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Simple Summary: Phenological maps can depict the development and seasonal activities (phenology)
of invasive insects at area-wide scales, such as counties, states, or entire nations. When regularly
updated using real-time and forecast climate data, these maps may improve the timeliness of early
detection and control tactics that target specific life stages. Rapid responses to invasive insects may
increase the likelihood that populations are eradicated or controlled before they can spread or increase
in size. In this review, we provide a brief history of phenological mapping, compare three types
of maps that are commonly used for real-time decision support, and summarize climate datasets
that may be used for mapping. We also present applications of phenological maps for assessing
establishment risk, investigating pest–host interactions, and measuring climate-driven changes in
pest phenology. Next, we discuss model complexity, potential sources of model error and uncertainty,
methods for evaluating map predictions, and recommendations for future research. The development
of additional real-time climate datasets and pest models will allow expanded use of phenological
maps to help control invasive insects under current and future climates.

Abstract: Readily accessible and easily understood forecasts of the phenology of invasive insects
have the potential to support and improve strategic and tactical decisions for insect surveillance and
management. However, most phenological modeling tools developed to date are site-based, meaning
that they use data from a weather station to produce forecasts for that single site. Spatial forecasts
of phenology, or phenological maps, are more useful for decision-making at area-wide scales, such
as counties, states, or entire nations. In this review, we provide a brief history on the development
of phenological mapping technologies with a focus on degree-day models and their use as decision
support tools for invasive insect species. We compare three different types of phenological maps and
provide examples using outputs of web-based platforms that are presently available for real-time
mapping of invasive insects for the contiguous United States. Next, we summarize sources of climate
data available for real-time mapping, applications of phenological maps, strategies for balancing
model complexity and simplicity, data sources and methods for validating spatial phenology models,
and potential sources of model error and uncertainty. Lastly, we make suggestions for future research
that may improve the quality and utility of phenological maps for invasive insects.

Keywords: degree-day model; forecast; pest; monitoring; gridded climate data; spatial phenology
model

1. Introduction

The protection of agricultural and natural resources depends on the precise timing of
surveillance, monitoring, and management of invasive insect populations [1–3]. Scheduling
pest control tactics according to calendar dates and expectations of the “normal” time in
which seasonal activities (phenology) of pests have occurred in previous years is often
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ineffective because rates of insect development often vary annually due to variations in
weather [4–7]. Conversely, modeling the phenology of an insect species using information
on their life cycle requirements and climate data for the current year may increase the
precision of estimates of dates when important seasonal events occur, such as the first adult
emergence and egg hatch [4,7,8]. This information may improve the effectiveness and
cost efficiency of early detection and management programs because these programs often
target life stages that are more observable (e.g., larvae vs. adults of wood-boring beetles) or
more vulnerable to control tactics, such as pesticide treatments [3,9–13].

Degree-day models are widely used in decision support systems that predict the phe-
nology of agricultural insect pests because of their simplicity and ability to accommodate
multiple species with varying life histories [8–10,14–20]. The development and phenology
of an organism in a degree-day model is driven by heat accumulation above a lower tem-
perature threshold (and oftentimes below an upper temperature threshold) over a daily or
weekly time step (Figure 1) [4,5,7,21–24]. The lower developmental temperature is often
referred to as the base temperature. Typical examples of degree-day models that have
been used for many years include those that predict first egg hatch of the codling moth
[Cydia pomonella (L.)] in tree fruits [13,25–28], first emergence of the western cherry fruit fly
(Rhagoletis indifferens Curran) [29], and adult flight, egg hatch, and larval development of
the spongy (formerly “gypsy”) moth [Lymantria dispar (L.)] [30–34].
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Figure 1. Degree-day (DD) accumulations for 1 January to 1 September predicted by site-based and
spatial phenology models. (A) Plot of date vs. DD accumulations depicts dates of adult flight activity
at a single site. (B) An elevation map with predictions for multiple sites is shown with a key of DD
requirements for adult flight activity. (C) Phenological map of the same area as (B) shows continuous
predictions. The X and Y axis in (B,C) indicate longitude and latitude, respectively.



Insects 2024, 15, 6 3 of 26

Most degree-day models for invasive insect species use climate data for a specific site,
such as a weather station. Site-based model predictions, such as degree-day accumulations
and dates of phenological events (e.g., first adult flight), are typically displayed in tabular
and/or graphical formats (Figure 1A). This information is useful for decision support for
pest surveillance or management in small areas, such as a forest parcel, fruit orchard, or
vineyard [3,9,10,13,35]. However, site-based models are less applicable for decision support
at area-wide scales, such as large counties or states, because phenology may vary spatially
due to geographic factors (e.g., latitude, elevation, and continental effects), anthropogenic
disturbances, and biological factors, such as spatial variations in population development
and host plant availability.

Model predictions for multiple sites (e.g., in the form of number values, color-coded
pins, or other expressions) can be overlayed on a base map to visualize geographic vari-
ation in insect phenology [8]. For example, degree accumulations for each site can be
shown as text labels on an elevation map, which can be referenced to a key of degree-day
requirements for important phenological events (Figure 1B). Nonetheless, maps with dis-
continuous model predictions may be of limited use for decision-makers in areas that lack
model predictions, particularly for topographically and climatically complex areas where
phenology can vary over short distances.

This review focuses on the continuous mapping of phenology (hereafter phenological
mapping), in which the phenology of a species is modeled over an entire geographic area
(Figure 1C). The development of computer methods to relate phenological and meteoro-
logical observations to geography beginning in the 1970s significantly advanced the field
of phenological mapping [36,37]. The first known phenology maps used for integrated
pest management (IPM) decision support were for the codling moth in Michigan [38].
These SYMAP-generated maps depicted the predominant stages of the codling moth (eggs,
larvae, pupae, and adults) over two generations for all dates during the growing season.
Phenological mapping of IPM pests became more common beginning in the 1990s with
further advancements in computers and a growing number of digitized geographic datasets
and geographic information systems (GIS) software options [32,39–42].

Digital spatial climate datasets developed over the past ca. 30 years have increased the
robustness and timeliness of phenological maps. Climate data at fine-scale spatial resolution
increased the prediction accuracy because local effects (e.g., of mountains, valleys, or large
bodies of water) that might influence phenological events could be modeled [43–45]. Addi-
tionally, advancements in satellite, cellular, and internet communications allowed meteoro-
logical observations to be released within hours of being collected, enabling researchers to
produce phenology maps in near real-time to gain insight into the current development
and activities of a species [15,16,46,47]. For example, the advent of free, near real-time
(henceforth real-time for brevity) daily climate data from the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM) database [http://www.prism.oregonstate.edu
(accessed on 19 December 2023)] in 2011 was a major breakthrough for phenological map-
ping for the contiguous United States (CONUS), as PRISM data prior to this time were only
available as monthly grids that were released months after data collection [43,44].

2. Data Requirements for Degree-Day Models

Detailed reviews on data requirements and methods for degree-day modeling of
insects already exist [17,23,24,48,49] and are, therefore, only summarized here. Degree-day
models are often developed using experimentally collected data on temperature–development
relationships to estimate parameters, such as developmental rates, developmental tem-
perature thresholds, duration of life stages, and stage-specific events [17,50–52]. These
data are combined with daily temperature data, typically minimum and maximum tem-
peratures (Tmin and Tmax, respectively), to estimate degree-days using various calculation
methods [4,7,14,24,50,53]. A start date or biological event, such as the first flight, is needed
to synchronize the insect phenology model to field populations [24,54,55].

http://www.prism.oregonstate.edu
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3. Types of Phenological (Degree-Day) Maps

Below, we review and discuss some advantages and disadvantages of three types of
maps that are often produced by spatial phenology models: (1) generic degree-day maps,
(2) degree-day lookup table maps, and (3) phenological event maps. Maps produced by
web-based platforms used for real-time decision support for detecting and controlling
invasive insects for CONUS (Table 1) are used as examples.

Table 1. Presently available web-based platforms that produce generic degree-day (DD) maps, DD
lookup table maps, and/or phenological event maps for invasive insect species in the contiguous
United States. All platforms are publicly available and accessible via a web browser.

Map Types Platform Organization Website

Generic DD AgWeather Vegetable Disease
& Insect Forecasting Network UW https://agweather.cals.wisc.edu/vdifn?p=insect

(accessed on 19 December 2023).

Generic DD Enviroweather MSU https://www.enviroweather.msu.edu/
(accessed on 19 December 2023).

Generic DD USPest degree-day mapping OSU https://uspest.org/cgi-bin/usmapmaker.pl
(accessed on 19 December 2023).

DD lookup table,
phenological events DDRP OSU http://uspest.org/CAPS/

(accessed on 19 December 2023).

DD lookup table PestCAST and FOWeekly SAFARIS https://safaris.cipm.info
(accessed on 19 December 2023).

Phenological events Pheno Forecasts USA NPN https://www.usanpn.org/news/forecasts
(accessed on 19 December 2023).

UW = University of Wisconsin, MSU = Michigan State University, OSU = Oregon State University,
SAFARIS = Spatial Analytic Framework for Advanced Risk Information Systems, USA NPN = USA National
Phenology Network.

3.1. Generic Degree-Day Map

Generic degree-day maps show the current degree-day accumulations based on one or
more standard lower temperature thresholds. For example, degree-day maps at Michigan
State University’s Enviroweather [https://www.enviroweather.msu.edu (accessed on 19
December 2023)] use a standard lower temperature threshold of 50 ◦F (10 ◦C), and those at
USPest.org [https://uspest.org/wea/index.html#DDMAPS/ (accessed on 19 December
2023)] use thresholds of 32, 41, or 50 ◦F (0, 5, or 10 ◦C, respectively; Figure 2). Degree-day
maps at the University of Wisconsin’s AgWeather Vegetable Disease & Insect Forecast-
ing Network [https://agweather.cals.wisc.edu/vdifn?p=insect (accessed on 19 December
2023)] use several different species-specific thresholds.

Generic degree-day maps provide a good, general reference to show how the season
is progressing, especially when compared to averages, such as 30-year normal degree-day
maps. However, predictions of current degree-day accumulations are not matched up with
insect life stages, so they must be used with experience and care for guiding surveying and
management activities. For example, the Russo et al. [33] spongy moth egg hatch model
could be used with a generic base 3 ◦C degree-day map. Once the map shows that the egg
hatch degree-day requirement is approaching (317 degree-days), appropriate management
activities could be initiated.

Enviroweather’s degree-day models use 1 March as the start date and includes only
Michigan and Wisconsin maps, whereas models at USPest.org at https://uspest.org/
(accessed on 20 December 2023) uses 1 January as the start date and covers all of CONUS
with separate mapping of major subregions (e.g., Midwest, Northwest, Southeast) and of
states in the Pacific Northwest. Both websites are updated daily to produce maps based on
climate data for the current year and historical averages (30-year normals). An additional
map depicts the difference between historical and current year degree-day accumulations.

https://agweather.cals.wisc.edu/vdifn?p=insect
https://www.enviroweather.msu.edu/
https://uspest.org/cgi-bin/usmapmaker.pl
http://uspest.org/CAPS/
https://safaris.cipm.info
https://www.usanpn.org/news/forecasts
https://www.enviroweather.msu.edu
https://uspest.org/wea/index.html#DDMAPS/
https://agweather.cals.wisc.edu/vdifn?p=insect
https://uspest.org/
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AgWeather’s degree-day maps include either Wisconsin or the entire upper Midwest, and
they allow end users to change the default model start date for individual species.
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Figure 2. Example cumulative degree-day (DD) mapping products for Washington state generated
online at USPest.org [https://uspest.org (accessed on 19 December 2023)]. All maps depict DD
accumulation [base 41 ◦F (5 ◦C)] between 1 January and 31 August of 2020 (calculated using the
single triangle method). (A) Map generated using an older version of the program [https://uspest.
org/cgi-bin/usmapmaker.pl (accessed on 19 December 2023)] Awith a spatial resolution of 800
m. Black dots indicate the locations of weather stations used in the correction of monthly PRISM-
based cumulative DDs. (B) Map produced by the newer program [https://uspest.org/dd/mapper
(accessed on 19 December 2023)] that uses daily PRISM data with a coarser (4 km) spatial resolution
(no weather station correction required). (C) Downscaled output produced using the newer program
(800 m resolution).

The degree-day mapping program at USPest.org [https://uspest.org/cgi-bin/usmapmaker.
pl (accessed on 19 December 2023)] first appeared online in 1998 as a decision support tool
for pest management in Oregon. The mapping region was expanded to include the entire
Pacific Northwest region by 2002, and then to include CONUS at a higher spatial resolution
(800 m) by 2005 [56,57]. Degree-days based on 30-year normals (centered on 1995) are
calculated using gridded monthly temperature data from the PRISM database, while daily
real-time degree-days are calculated using data from thousands of weather stations in the
USPest.org collection of public networks. For the map creation, the degree-day mapping
program uses a ‘climatologically aided interpolation’ method (sometimes more generally
referred to as ‘delta correction’) that uses a gridded climate dataset, such as PRISM, to

https://uspest.org
https://uspest.org/cgi-bin/usmapmaker.pl
https://uspest.org/cgi-bin/usmapmaker.pl
https://uspest.org/dd/mapper
https://uspest.org/cgi-bin/usmapmaker.pl
https://uspest.org/cgi-bin/usmapmaker.pl
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improve the interpolation of a site-based dataset, such as recent station observations
(Figure 2A) [45,58]. More detail on the processes involved in the map production is
documented at https://uspest.org/wea/mapmkrdoc.html (accessed on 19 December 2023).

Constructed in 2017, a second custom online phenology mapping program at US-
Pest.org [https://uspest.org/dd/mapper (accessed on 19 December 2023)] was developed
to offer an alternative and simpler workflow that uses real-time daily PRISM temperature
grids and does not require data from multiple weather stations for correction (Figure 2B).
However, the input data has a lower resolution (4 km), which, although adequate for most
state-level maps, would be insufficient for small states or single growing regions that are to-
pographically complex, such as Hood River County, Oregon. To address this issue, this ver-
sion of the degree-day mapping program includes an option to downscale resulting degree-
day maps to 800 m (Figure 2C) using a custom distance–elevation weighted regression
algorithm, which is written in GRASS GIS and documented at https://uspest.org/dscale
(accessed on 19 December 2023). The main map making program is written in R. An
example of the R code used to calculate degree-days from PRISM daily climate data is
provided in Appendix A.

3.2. Degree-Day Lookup Table Map

Degree-day lookup table maps show the current life stages or phenological events of
an organism that correspond to specified values or ranges of accumulated degree-days for
a specified date (Figure 3). Thus, degree-day accumulations, which are depicted in generic
degree-day maps, are matched to specific points or events during the life cycle.

For insects, life cycle points (and events) could typically include the egg stage present,
egg hatch, larval stage present, pupal stage present, adult emergence and presence,
and egg laying. The simplicity of the approach and its applicability to multiple or-
ganisms has sustained its use for several years. For example, the Degree-Day, estab-
lishment Risk, and Phenological event maps (DDRP) platform [16] at USPest.org [https:
//uspest.org/CAPS (accessed on 19 December 2023)], the USA National Phenology Net-
work [https://www.usanpn.org/data/forecasts (accessed on 19 December 2023)], and
SAFARIS (Spatial Analytic Framework for Advanced Risk Information Systems) Pest-
CAST and Field Operations (FO) Weekly [https://safaris.cipm.info (accessed on 19 De-
cember 2023)] provide degree-day lookup table maps for several invasive insect species
(Table 1) [15].

Specific features that make the degree-day lookup table approach so common include:

1. A relatively straightforward workflow. The workflow of generating a degree-day
lookup table map involves using gridded daily Tmin and Tmax data to calculate degree-
day accumulations between a start date (usually 1 January, although some models use
other start dates, such as 1 March) and a specified end date. Degree-day lookup tables
are then used to associate degree-day accumulations with life stages, and output maps
depict the results with color tables and legends.

2. The use of common base thresholds for multiple species. As degree-day lookup table
maps are relatively simple and generic, there is the potential to use the same lower
temperature threshold base maps for multiple species. This contrasts with more
complex models that would require a separate base map for each case because of
the application of different parameter values, including lower and upper thresholds,
calculation methods, start dates, or diapause. The use of upper thresholds is relatively
rare, at least for degree-day lookup table maps. For example, the SAFARIS FO Weekly
maps produced by models for the old world bollworm [Helicoverpa armigera (Hübner)]
and brown marmorated stink bug [Halyomorpha halys (Stål)] are constructed using the
same 54 ◦F base maps, with no upper threshold. At least three other species in the FO
Weekly map series share the same map.

3. An ability to provide a “snapshot in time” for a single date. This allows, for example,
regular updates that provide a gradually changing view of the current or near-future
status of insect phenology. For example, degree-day lookup table maps produced by

https://uspest.org/wea/mapmkrdoc.html
https://uspest.org/dd/mapper
https://uspest.org/dscale
https://uspest.org/CAPS
https://uspest.org/CAPS
https://www.usanpn.org/data/forecasts
https://safaris.cipm.info
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DDRP every 2−3 days depict the life stage and generation of insects on the map issue
date. The USA National Phenology Network’s Pheno Forecast maps take advantage of
7-day National Digital Forecast Database (NDFD) forecasts to provide a 1-week “look
ahead” prediction for CONUS [47]. SAFARIS PestCAST maps include a 1-month
forecast using a 7-day NDFD forecast followed by three weeks of recent 20-year
average PRISM data [15].

4. Relatively simple design requirements. Degree-day lookup table maps can be de-
signed as very simple visualization tools, such as by designing legend items to display
only the stage or activity of interest (e.g., adult flight or egg hatch). Other stages
and activities can then be represented as merged entries. The practice of focusing
end users on a single target event represents a clear trade-off in reducing complexity
(of multiple life stages) for users who may need clear directions in implementing
surveillance or management actions.
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Figure 3. Degree-day lookup table map for the brown marmorated stink bug [Halyomorpha halys
(Stål)] produced as part of the Spatial Analytic Framework for Advanced Risk Information Systems
(SAFARIS) Field Operations Weekly map series [59]. The map uses a degree-day lookup table to
associate cumulative degree-days with predicted life stages present across the contiguous United
States on 22 May 2023. Thus, it provides a “snapshot in time” of phenology model predictions for a
specific date. Reproduced with permission from SAFARIS, Brown Marmorated Stink Bug (Halymorpha
halys) Phenological Stages. Published by SAFARIS, U.S. Department of Agriculture (USDA), and
North Carolina State University, 2023. Available online: https://safaris.cipm.info (accessed on 19
December 2023).

https://safaris.cipm.info
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The degree-day lookup table approach, whether used for sites or for mapping, can
be considered a “metamodel” or “abstract of a model,” which is essentially a simpli-
fied version of a more complex population model. For example, the USPest.org version
[https://uspest.org/dd/model_app?spp=gm3 (accessed on 19 December 2023)] of the
Sheehan spongy moth model [60] is actually a degree-day lookup table or “metamodel” of
results of this more complex single species model, as implemented by the University of
Wisconsin [https://agweather.cals.wisc.edu/thermal_models/spongy-moth (accessed on
19 December 2023)].

3.3. Phenological Event Map

In contrast to a degree-day lookup table map, a phenological event map depicts the
dates on which accumulating degree-days reach a value (target degree-day total) that
corresponds with a selected phenological event [16,32,40,61]. Phenological event maps may
offer the following advantages over degree-day lookup table maps to support monitoring
and surveillance programs for invasive insects:

1. Standardization. Mapping dates of phenological events allows for the standardization
of legends and color tables across multiple species and events. For example, the colors
assigned to each range of dates in the legend (e.g., 1–8 January = dark blue, 9–16
January = medium blue, etc.) can be applied to several events within a species, as well
the same or different events in other species. For example, a prototype phenological
event map developed for the codling moth in Oregon in the 1990s [62] depicts dates
of egg hatch using uniquely colored two- or three-day intervals that span 17 May to
11 June (Figure 4). An alternative approach is to depict dates relative to the map issue
date (Figure 5). For example, Pheno Forecast maps produce by the USA National
Phenology Network use a single target event, such as “adult emergence”, while earlier
events are ignored or replaced by approximations of time to the target event, such as
“adults expected in 1–2 weeks” and “declining activity”.

2. Operationally ready. Phenological event maps could be considered a more operational
(tactical) product than degree-day lookup tables because they predict dates of events
for a particular life stage, potentially up to weeks or months into the future. For exam-
ple, a decision-maker may want to start planning their trap-setting operations several
weeks before the estimated date of the first spring flight. Phenological event maps are
more straightforward to interpret than degree-day lookup table maps because they do
not require a mental conversion from stages into dates of events, which may reduce
the learning curve for their use in decision support and allow for more direct com-
munication of operational support. For example, phenological event map predictions
could be merged with a calendar scheduling of monitoring or management activities,
such as the dates of trap placement and removal. Nonetheless, operational readiness
is presumptive, as most phenological event maps, at least for most invasive species,
have not been formally tested in actual field use at this time.

3. Simpler comparisons and expression of error rates. Phenological event maps allow for
more direct comparisons of year-to-year variations of events than generic degree-day
and degree-day lookup table maps. It is a relatively simple recordkeeping and report-
ing exercise to express differences in dates in the form of days difference [12,27,28].
This approach can also be used to express errors between predicted and observed
events as discussed below (“8. Model validation”).

The prototype phenological event map developed for the codling moth in Oregon in
the 1990s [62] (Figure 4) led to the development of platforms that were partially or fully
automated and capable of generating phenological event maps for multiple insect species,
including pests and beneficials. For example, Grevstad and Coop [61] developed partially
automated phenological event maps that predicted the date at which Galerucella calmariensis
(L.), a biological control beetle for purple loosestrife (Lythrum salicaria L.), would reach the
photosensitive life stage across CONUS. Map predictions provided insight into whether

https://uspest.org/dd/model_app?spp=gm3
https://agweather.cals.wisc.edu/thermal_models/spongy-moth


Insects 2024, 15, 6 9 of 26

the beetle would complete its life cycle and successfully overwinter at a given location,
which may help guide decisions on where to release beetles.

The phenological event mapping approach of Grevstad and Coop [61] was improved
upon further research and integrated into the DDRP platform [16]. As an example, Figure 6
shows a phenological event map produced by DDRP that depicts the average date of egg
laying by the overwintering generation of the light brown apple moth [Epiphyas postvittana
(Walker)] for 2023.
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Figure 4. Phenological event map predicting dates of egg hatch for the codling moth [Cydia pomonella
(L.)] for Hood River, Oregon. The map was used to illustrate use of GIS and phenological modeling
for the first U.S. Department of Agriculture supported “Areawide IPM Project For Pome Fruit Crops
in the Western US” [62] but has not been previously published.
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Figure 5. Pheno Forecast produced by the USA National Phenology Network (USA NPN) for
emerald ash borer (Agrilus planipennis Fairmaire) [63]. The map depicts the time to first adult
emergence of the emerald ash borer in the contiguous United States relative to the map issue date
(13 April 2023). Maps are updated every two days, which allows decision-makers to stay up to
date on when this phenological event is expected. Reproduced with permission from the USA
NPN, Emerald Ash Borer Adult Forecast; published by the USA NPN, 2023. Available online:
https://www.usanpn.org/data/forecasts/EAB (accessed on 19 December 2023).
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generation of the light brown apple moth (Euphyas postvittana) for 2023 produced by DDRP (map
issue date: 13 December 2023).

https://www.usanpn.org/data/forecasts/EAB


Insects 2024, 15, 6 11 of 26

4. Applications of Phenological Maps

Phenological maps produced using real-time and forecast climate data have the po-
tential to support the early detection of invasive pests. For example, regularly updated
phenological maps on the SAFARIS platform provide decision support for the Cooperative
Agricultural Pest Survey (CAPS) program [15,16], which conducts national and statewide
surveys for exotic plant pests in the United States deemed to be of regulatory significance to
the United States Department of Agriculture (USDA) Animal and Plant Health Inspection
Service’s (APHIS) Plant Protection and Quarantine (PPQ) program [64]. SAFARIS models
are developed for species on the USDA APHIS PPQ’s “National Priority Pest List” at
http://caps.ceris.purdue.edu/approved-methods (accessed on 19 December 2023), which
is updated annually to potentially add or remove pests.

Phenological maps can support pest managers in timing treatments or other control
tactics that target certain life stages. For example, phenological maps of egg hatch and larval
development for the spongy moth were developed to support the timing of insecticidal
sprays conducted for “stop the spread” programs in the eastern United States [30–32]. Sim-
ilarly, pest models in the Pheno Forecast series were developed primarily for stakeholders
who requested decision support for timing pest treatments [47]. Phenological maps also
have the potential to help with scheduling the release of biological control agents, such as
parasitoids, which typically target specific life stages in their insect hosts.

At present, degree-day lookup table maps and phenological event maps are produced
in real time for 33 invasive insect species for CONUS (Table 2). These include 16 models
in the DDRP series, 21 models in the SAFARIS FO Weekly series, seven models in the
SAFARIS PestCast series, and five models in the Pheno Forecast series.

Of the 33 modeled species, 15 are established in CONUS, whereas the remaining 18
are at a high risk of establishing in this region (Table 2). DDRP and SAFARIS outputs
are available in both static (image) and gridded (raster) formats. Pheno Forecasts are
available in static formats and can be zoomed, queried, and panned using a visualization
tool at https://www.usanpn.org/data/visualizations (accessed on 19 December 2023).
Additionally, end users can sign up to receive email notifications that provide advanced
warnings of when events will occur in their area.

Maps that depict a pest’s potential number of generations per year (i.e., voltinism) may
help identify areas at risk of establishment because persistence in a new area requires a life
cycle completion [15,65–67]. Additionally, maps of voltinism provide insight into expected
levels of pest growth and subsequent damages to host plants for a given year [65,68,69]. Risk
maps produced by SAFARIS identify potentially suitable areas based on survival-limiting
temperatures as well as whether enough degree-days have accumulated for a species to
complete a single generation or specified developmental stages [15]. DDRP produces
generation maps but only considers climate stresses for establishment risk mapping [16].

Phenological maps may be used to assess the potential impacts of climate change
on invasive insect phenology. For example, Barker et al. [46] tested for trends in the date
of the first adult emergence of the emerald ash borer for North America and Europe
after combining model outputs for each year over a recent 20-year period. Other studies
have modeled the phenology of invasive insects under future climate change scenarios to
estimate the impacts of global warming and altered precipitation patterns on important
phenological events, potential voltinism, and population growth [42,68–72].

Mapping the extent to which critical time periods of insect life cycles coincide with
phenological windows of host plant suitability may provide insight into pest establishment
risk and outbreaks dynamics [34,73–76]. For example, Foster et al. [34] compared maps of
Moderate Resolution Imaging Spectroradiometer (MODIS)-derived leaf out with maps of
egg hatch for the spongy moth to identify areas that were most susceptible to defoliation in
a given year. Simulations of the timing, locations, and severity of outbreaks in migratory
insect pests have also included phenological mapping of pests and their host plants. For
example, generic degree-days maps for the fall armyworm [Spodoptera frugiperda (J.E.

http://caps.ceris.purdue.edu/approved-methods
https://www.usanpn.org/data/visualizations
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Smith)] and corn plants were combined with an atmospheric dispersion model to predict
the timing and direction of the multigenerational migration of this pest in CONUS [76,77].

Table 2. Invasive insect species for which spatial degree-day models are available for the contigu-
ous United States. Pest establishment status (yes/no) and map series name(s) are indicated for
each species.

Species Established Series

Alfalfa weevil [Hypera postica (Gyllenhal)] Yes FO Weekly
Asian longhorn beetle [Anoplophora glabripennis Motschulsky)] Yes DDRP, FO Weekly, PestCAST, Pheno Forecast

Asiatic rice borer (Chilo suppressalis Walker) No DDRP
Black spruce beetle [Tetropium castaneum (L.)] No FO Weekly

Brown marmorated stinkbug [Halymorpha halys (Stål)] Yes FO Weekly
Brown spruce longhorn beetle [Tetropium fuscum (F.)] No FO Weekly

Box tree moth [Cydalima perspectalis (Walker)] Yes FO Weekly, PestCAST
Cereal leaf beetle [Oulema melanopus (L.)] Yes FO Weekly

Cotton cutworm [Spodoptera litura (F.)] No DDRP, FO Weekly
Egyptian cottonworm [Spodoptera littoralis (Boisduval)] No DDRP

Emerald ash borer (Agrilus planipennis Fairmaire) Yes DDRP, FO Weekly, Pheno Forecast
European cherry fruit fly [Rhagoletis cerasi (L.)] Yes PestCAST

European grapevine moth [Lobesia botrana (Denis & Schiffermüller) No FO Weekly
False codling moth [Thaumatotibia leucotreta (Meyrick)] No DDRP

Hemlock woolly adelgid [Adelges tsugae (Annand)] Yes Pheno Forecast
Honeydew moth (Cryptoblabes gnidiella Millière) No FO Weekly, DDRP

Japanese beetle (Popillia japonica Newman) Yes FO Weekly, PestCAST
Japanese flower thrips (Thrips setosus Moulton) No FO Weekly

Japanese pine sawyer beetle (Monochamis alternatus Hope) No DDRP
Light brown apple moth [Epiphyas postvittana (Walker)] Yes FO Weekly, DDRP
Oak ambrosia beetle [Platypus quercivorus (Murayama)] No DDRP

Old world bollworm [Helicoverpa armigera (Hübner)] No DDRP, FO Weekly, PestCAST
Pine tree lappet moth [Dendrolimus pini (L.)] No DDRP

Pink bollworm [Pectinophora gossypiella (Saunders)] Yes FO Weekly
Silver Y moth [Autographa gamma (L.)] No FO Weekly, DDRP

Sirex woodwasp [Sirex noctilio (F.)] Yes FO Weekly
Small tomato borer [Neoleucinodes elegantalis (Guenée)] No DDRP

Spongy moth [Lymantria dispar (L.)] Yes FO Weekly, PestCAST, Pheno Forecast
Spotted lanternfly [Lycorma delicatula (White)] Yes FO Weekly, PestCAST

Summer fruit tortrix [Adoxophyes orana (Fischer von Rösslerstamm)] No FO Weekly
Sunn pest (Eurygaster integriceps Puton) No DDRP

Tomato leafminer [Tuta absoluta (Meyrick)] No DDRP
Winter moth [Operophtera brumata (L.)] Yes Pheno Forecast

5. Gridded Climate Data

Table 3 summarizes several gridded daily Tmin and Tmax datasets that may be suitable
for phenological mapping, although it is not an exhaustive list of all available datasets.
Specifically, we only report datasets that meet the following characteristics at the present
time: contain observations for years up to at least 2016, cover large areas (global, regional,
or country-wide scales), have a spatial resolution of at least 0.1◦ (ca. 11.1 km at the equator),
and are publicly accessible.
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Table 3. Gridded daily Tmin and Tmax datasets that may be suitable for phenological mapping. The temporal coverage, spatial resolution, developer or provider, and
URL for each data product are provided. 0.1◦ = ca. 11.1 km at the equator.

Region Product Temporal Coverage Spatial Resolution Developer URL

Global NMME Forecasts up to 12 months 0.1◦ National Oceanic and Atmospheric
Administration

https://www.cpc.ncep.noaa.gov/
products/NMME

(accessed on 19 December 2023).

CONUS PRISM 1981 to present 4 km, 800 m PRISM Climate Group, Oregon State
University

http://prism.oregonstate.edu
(accessed on 19 December 2023).

CONUS, HI, GU,
PR, AK RTMA 2019 to present 2.5 km (CONUS, HI, GU), 3 km

(AK), 1.25 km (PR)
National Oceanic and Atmospheric

Administration

https://www.nco.ncep.noaa.gov/pmb/
products/rtma

(accessed on 19 December 2023).

CONUS TopoWX 1948 to 2016 800 m University of Montana
http://www.ntsg.umt.edu/project/

topowx.php
(accessed on 19 December 2023).

CONUS METDATA 1979 to present 4 km University of Idaho
https://www.sciencebase.gov/catalog/

item/54dd5df2e4b08de9379b38d8
(accessed on 19 December 2023).

CONUS, HI, GU,
PR, VI, AK, NPOI NDFD Forecasts up to 7 days

5 km (CONUS), 2.5 km (HI,
GU), 1.25 km (PR, VI), 6 km

(AK), 10 km (NPOI)

National Oceanic and Atmospheric
Administration

https://vlab.noaa.gov/web/mdl/ndfd
(accessed on 19 December 2023).

Europe E-OBS 1950 to previous month 0.1◦
EU-FP6 project UERRA

(Uncertainties in Ensembles of
Regional ReAnalyses)

https://surfobs.climate.copernicus.eu
(accessed on 19 December 2023).

North America Daymet 1980 to previous
calendar year 1 km Oak Ridge National Laboratory,

University of Montana

http://www.ntsg.umt.edu/project/
daymet.php

(accessed on 19 December 2023).

Bangladesh, Nepal,
and Pakistan Unknown 1981 to 2016 5 km Ali et al. [78] https://doi.org/10.6084/m9.figshare.21

565149.v1 (accessed on 19 December 2023).

Brazil BR-DWGD 1980 to 2016 0.1◦ Xavier et al. [79]

https://sites.google.com/site/
alexandrecandidoxavierufes/brazilian-

daily-weather-gridded-data
(accessed on 19 December 2023).

https://www.cpc.ncep.noaa.gov/products/NMME
https://www.cpc.ncep.noaa.gov/products/NMME
http://prism.oregonstate.edu
https://www.nco.ncep.noaa.gov/pmb/products/rtma
https://www.nco.ncep.noaa.gov/pmb/products/rtma
http://www.ntsg.umt.edu/project/topowx.php
http://www.ntsg.umt.edu/project/topowx.php
https://www.sciencebase.gov/catalog/item/54dd5df2e4b08de9379b38d8
https://www.sciencebase.gov/catalog/item/54dd5df2e4b08de9379b38d8
https://vlab.noaa.gov/web/mdl/ndfd
https://surfobs.climate.copernicus.eu
http://www.ntsg.umt.edu/project/daymet.php
http://www.ntsg.umt.edu/project/daymet.php
https://doi.org/10.6084/m9.figshare.21565149.v1
https://doi.org/10.6084/m9.figshare.21565149.v1
https://sites.google.com/site/alexandrecandidoxavierufes/brazilian-daily-weather-gridded-data
https://sites.google.com/site/alexandrecandidoxavierufes/brazilian-daily-weather-gridded-data
https://sites.google.com/site/alexandrecandidoxavierufes/brazilian-daily-weather-gridded-data
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Table 3. Cont.

Region Product Temporal Coverage Spatial Resolution Developer URL

China CDAT 1999 to 2018 0.1◦ Fang et al. [80]
https://zenodo.org/record/5513811#

.YtnLNXbMIuU
(accessed on 19 December 2023).

China HRLT 1961 to 2019 0.1◦ Qin et al. [81]
https:

//doi.org/10.1594/PANGAEA.941329
(accessed on 19 December 2023).

India HRDGT 1951–2016 0.1◦ Nengzouzam et al. [82], India
Meteorological Department

https://searchworks.stanford.edu/view/
13160050 (accessed on 19 December 2023).

UK HadUK-Grid 1884 to present 1 km Met Office

https://www.metoffice.gov.uk/research/
climate/maps-and-data/data/haduk-

grid/haduk-grid
(accessed on 19 December 2023).

CONUS = contiguous United States, HI = Hawaii, GU = Guam, PR = Puerto Rico, VI = Virgin Islands, AK = Alaska, NPOI = North Pacific Ocean Islands.

https://zenodo.org/record/5513811#.YtnLNXbMIuU
https://zenodo.org/record/5513811#.YtnLNXbMIuU
https://doi.org/10.1594/PANGAEA.941329
https://doi.org/10.1594/PANGAEA.941329
https://searchworks.stanford.edu/view/13160050
https://searchworks.stanford.edu/view/13160050
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid
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Maps used for within-season decision support of invasive insects depend on having
access to real-time daily Tmin and Tmax data with spatial resolutions that are appropriate
for the needs of decision-makers. For example, phenological maps at a 4 km resolution are
generally sufficient to support pest surveillance programs for the entire CONUS [15], but
are probably not appropriate for smaller scales, such as a county or city. Real-time PRISM
data with a spatial resolution of 4 km are freely available, and higher resolution (800 m)
data can be purchased from the PRISM group. Real-time DDRP forecasts at USPest.org
are produced using PRISM data (4 km resolution) as climatic inputs, whereas monthly
updated North America Multi-Model Ensemble (NMME) 7-month forecasts or recent
10-year average PRISM data (calculated on a bimonthly basis) are used to predict pest
phenology up to the end of the year [16].

Phenological mapping for within-season decision support in areas outside of the
United States is typically hindered by a lack of real-time gridded daily Tmin and Tmax
data (Table 3). However, historical datasets may be used for model development and
validation, such as those for Europe [83], continental North America and Hawaii [84,85],
Brazil [79,86], China [80,81], India [82], and Bangladesh, Nepal, and Pakistan [78]. For
example, the validation of DDRP models for the emerald ash borer and the small tomato
borer [Neoleucinodes elegantalis (Guenée)] used E-OBS and BR-DWGD data for Brazil and
Europe, respectively [16,46].

Some phenological mapping studies overcame an absence of readily available grid-
ded daily climate data by interpolating weather station data over a landscape of interest
using custom software [31,40,41,87–90]. For example, the GEO-BUG platform offered four
automated interpolation methods to map the date at which a pest insect species reached
a specified life stage in the United Kingdom [41,88]. Interpolation methods commonly
applied to Tmin and Tmax estimates include those based on distance analyses (e.g., inverse
distance weighted and spline interpolation) or geostatistics (e.g., kriging and multiple
regression) [33,58,88–91]. To our knowledge, however, there are no presently available
platforms that use interpolation methods to produce real-time phenological maps for
insect pests.

6. Potential Sources of Error and Uncertainty

Common sources of error in insect phenology models include natural population vari-
ability, microclimatic factors, anthropogenic disturbances (e.g., land use patterns), and biotic
factors (e.g., migration, host quality, competition, predation, and disease) [17,23,40,48,52,87,88].
We refer readers to Chuine and Régnière [23] and Coop and Barker [17] for detailed reviews
of this topic. Additionally, most invasive insect species are poorly studied in terms of their
developmental requirements [19]. Uncertainty surrounding model parameter values could
be communicated by combining or comparing outputs of multiple models for a species or
via a sensitivity analysis [15,90,92].

Phenology models should somehow, but seldom do, include estimates of monitoring
or sampling errors [93]. The best that can often be accomplished is to rely on observations
collected by researchers or that have been verified by multiple people, such as “Research
Grade” observations in the iNaturalist database [https://www.inaturalist.org (accessed
on 19 December 2023)]. However, there is no guarantee that sampling errors can be
minimized even when using published or verified observations [94]. For example, many
insect monitoring studies report weekly trapping data (i.e., the trap is visited once per
week), and therefore precise dates of phenological events are unknown. The observation
data could be assigned as the date of data collection or the mid-date of the week-long
interval; however, both approaches may result in imprecision of up to ±7 days. A 7-day
error in phenological predictions may be considered adequate for most management
models [90].

It should be noted, however, that model and sampling errors are often lower than
errors resulting from intrinsic population variability. Many species populations, for reasons
including selection pressures due to climate variability in time and space, are spread

https://www.inaturalist.org
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widely phenologically [23,95]. Sometimes, this is referred to as seasonal plasticity [96].
Many exhibit bimodal or trimodal behaviors in order to “hedge their bets” in uncertain
environments. This phenological heterogeneity can result in wide errors and uncertainties
in sampling and unexpected discrepancies in model predictions. Non-gaussian population
spreads, such as bimodal flight distributions, are best described through larger sampling
efforts and through the full characterization of such distributions, rather than using means
and standard deviations for such populations. Even then, small outlier percentages in
populations that happen to get sampled can sometimes be used to discredit or disprove
otherwise valid models.

7. Increasing Model Realism While Maintaining Simplicity

A common question in phenology modeling discussions is whether to use a simple
model that is adaptable to multiple species versus a more complex, single-species model
that can potentially deliver greater realism and accuracy [17,49,50,52,55]. Our current
assessment is that using simple linear degree-day accumulations to display either develop-
mental stages (via lookup table) or dates of phenological events are often adequate in their
predictive accuracy, while still simple enough to be readily adapted for dozens, or even
hundreds, of species. For example, validation analyses of certain models used by the DDRP,
Pheno Forecast, and SAFARIS platforms have revealed evidence of overall good predictive
performances [15,16,46,47]. To our knowledge, degree-day maps based upon nonlinear
temperature response rates have not reached implementation for tactical decision support,
despite the trend of using nonlinear equations to model the temperature–development
response of insects [24,49,52,67,97].

A population-based approach to phenological mapping may improve predictive
accuracy because it helps account for developmental variation that naturally occurs within
insect populations [98–103]. DDRP is a population modeling platform [16] that is most
similar to the still relevant and still in use “grandfather” of phenology modeling platforms,
Predictive Extension Timing Estimator (PETE) [8,27]. Both platforms use a cohort approach
to population modeling that involves tracking the development of population cohorts
through all life stages over the year using a daily time step. Cohorts may start development
at different times, which produces a distribution of times in which they transition into a
new life stage (e.g., egg to larva) or undergo a particular phenological event [99,103]. One
shortcoming of the PETE models is that they allow for only a single set of developmental
thresholds for all life stages, plus an additional separate temperature threshold parameter
for mating and oviposition. Conversely, DDRP allows for separate thresholds for each life
stage, although most models developed to date have not taken advantage of this feature.

For many, if not most, insects in temperate climates, the use of single-factor degree-day
models (i.e., temperature) have proven adequate as evidenced by their successful imple-
mentation for many agricultural pest species [9,10,15,20]. However, multifactor models that
include additional driving variables, such as chilling, day length, and water availability,
may be appropriate for certain species [48,61,70,73,92,104–109]. In seasonal environments,
insects may enter and/or exit diapause in response to day length (photoperiod) to align their
life cycles with favorable environmental conditions and resources [102,110–112]. Moisture
may influence insect development by acting as a stimulus for diapause, modulator of devel-
opmental or reproductive rates, or behavioral cue for vital seasonal events [108,109,112,113].
For some species, a winter chill requirement may be required prior to degree-day driven
development [110].

As an example, the brown marmorated stink bug, an important pest that has re-
cently invaded and spread across the United States, has a reproductive diapause that
terminates in mid-spring in response to photoperiod [114]. Modeling of this pest would
likely be improved by using a two-phases approach in which photoperiod-cued diapause
termination is followed by a degree-day response phase for spring and summer develop-
ment [106,107]. A similar approach may be appropriate for other invasive insects, such as
the Colorado potato beetle [Leptinotarsa decemlineata (Say)] [70], box tree moth [Cydalima
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perspectalis (Walker)] [92], European cherry fruit fly [Rhagoletis cerasi (L.)] [115], spotted-
wing drosophila [Drosophila suzukii (Matsumura)] [116], and Asian tiger mosquito [Aedes
albopictus (Skuse)] [117].

Few studies to date have included non-temperature factors in spatial phenology
models for insects. However, spatial models for the biological control insects, G. calmariensis
and Japanese knotweed psyllid [Aphalara itadori (Shinji)], incorporated photoperiodism
to more accurately model voltinism in these species, both of which have photoperiodic-
sensitive life stages that enter diapause in response to shortening day lengths [61,105]. These
models calculated the day length for each latitude and day of year using the method of
Forsythe et al. [118]. For certain insect pests, the inclusion of precipitation data in site-based
phenology models has improved predictive accuracy of the timing of management-relevant
phenological events, such as the first adult emergence of the saddle gall midge Haplodiplosis
marginata (von Roser) [104] and flight activities of pest aphids [72]. However, to our
knowledge, moisture factors have not yet been included in spatial phenology models for
insects, despite the availability of gridded daily precipitation data in certain data products
(Table 3).

Models that account for geographic variation in life history traits may be necessary to
accurately predict phenology of insects in new environments [23,52,105,119]. For example,
Grevstad et al. [105] used different values for the critical day length parameter in spa-
tialized phenology models for the Japanese knotweed psyllid owing to genetically based
differences in this species’ critical photoperiod in the native range. However, defining
optimal parameter values would create the need for laboratory studies of insects sampled
from across the species’ distribution, which may be infeasible. Even if these data were
available for the entire known distribution, they may not be useful for newly introduced
species that have unknown geographic origins [61]. Therefore, it is most prudent, with this
lack of full understanding of the life cycle, to model what is understood and simply state
the model’s shortcomings so that they can be considered by managers.

Accurately mapping the phenology of migratory species may require the development
of custom models that include multiple abiotic and biotic variables [76,77]. Real-time
phenological mapping platforms for CONUS include models for several migratory species,
including the old world bollworm [(Helicoverpa armigera (Hübner)], silver Y moth [Auto-
grapha gamma (L.)], and Sunn pest (Eurygaster integriceps Puton) (Table 2). Assessing the
predictive accuracy of these models for CONUS is not yet possible because the pests are not
established in this region. However, incorporating datasets, such as atmospheric dispersion
models and host plant phenology, into models for migratory insects could potentially
improve the predictive accuracy [76,77].

8. Model Validation

Errors in predictions of phenology models should be estimated when validation
data are available [20,55,90]. Model overprediction, in which events or life stages are
predicted later than observed dates, is typically more problematic than underprediction
because decision-makers may miss the best opportunity to detect or manage populations.
Communicating potential model errors to end users of phenological maps may allow
them to adjust the timing of their surveillance and management activities accordingly [55].
Similarly, researchers should clearly communicate that a model is presumptive if validation
analyses are infeasible or insufficient owing to an absence or paucity of data. In general,
clear communication of potential errors and uncertainties in models is important for
creating and maintaining end users’ trust and increasing the likelihood that they use
forecasts for decision support [3,11,94].

Phenology model validation requires a set of observations not used in model develop-
ment. Observations could be resampled using jackknifing or cross-validation methods, split
into separate sets (e.g., 75% for development, 25% for validation), or originate from different
years or areas [31,87,90,120,121]. Potential sources of data for model validation include
peer-reviewed literature, reports, graduate theses, unpublished monitoring studies, and on-
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line databases such as iNaturalist, Nature’s Notebook [https://www.usanpn.org/natures_
notebook (accessed on 19 December 2023)], and the National Agricultural Pest Information
System [https://cmr.earthdata.nasa.gov/search/concepts/C1214608223-SCIOPS (accessed
on 19 December 2023)] [15,16,46,47]. Caution should be taken when using citizen science
collected data (e.g., from iNaturalist) because they may contain errors, such as species
misidentifications or incorrect dates and locations [93,94].

Validating a spatial phenology involves extracting gridded model predictions for each
georeferenced observation using geographic information system (GIS) software. Ideally,
the geographic precision of a phenological observation should be equal to or greater than
the spatial resolution of climatic datasets used for modeling. For CONUS, this would
correspond to spatial resolutions of 800 m to 4 km depending on the climatic dataset
(Table 3). If observations lack coordinate data but geographic information, such as a city
name, is known, then one could calculate the average of predicted values within the area
delineated by geospatial data, such as cartographic boundaries of cities [16,46]. However,
this solution is likely problematic for areas where phenology may vary substantially over
short distances, such as a large or topographically complex county.

The statistics for phenological model validation, keeping in line with the principle
of parsimony, should be done using readily understood terms. Summary statistics may
include the mean difference between predicted and observed dates (day of year, DOY),
along with variability estimates, such as 95% confidence intervals, to provide an estimate
of the overall error including the bias [55,87,90]. The bias may be estimated as the average
amount by which predicted DOYs are greater than observed DOYs, whereas the mean
absolute error (i.e., the average absolute difference) can estimate the expected number of
days a given prediction might be in error.

Model performance may also be evaluated using statistical tests, such as confusion
matrices or equivalence tests [46,47,90]. A confusion matrix indicates the rate of true
versus false positives and true versus false negatives, which allows model sensitivity,
specificity, and accuracy of model predictions to be calculated. For example, confusion
matrices were used to evaluate Pheno Forecast maps for the hemlock wooly adelgid,
Adelges tsugae (Annand), in CONUS [47]. Conversely, an equivalence test may involve
testing the null hypothesis that the means of predicted and observed DOYs differ by a
specified equivalence interval (i.e., number of days). This method was used to evaluate
predictions of adult activity produced by the DDRP model for the emerald ash borer [46]. A
t-test (comparison of means), F-test (comparison of standard deviation), and Kolmogorov–
Smirnov test (computing the maximum distance between the cumulative distribution of
two samples) are other potential options for phenology model validation [90].

9. Recommendations for Future Research

Usability tests that allow end users to compare and evaluate different types and
formats of phenological maps for invasive insects may help increase map uptake for
decision support [47]. For example, usability tests are needed to assess preferences for
degree-day lookup table maps vs. phenological event maps, which are relatively new and
untested with regard to end user acceptance. As the emerald ash borer adult emergence
and spongy moth egg hatch is of operational interest in areas of current expansion, these
might serve as potential target subject areas to perform these tests. Also, the release of
open-source code for phenological mapping platforms, as has been done with DDRP, may
help increase the development and deployment of phenological event maps, which should
further enhance end user acceptance.

The development and delivery of real-time gridded daily Tmin and Tmax datasets
for regions beyond CONUS is essential for expanding the use of phenological maps for
within-season decision support. The RTMA/UTMA products from the National Oceanic
and Atmospheric Administration (NOAA) include predictions for the entire United States,
Puerto Rico, and Guam, and they have acceptable temperature error rates for some needs,
such as for air traffic control [122]. An area needing further investigation is whether quasi-

https://www.usanpn.org/natures_notebook
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global temperature datasets, such as the ERA5-Land hourly temperature dataset [123], are
sufficient for phenological mapping, at least for historical time periods, owing to delays in
data releases (e.g., a 2–3 months for ERA5-Land data).

The number of models developed for real-time phenological mapping is extremely low
(Table 2) when considering that over 10,000 invasive alien insect species exist worldwide,
many of which are intercepted in ports of entry each year [124–127]. Future modeling work
could focus on species that represent the highest risk to agriculture and natural resources,
such as those on the USDA APHIS PPQ’s “National Priority Pest List” for the United States
[https://approvedmethods.ceris.purdue.edu (accessed on 20 December 2023)]. Spatial
phenology models for pests that are small, cryptic, or occur in cryptic habitats, such
as underground or inside of trees during parts of their life cycle, may be particularly
useful for early detection efforts [46,47]. Species with known temperature thresholds and
developmental requirements could also be targeted for model development [19,48].

The development of multifactor phenology modeling platforms will help increase the
number of insect pests that may be accurately modeled. For example, the incorporation of
precipitation or soil moisture factors in the phenology modeling process could potentially
improve the predictive accuracy for species that use soil moisture as a cue for reproduction
or diapause termination [108,109,128]. Real-time gridded daily precipitation data for
CONUS are available in the PRISM database. Additionally, hourly estimates of soil moisture
in the National Aeronautics and Space Administration’s (NASA) Soil Moisture Active
Passive satellite product series [https://smap.jpl.nasa.gov/data (accessed on 20 December
2023)] may be useful for modeling moisture-sensitive insect species. Predicting host
plant phenology in real-time will be facilitated by the development of remotely sensed
vegetation phenology datasets at high spatial resolutions, such as those derived from
real-time MODIS data [https://www.earthdata.nasa.gov/learn/find-data/near-real-time/
modis (accessed on 20 December 2023)] [129,130]. Future work could also explore the
possibility of including atmospheric dispersion models, such as NOAA’s Hybrid Single-
Particle Lagrangian Integrated Trajectory model (HYSPLIT) in models for migratory insect
pests [76,77,131].

Phenological maps will be important for assessing the impacts of climate change on
pest phenology. Warming temperatures, an increase in frequency and severity of extreme
weather events (e.g., heat waves and droughts), and altered precipitation patterns under
global warming are expected to impact pest phenology as well as phenological synchrony
between pests and their host plants [23,34,69,72,74,132–134]. Shorter, warmer winters in
many regions will likely promote overwintering survival and increase developmental rates
of invasive insects, allowing them to emerge earlier and attain higher densities over a
longer growing season [42,68,69,71,92,117]. For migratory insects, a trend towards earlier
flight activity is expected to change the timing and severity of pest outbreaks [72,135].
Estimating temporal trends in voltinism and phenological events of pests and their host
plants may help identify regions at greatest risk of being invaded or experiencing high pest
pressure in the future [34,42,46,68–71,135]. Additionally, this information may help with
developing long-term surveillance and management strategies [15].

10. Conclusions

Phenological maps can provide insight into the development and seasonal activities
of invasive insects at area-wide scales, such as counties, states, or entire nations. Several
web-based platforms offer generic degree-day maps, degree-day lookup table maps, and
phenological event maps to support within-season decision-making for the detection
and control of invasive insects for CONUS. With the development of real-time gridded
climate datasets for more regions of the world, phenological maps could become more
commonly used for planning pest surveillance and management activities. Phenological
maps may also be used to assess establishment risk and to investigate pest–host interactions
and climate-driven changes in pest phenology. We encourage modelers to quantify and

https://approvedmethods.ceris.purdue.edu
https://smap.jpl.nasa.gov/data
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communicate model error and uncertainty whenever possible and to engage with map end
users to improve and promote products.
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Appendix A. Minimum R Code to Calculate Degree-Days from PRISM Daily
Climate Data

#Load the required standard R libraries
require(sp)
require(rgdal)
require(raster)

#Set the lower developmental threshold (LDT) in Celsius for this group of species
LDT <- 10

#Search and load PRISM daily temperature grids that user has downloaded.pattern =
paste("(PRISM_tmin_)(.*)(_bil.bil)$", sep="")
files <- list.files(pattern=pattern, all.files=FALSE, full.names=TRUE)
numlist <- vector()
for (file in files) {

num <- strsplit(file,split="_")[[1]][5]
numlist <- c(numlist,num)
}

#Order by date starting with first downloaded date. Assume starting date Jan 01
sortedlist <- sort(numlist)
filelist <- vector()

#Read in first raster as a template and initialize tracking rasters as 0 using the template
template <- raster(files[1])
template[!is.na(template)] <- 0
dd_today, DDaccum <- template

#Read in data, calculate and accumulate degree-days
for (d in sortedlist) {

#Read in that day’s PRISM raster files
pattern <- paste("(PRISM_tmin_)(.*)(",d,")(_bil.bil)$", sep="")
temp <- list.files(pattern=pattern,all.files=FALSE, full.names=TRUE)
tmin <- raster(temp)
pattern <- paste("(PRISM_tmax_)(.*)(",d,")(_bil.bil)$", sep="")
temp <- list.files(pattern=pattern,all.files=FALSE, full.names=TRUE)
tmax <- raster(temp)
rm(pattern,temp)
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#Use simple average DDs, more complex formulas are available and preferable
dd_today <- ((tmax+tmin/2) - LDT)
DDaccum <- DDaccum + dd_today

}
#Note: DDaccum is current cumulative DDs for day d, can be saved to a data stack and
used for
#DD lookup maps for species with same LDT, and can be used to derive pest event maps
by saving
#the date of each data cell equal to or greater than the pest event DD amount.
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