ω)(B0 − 1)

]
λ
(2)
2 = − 1

2µ

[
µ2 + φω−

√
(µ2 − φω)2 + 4µ3(θ + ω)

]
= − 1

2µ

[
µ2 + φω−

√
(µ2 + ωφ)2 − 4µ3(θ + ω)(B0 − 1)

]
.

From the previous results, it was concluded that if B0 6= 1, equilibrium points E1 and
E2 are hyperbolic. Furthermore:

• If B0 = φω
µ(θ+ω)

> 1 ⇔ µ < µ∗∗ = φω
θ+ω

– λ
(1)
1 < 0 and λ

(1)
2 > 0; hence, equilibrium point E1 is unstable.

– λ
(2)
1 < 0 and λ

(2)
2 < 0; hence, equilibrium point E2 is local and asymptotically stable.

• If B0 = φω
µ(θ+ω)

< 1⇔ µ > µ∗∗ = φω
θ+ω

– λ
(1)
1 < 0 and λ

(1)
2 < 0; hence, equilibrium point E1 is local and asymptotically stable.

– λ
(2)
1 < 0 and λ

(2)
2 > 0; hence, equilibrium point E2 is unstable, although without

biological sense.

Thus, if B0 = φω
µ(θ+ω)

= 1 ⇔ µ = µ∗∗ = φω
θ+ω , equilibrium point E2 collides with E1,

and this equilibrium point is no longer hyperbolic, because the eigenvalues of J(E1) are

λ
(1)
1 = −(θ + µ∗∗ + ω) = − (θ + ω)2 + φω

θ + ω
λ
(1)
2 = 0.

To show the occurrence of transcritical bifurcation, we proceeded as in the demonstration
of Proposition 4, that is, by verifying the fulfillment of the conditions of the Sotomayor’s theo-
rem [27], specifically for case (ii). In this case, v = ((θ + ω)/φ, 1)T and w = ((θ + ω)/ω, 1)T

are the eigenvectors associated with the null eigenvalue of matrices J(E1) and JT(E1), re-
spectively. Moreover, fµ(A, I, µ) = (−A, 0)T, where f is the vectorial field associated with
system (27). In this way, the necessary inputs are available to establish the following results:

wTfµ(0, 0, µ∗∗) =

(
θ + ω

ω
, 1
)(

0
0

)
= 0. (28)
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wT[Dfµ(0, 0, µ∗∗)v
]
=

(
θ + ω

ω
, 1
)[(

−1 0
0 0

)( θ+ω
φ

1

)]

= − 1
φω

(θ + ω)2 6= 0. (29)

wT
[

D2f(0, 0, µ∗∗)(v, v)
]
=

(
θ + ω

ω
, 1
)( 0
− 2(θ+ω)

q

)

= −2(θ + ω)

q
6= 0. (30)

Once conditions (28)–(30) were verified, the proposition was demonstrated.

3.3. Numerical Simulations

Seeking to illustrate the stability results obtained in Propositions 3 and 4, numerical
simulations of model (4) were carried out using the values of the parameters shown in
Table 1, which were chosen only for illustration purposes and are not necessarily realis-
tic [29]. In fact, although some of them were taken from the literature, they cannot be
assumed to be standard values, given that other research could offer different figures;
in this regard, ref. [5] indicated that considerable differences exist with respect to infor-
mation on the duration of the states that constitute the life cycle of the CBB, which is
due principally to the variation in the environmental conditions of diverse studies, most
importantly temperature.

Table 1. Values of parameters used in the simulations of model (4).

Parameter Description Value Ref.

q Carrying capacity of the immature CBBs 700
k Carrying capacity of the predatory ants q/20
r Intrinsic growth rate of predatory ants 0.01
α Predation rate of ants on adult CBBs 0.01 [30]
δ Predation rate of ants on immature CBBs 0.01 [30]
ε Biomass conversion rate through predation 0.2
θ Natural death rate of immature CBBs 0.23 [31]
µ Death rate of adult CBBs due to factors other than predation Variable
φ Oviposition rate of adult CBB females 2 [5]
ω Development rate from immature stage to adult stage 0.17 [31]

Prior to conducting the simulations, it was necessary to discuss parameter q, corre-
sponding to the carrying capacity of the immature CBBs. Regarding this parameter, some
authors hold that its real value is unavailable. For example, the authors of [5] stated that it
is impossible conduct CBB censuses, given the amount of beans existing on a tree, the high
density of trees per hectare, and the economic unfeasibility; furthermore, the authors of [4]
stated that the number of CBBs per hectare can reach millions. Bearing in mind the above,
in Table 1 the value for q, which was hypothetically assigned, is quite small in relation
to what could be the real figure but adequate for the aim of this section. It is important
to mention that for the carrying capacity of the predatory ants, a figure proportional to
parameter q was considered, specifically, a twentieth part. This was based on the premise
that in the area cultivated with coffee, the number of predatory ants would be lower than
that of CBBs, which was plausible considering that in the assumptions established, the
interactions were assumed to occur with a single species of predatory ant.

Complementarily, but with respect to adult CBBs, since a carrying capacity figure
was lacking, the upper bound of A was assumed to be in the invariance region (5) as the
maximum number of adult CBBs considered, that is, ωq/µ. However, this expression
contained µ, the parameter that, according to Proposition 3, would be modified; hence,
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µ = 0.03 was assumed, the lowest of the values considered in all the simulations. Thus,
ωq/µ = 3967.66, approximately.

The simulations started with Figure 4A, which shows the four equilibrium points. Of
these, only E4 was local and asymptotically stable, which occurred for 0.03 = µ < µ∗ = 0.1033,
that is, the three populations considered in the model (adult CBBs, immature CBBs,
and ants from a predatory species) coexisted, while no more than approximately 409.76
(3967.66× 0.1033) adult CBBs died in one day due to factors other than predation. The three
initial conditions (10, 20, 1), (3800, 700, 1), and (5, 1, 32) were set close to equilibrium points
E1, E2, and E3, respectively, to exhibit the instability of the latter, which was evidenced
from the direction of the trajectories.

Figure 4B shows only three equilibriums, because E4 collided with E3 and transferred
its stability, which occurred precisely when µ = µ∗ = 0.1033, that is, if approximately
409.86 adult CBBs died daily due to factors other than predation. In this situation, the three
populations in question stopped coexisting, because the local and asymptotic stability of
E3 = (0, 0, k) indicated that both CBB populations were extinguished, and the predatory
ant population tended to its carrying capacity.

(A) (B)

Figure 4. Phase diagram of model (4). (A) Case µ < µ∗ =
φω

kδ+θ+ω − kα with µ = 0.03, used to
obtain Ψ0 = 1.1930 and B0 = 28.33; thus, equilibrium points E1, E2, and E3 are unstable, and
equilibrium point E4 is local and asymptotically stable. (B) Case µ = µ∗ =

φω
kδ+θ+ω − kα with

µ = 0.1033, used to obtain Ψ0 = 1 and B0 = 8.2258; thus, equilibrium points E1 and E2 are unstable,
while equilibrium point E4 collides with E3, which is local and asymptotically stable. The use of
colors aims to differentiate between the equilibrium points and the initial conditions from which the
trajectories originate.

Figure 5A shows a similar picture to that of Figure 4. In fact, according to Proposition 3,
the coexistence between the species considered in model (4) stops occurring when
µ ≥ µ∗ = 0.1033, which is very good for coffee growers. In other words, for both the
CBB populations to be extinguished and the predatory ant population to tend to its car-
rying capacity, the coffee grower must guarantee that 409.86 or more adult CBBs die per
day due to factors other than predation, such as the use of alcohol-based handmade traps,
which is a form of cultural control, or the moderate use of insecticides.

Figure 5B shows only equilibrium points E1 and E3, because equilibrium E2 col-
lided with equilibrium E1 when µ = µ∗∗ = 0.85; in fact, it lost its biological sense when
µ > µ∗∗ = 0.85, but this case was not illustrated graphically. In any case, it was concluded
that if a coffee grower guaranteed that 3372.511 (3967.66× 0.85) or more adult CBBs died
per day due to factors other than predation, the extinction of the CBB populations would
be achieved, but without the need for intervention by predatory ants. In effect, it is possible
that µ ≥ µ∗∗ = φω

θ+ω , although α = δ = 0. This is a situation that must be avoided in
practice, because one of the ways of achieving said levels of µ is to resort to increasing the
use of insecticides.
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(A) (B)

Figure 5. Phase diagram of model (4). (A) Case φω
kδ+θ+ω − kα = µ∗ < µ < µ∗∗ = φω

θ+ω with µ = 0.5,
used to obtain Ψ0 = 0.5333 and B0 = 1.7; thus, equilibrium points E1 and E2 are unstable, E3 is
local and asymptotically stable, and E4 loses its biological sense. (B) Case µ = µ∗∗ =

φω
θ+ω with

µ = 0.85, used to obtain Ψ0 = 0.3778 and B0 = 1. Thus, equilibrium point E2 collides with E1,
which is unstable; E3 is local and asymptotically stable; and E4 lacks biological sense. The use of
colors aims to differentiate between the equilibrium points and the initial conditions from which the
trajectories originate.

4. Discussion

In population ecology, mathematical models are essential due to their importance
for elaborating theoretical arguments related to the factors that affect population size [32].
Transcendent evidence was provided by the predator–prey model proposed and studied
in this work, given that conditions could be formulated in terms of ecological thresholds
and the parameters that determined the coexistence of the three populations considered
(adult CBBs, immature CBBs, and ants from a predatory species) or the hypothetical
extermination of the pest. It is essential to highlight that in this model, no possibility
existed of extinguishing the population of ants, because a realistic assumption was taken
into account, and the ants—despite their predator function—were not considered to feed
exclusively on CBBs, as occurs in nature. In addition, only natural death was assumed as a
growth-inhibiting factor for this population, which was implicit in the intrinsic growth rate,
that is, parameter r. Note that by omitting predation by ants in the model, that is, making
α = δ = 0 in system (4), a decoupled model was obtained, wherein the third differential
equation, corresponding to the predatory ants, was the classical logistic equation, whose
solution with r > 0 satisfied H(t)→ k. This meant that in the long term, the predatory ants
tended towards their carrying capacity.

An important fact to highlight in the decoupled model is that the system formed by the
first two differential equations was already analyzed in Proposition 5, specifically, model
(27). In this case, the dynamics of system (4) on plane H = 0, that is, the interaction of
the CBB populations, was analyzed in the absence of a predator. In either case, without
predation (α = δ = 0) or in the absence of a predator (H = 0), the pest was extinguished if
the following condition was satisfied:

B0 =
φω

µ(θ + ω)
< 1⇔ µ > µ∗∗ =

φω

θ + ω
, (31)

because the origin would be a local and asymptotically stable equilibrium point. In other
words, the death rate of adult CBBs due to factors other than predation, denoted by µ, had
to be very high. According to the values in Table 1, the expression µ > µ∗∗ = φω

θ+ω = 0.85
meant that it was necessary to ensure the daily death, without predation, of approximately
3373 adult CBBs, from the total of 3968 individuals considered as the maximum population
of adult CBBs, a figure based on the upper bound for state variable A in the region of
invariance. Such a high death rate for adult CBBs is synonymous with ideal conditions
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for coffee growers. However, for this to be achieved, it is necessary to implement other
practices to regulate CBBs, like chemical control through the application of insecticides,
which only affect adult CBBs that are outside the bean. Nevertheless, it is known in the
coffee world that this control practice is not recommended due to the collateral damage
caused to the plantation’s flora and fauna [5]. This problem, although derived from the
analysis of a theoretical model, evidences that to counter the effects of the CBB, it is more
efficient to combine different types of controls, a fact that will be emphasized from now on.

From Proposition 3, it was determined that if condition (31) was fulfilled, equilibrium
point E1 = (0, 0, 0) would be unstable, and equilibrium point E3 = (0, 0, k) would be
local and asymptotically stable, that is, the initial conditions close to E1 would originate
trajectories that asymptotically approached E3. In fact, if condition (31) was fulfilled, any
trajectory with initial condition (A0, I0, H0) in the invariance region and H0 6= 0 would
tend asymptotically to equilibrium E3. Ecologically, this means that under condition (31),
interpreted according to the figures in the previous paragraph, no possibility would exist
for the CBB populations to prosper; however, favorable results could also be obtained with
respect to a decrease in CBBs under weaker conditions for parameter µ, due to the partici-
pation of the ants in the dynamics, fulfilling a predatory role. In effect, Propositions 2 and 3
used a condition in which the predation rates of ants affected adult CBBs and immature
CBBs, that is, α and δ, respectively. This condition is given by

Ψ0 =
φω

(kα + µ)(kδ + θ + ω)
≤ 1⇔ µ ≥ µ∗ =

φω

kδ + θ + ω
− kα (32)

which was sufficient for CBBs and predatory ant populations to not coexist, because the
coexistence equilibrium point E4 collided with equilibrium E3 or lost its biological sense;
furthermore, from the other three equilibrium points, only E3 = (0, 0, k) was local and
asymptotically stable, and, as stated previously, this meant that any trajectory with initial
condition (A0, I0, H0) in the invariance region with H0 6= 0 tended asymptotically to
equilibrium E3, as observed in Figures 4 and 5.

Using the values from Table 1 in condition (32), we obtained µ ≥ µ∗ = 0.1033,
meaning that at least 410 (3967.66× 0.1033) daily adult CBB deaths due to factors other
than predation were required for the pest to be eradicated. This figure is easier to reach for
coffee growers compared with the 3373 adult CBBs they would need to eliminate to achieve
the same results, i.e., the extinction of the entire CBB population, when not considering
the ants’ predatory action in the dynamic. Note from Table 1 that the predation rates of
ants against adult CBBs and immature CBBs were α = 0.01 and δ = 0.01, respectively, but
increasing either of these rates reduced the number of adult CBBs that had to be eliminated
to achieve the eradication target; in this regard, Table 2 shows different scenarios. Thereby, it
is clear that favoring predation rates lessened the effort that had to be put into implementing
other types of controls to reach the number of deaths of adult CBBs required to exterminate
the pest, at least theoretically. This favoring of the predation of CBBs could be achieved
by maintaining ant habitats, as suggested in [14], and/or using attractive solutions, as
reported in [33]. It is important to clarify that in a realistic mathematical model, the death
rate of adult CBBs due to factors other than predation, represented in this case by parameter
µ, cannot be zero, because adult CBBs also die of natural causes.

Table 2. Relationship between predation rates and the death rate of adult CBBs due to other factors.

α δ µ∗ Number of Adult CBB Deaths Due to Factors Other than Predation

0.01 0.01 0.1033 410
0.011 0.01 0.0831 330
0.01 0.011 0.0683 271

0.011 0.011 0.0481 191
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According to the above, realism was observed in the results obtained in this work and
their importance to coffee growing. Furthermore, we showed that, concerning controls
against the CBB, IBM is the best option, corresponding in this case to the combination of
biological control (represented by ants from species that include in their diets the consump-
tion of CBBs) and other types of control (chemical or cultural, exemplified in plantations
through the application of insecticides or handmade traps with alcoholic attractants, re-
spectively). It is essential to mention that in order to simplify the model, we assumed that
the CBBs were being attacked by only one of their natural enemies (specifically, ants, acting
as predators within the dynamics). However, this was an unrealistic consideration, because
fungi, ants, microhymenoptera, birds, nematodes, coleoptera, reptiles, and thrips can all
be biological control agents [34]. Furthermore, other predators of CBBs continue to be
discovered, such as a green lacewing species, Chrysoperla externa (Hagen) [35]. Therefore, as
future work, the proposed model could consider incorporating biological control involving
the simultaneous action of different species.
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