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Simple Summary: Haemoproteus parasites are one of the most studied avian blood parasites; however,
their natural vectors, Culicoides biting midges, have been identified for only a small portion of them.
The main reason for that might be due to the existence of a few research groups working with an
integrative approach that allows not only the identification of parasite DNA in the insects, but also
confirms the presence of the parasite infective stage (sporozoites) using microscopy. In this study, we
aimed to identify the natural vectors of Haemoproteus parasites and to determine their prevalence
in Culicoides biting midges in four different localities in Lithuania. Almost 2000 parous Culicoides
females belonging to 11 species previously registered in the country were processed. The most
abundant one was C. pictipennis. Parasite DNA was found in 7.9% of the analyzed biting midges, and
sporozoites were present in almost 30% of these insects. The Botanical Garden was the locality with
the highest abundance of biting midges and parasite species, as well as the place with the highest
number of biting midges containing sporozoites. One new Haemoproteus vector (C. reconditus) was
confirmed, and 12 new interactions between Haemoproteus parasite lineages and Culicoides biting
midges of different species were identified. This study helps to understand the relationship between
Haemoproteus parasites and Culicoides biting midges in the wild.

Abstract: Haemoproteus parasites are the most diverse among Haemosporida. However, their natural
vectors (Culicoides) are still poorly investigated and were identified for only a few parasite species
and lineages. The application of an integrative approach (insect dissection, microscopic analysis,
and molecular-based methods) is necessary in these studies, which have been carried out by a
few research groups, mainly in Europe. The aim of this study was (i) to determine the Culicoides
species that are naturally infected by Haemoproteus parasites, and which can support its complete
sporogonic development, and (ii) to investigate the prevalence of Culicoides species and Haemoproteus
parasite lineages in different study sites. In total, 1953 parous Culicoides females, from 11 species,
were collected in four different localities in Lithuania and were dissected and analyzed using an
integrative approach. The most abundant was C. pictipennis (30.3%). Parasite DNA was found in
7.9% of all investigated Culicoides, of which ~30% had sporozoites in their salivary glands, confirming
their vector competence for these parasites. The Botanical Garden presented the highest number of
Culicoides parous females, Culicoides species, and parasite lineages, as well as the highest positivity
for sporozoites. Culicoides reconditus was confirmed as a natural vector of Haemoproteus parasites,
sporozoites of six Haemoproteus lineages were reported for the first time, and 12 new interactions
between Haemoproteus parasite lineages and Culicoides species were identified. Haemoproteus parasites
seem to be transmitted by a high number of Culicoides species, with C. kibunensis, C. pictipennis, and
C. segnis being the most important vectors.
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1. Introduction

The genus Haemoproteus is the most diverse among the order Haemosporida, with
Culicoides transmitting Haemoproteus (Parahaemoproteus) spp. and Hippoboscidae flies trans-
mitting Haemoproteus (Haemoproteus) spp. [1–5]. This high parasite diversity is confirmed
by the 177 species described [2], and the 2019 genetic lineages (the haplotypes of a frag-
ment of the cytochrome b gene (cytb) of the parasite) reported in the MalAvi database
(http://130.235.244.92/Malavi/, accessed on 20 November 2023) [6]. However, studies
addressing the capacity of naturally infected Culicoides species to support the sporogony
of Haemoproteus parasite (evidenced by the presence of sporozoites in salivary glands [7])
remain scarce. In fact, the lack of information regarding the natural vectors of other Haemo-
sporida parasites (Plasmodium and Leucocytozoon) is very similar [8,9]. The main reason
being the necessity to use an integrative approach, which consists of a combination of
classical parasitology (with insect dissection and microscopic examination to confirm the
presence of sporozoites) with molecular methods (to obtain the parasite DNA and confirm
its species and lineage) [9]. Until now, such an approach was only used by a few research
groups in the haemosporidian field, mainly in Europe [8,10–14].

Currently, only nine Haemoproteus species (5.1% of the described ones) and 11 lineages
(0.5% of the described ones) have had their natural vectors identified [10–14]. This repre-
sents a small proportion of the existing parasite species and lineages and shows the huge
gap that needs to be filled in the Haemoproteus–Culicoides system.

In wild-caught and naturally infected Culicoides, from the 1347 described existing
species [15], only five were confirmed to support the sporogonic development of Haemo-
proteus, all of them in Europe, namely C. pictipennis, C. festivipennis, C. segnis, C. kibunensis,
and C. punctatus [10–14]. Previous studies have experimentally addressed this issue and
showed that 11 other Culicoides species can support the sporogonic development of Haemo-
proteus [16]. However, many of these experimentally infected Culicoides are considered
to be mainly mammalophilic [17–20], which means that their role as natural vectors of
Haemoproteus parasites is limited and there is a small chance of the parasite to be transmitted
to the next avian host by them, even though they occasionally feed on birds [18,19,21–25].

A recent study has pointed out a bigger number of interactions between certain Culi-
coides species and Haemoproteus lineages [11], e.g., C. circumscriptus has been more frequently
reported to be PCR-positive to Haemoproteus lineages found in Accipitridae (hawks), Corvi-
dae (crows and ravens), and Strigidae (owls) [26–29]. This might be explained by the
fact that these vectors and bird species live closely to each other, at 20–26 m above the
ground [30]. Similarly, C. kibunensis was shown to have a high number of interactions with
parasite lineages that are commonly found in Turdidae (thrushes) birds, which live mainly
at ground level [31]. This can also indicate that the density of these insects can differ at
different heights [32,33], but as with many other topics related to these tiny insects, there is
insufficient information.

That said, the objectives of this study are (i) to determine Culicoides species that
are naturally infected by Haemoproteus, and which can support its complete sporogonic
development, and (ii) to investigate the abundance of Culicoides species and Haemoproteus
lineages in different study sites.

2. Materials and Methods
2.1. Collection of Biting Midges

Based on soil humidity, the presence of waterbodies, organically rich substrates, closed
woods, and lack of wind, four trapping localities were selected for this study in Lithua-
nia. They were the Vilnius University Botanical Garden, henceforward the Botanical Gar-

http://130.235.244.92/Malavi/


Insects 2024, 15, 157 3 of 19

den, (54◦44′12.5′′ N 25◦24′16.4′′ E), Puvočiai (54◦06′52.2′′ N 24◦18′17.6′′ E) and Brinkiškės
(54◦79′88.4′′ N 25◦06′03.7′′ E) villages, and the Verkiai Regional Park (54◦45′00′′ N, 25◦17′00′′ E)
(Figure 1).
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Figure 1. Study sites in Lithuania and trapping location marked with a white spot. Puvočiai village
(a,e), Brinkiškės village (b), Verkiai Regional Park (c), and Vilnius University Botanical Garden (d).

In the Botanical Garden, trapping sites were chosen based on the presence of water
bodies, small areas with relatively close deciduous woods, and the presence of blood-
sucking insects that were indicated by the staff (Figure 1d). Meanwhile, Puvočiai village
trapping sites included pine tree forest areas; domestic chicken and sheep farming areas; a
trapping spot near the Merkys river; an artificial dug water pond for firefighting; and a spot
near a camping site (Figure 1a,e). In Brinkiškės village, biting midges were collected near
an artificially dug ditch that has been silted up over several years (Figure 1b). Finally, at
the Verkiai Regional Park, located in Vilnius city limits, the traps were set close to swampy
natural puddles (Figure 1c).

Culicoides were collected between June and September 2022, UV light traps (BG-Pro
All-In-One Biogents AG) were placed between 1.5 and 2 m from the ground. The trapping
effort and period varied for each location. Biting midges were collected in the Botanical
Garden between the middle of June and the middle of September (seven nights); in Puvočiai
village in the beginning of June (three nights); in Brinkiškės village between the middle
of June and the middle of July (two nights); and in the Verkiai Regional Park between the
beginning of June and the middle of July (three nights).

Trapping was carried out between 6 and 7 h before sunset and between 4 and 5 h
after sunrise. Culicoides were collected into a specimen jar filled with water and a drop of
liquid soap (to break the water’s natural surface tension) and transported to the laboratory
on the same day for processing. Using a binocular stereomicroscope, parous Culicoides
females with burgundy pigment (Figure 2b) in their abdomen were separated and dissected
(procedure is explained below). The presence of the burgundy pigment indicates that at
least one gonotrophic cycle occurred, which means that they had at least one blood meal–for
the majority of species–and increases the chances to yield Haemoproteus sporozoites [34].
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Figure 2. Culicoides pictipennis females: engorged (a), parous (b), and nulliparous (c). White ar-
row shows the burgundy pigment in the abdomen indicating that at least one gonotrophic cycle
occurred (b). Black arrow shows blood meal in the abdomen (a).

2.2. Biting Midges Dissection, Identification, and Microscopic Examination of Salivary
Gland Preparations

The dissection procedure consisted of placing the insect in a drop of 0.9% saline
solution on a glass slide, removing the head and wings, transferring them to a new glass
slide into a drop of Euparal, and covering them with a cover slide. These permanent
preparations were dried in an incubator at 60 ◦C for one week and were used for the
morphological identification of Culicoides, based on the available literature [35–37]. Salivary
glands preparations were done by gently crushing the Culicoides thorax, preparing a small
thin smear. To avoid DNA contamination, needles used for dissection were disinfected in
fire after each dissection. These preparations were air-dried at room temperature, fixed
with absolute methanol, and stained for 1 h with a 4% Giemsa solution [7]. Remnants of
dissected Culicoides were transferred to a tube containing 96% ethanol and used for further
molecular (PCR-based) analysis which is described below.

Only the salivary gland preparations of PCR-positive insects were microscopically
examined. This was carried out using an Olympus BX-43 light microscope equipped
(Olympus, Tokyo, Japan) with an Olympus DP12 digital camera and the image software
Olympus DP-SOFT v.3.2 (Olympus, Tokyo, Japan). Each salivary gland preparation was en-
tirely examined at high magnification (1000×). Representative preparations of sporozoites
(NS49742-NS49757) were deposited at the Nature Research Centre, Vilnius, Lithuania.

2.3. DNA Extraction, PCR, and Sequencing Analysis

The insect remnants were used for the total DNA extraction, following an ammonium
acetate extraction protocol [38]. Haemoproteus/Plasmodium DNA was amplified using a
nested PCR protocol that amplifies a fragment of ~480 bp of the cytb gene [39,40]. One
negative (nuclease-free water) and one positive (a sample with a single infection of Plas-
modium relictum cytb lineage GRW4) control was included in each run. Successful DNA
amplification was evaluated by electrophoresis using 2 µL of PCR product in a 2% agarose
gel. Samples considered positive were the ones presenting a band with the same size
as the targeted fragment. All PCR-positive samples were precipitated with ammonium
acetate [38] and sequenced in both directions with corresponding primers using a Big Dye
Terminator V3.1 Cycle Sequencing Kit and ABI PRISMTM 3100 capillary sequencing robot
(Applied Biosystems, Foster City, CA, USA).

Geneious Prime 2023.2.1 (https://www.geneious.com) was used to analyze the ob-
tained electropherograms of sequences and to create a contig sequence. The presence of
two or more peaks in the same position was considered as a mixed infection. Lastly, the
contigs were compared with other sequences from the MalAvi database [6] using BLAST
(Basic Local Alignment Search Tool). Lineage identities were considered when the obtained

https://www.geneious.com
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contig had 100% similarity with existing lineages. If at least one base pair of difference
was seen in obtained sequences, they were considered as new lineages and named fol-
lowing MalAvi guidelines [6]. All obtained sequences were deposited in both GenBank
(PP003069-PP003214) and MalAvi databases.

The morphological identification of Culicoides species was confirmed by the amplifica-
tion of a ~680 bp fragment of the cytochrome c oxidase subunit I (COI) of the mitochondrial
DNA of insects [41]. The PCR products obtained were sequenced from the 3′ end. Electro-
pherogram analyses were conducted as mentioned above for the parasite DNA sequences
and compared with other deposited sequences in the GenBank database using BLAST.
Identifications were considered only if the sequence presented a similarity of ≥99%. The
morphological identification was consistent with the PCR-based ones and all the sequences
were deposited in GenBank (accession numbers OR995548-OR995567).

2.4. Statistical and Diversity Analyses

The determination of the prevalence of Culicoides species on each study site, PCR
positive, microscopy positive samples, and parasite lineages were calculated using IBM
SPSS Statistical v29.0.1.0 [42]. Due to differences in our sampling effort, rarefaction curve
analyses were conducted with R v4.3.2 [43] using the PAST v4.16 package [44] with 95%
confidence intervals (CIs), and estimated sample coverage (R package SpadeR v0.1.1, [45])
was calculated to determine if diversity indices could be compared among sites. Estimated
sample coverage (C) is an objective measure of sample completeness [45].

In order to characterize the degree of heterogeneity among species incidence or detec-
tion probabilities, we estimated the coefficient of variation (CV) with R v4.3.2 [43] package
SpadeR v0.1.1, [45]. If the CV is zero, then all the species in an assemblage have the same
probability to be detected. On the other hand, when the CV increases, it indicates that the
probability of species to be detected varies between species.

Species richness (Sest) along with their 84% confidence intervals (equivalent to statisti-
cal tests at α < 0.05 level [46]) were estimated with R v4.3.2 [43] package iNEXT v3.0.0 [47].
Therefore, species richness among assemblages is significantly different when their 84% CIs
do not overlap. The exponential of Shannon index (eH’) was estimated for each site with
the SpadeR v0.1.1 package [45]. A higher eH’ indicates a more evenly distributed abundance
of species present in that community. Similarity in species composition between sites was
assessed with a cluster analysis using the Bray–Curtis index with 100 bootstrap replications
in PAST v4.16 [44].

3. Results

During the study, 1953 parous Culicoides females were collected and dissected. They
belong to 11 different species, the most abundant ones were Culicoides pictipennis (30.3%),
Culicoides obsoletus complex (23.7%), and Culicoides kibunensis (23.1%). The least common
species were Culicoides reconditus, Culicoides pulicaris, and Culicoides circumscriptus, with five,
three, and one individual, respectively. A few insects (five in total) could not be identified
using either morphology or molecular analysis, and they are referred to as Culicoides sp.
(Table 1).
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Table 1. Haemosporidian lineages and associated species isolated from wild Culicoides species. PCR-positive samples are indicated for each Haemoproteus lineage and
biting midge species. The numbers indicated in brackets represent the number of salivary gland preparations positive for sporozoites. Culicoides circumscriptus (C),
C. festivipennis (F), C. impunctatus (I), C. kibunensis (K), C. obsoletus complex (O), C. pallidicornis (Pa), C. pictipennis (Pi), C. pulicaris (Pu), C. punctatus (Pn), C. reconditus
(R), C. segnis (S), and Culicoides sp. (Sp).

Pi O K F I S Pa Pn R Sp Pu C Total
H. asymmetricus TUPHI01 64 (10) 19 (10) 1 2 (1) 80 (20)

H. minutus TURDUS2 15 (2) 10 (5) 1 (1) 26 (8)
H. parabelopolskyi SYAT02 4 (3) 1 (1) 5 (4)

H. belopolskyi HIICT1 1 1 2 (2) 4 (2)
H. parabelopolskyi SYAT01 2 (2) 1 (1) 3 (3)
Haemoproteus sp. SYAT13 1 (1) 1 (1) 2 (2)
H. homominutus CUKI1 2 (1) 2 (1)

Haemoproteus sp. CULPIC02 1 (1) 1 (1)
H. magnus ROFI1 1 (1) 1 (1)

H. homogeneae SYAT16 1 (1) 1 (1)
H. majoris CCF5 2 2

H. majoris PARUS1 1 1 2
Haemoproteus sp. CCF2 1 1

Haemoproteus sp. CULKIB04 1 1
Haemoproteus sp. CULKIB05 1 1

Haemoproteus sp. HAWF6 1 1
Haemoproteus sp. CIRCUM05 1 1

H. syrnii CULKIB01 1 1
Haemoproteus sp. CULPIC01 1 1

H. majoris CWT4 1 1
Plasmodium sp. CULFES01 1 1
Plasmodium sp. CULOBS01 1 1

P. vaughani SYAT05 1 1
Co-infection 4 (1) 1 1 1 1 8

Negative 496 459 409 176 105 49 50 42 4 5 3 1 1799
Total positive 95 (21) 4 42 (19) 6 (2) 1 5 (2) 0 0 1 (1) 0 0 0 154 (45)
Total sampled 591 463 451 182 106 54 50 42 5 5 3 1 1953
Prevalence (%) 15.8 0.9 9.4 3.3 1.0 9.3 0 0 20 0 0 0 7.9
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Concerning study sites, the majority of insects were collected at the Botanical Garden
(871), followed by Puvočiai village (490), the Verkiai Regional Park (485), and Brinkiškės
village (107). The highest number of Culicoides species was detected at the Botanical Garden
(ten species), while the Verkiai Regional Park (seven species) was the location with the
lowest number of species (Figure 3). At the Botanical Garden, the most abundant species
was C. kibunensis (Figure 3A); while in Puvočiai village, biting midges from the C. obsoletus
complex were more common (Figure 3B); and in the Verkiai Regional Park, C. pictipennis
was more frequently found (Figure 3D). Culicoides circumscriptus was collected only at the
Botanical Garden and C. reconditus was collected only in Puvočiai village. All biting midge
species were found in low numbers in Brinkiškės village, with C. impunctatus being the
most abundant one (Figure 3C).
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Rarefaction curves indicate that the asymptote was reached in Puvočiai (Figure 4B) and
Brinkiškės (Figure 4C) villages, thus it seems that Culicoides species in those assemblages
are well represented and new species are unlikely to be found by increasing the sampling
effort (Table 2). Curves from the Botanical Garden (Figure 4A) and the Verkiai Regional
Park (Figure 4D) present a weak slope but have not reached the asymptote. Therefore, it
is possible that a few rare species could be found if sampling effort would be increased.
However, the estimated sample coverage (C) from the Botanical Garden and the Verkiai
Regional Park are almost one (Table 2), indicating that the sample completeness at those
sites is very high.

According to the coefficient of variation (CV), the probability of the detection of
Culicoides species in the Puvočiai village is the least heterogenous from studied locations,
followed by the Verkiai Regional Park, the Botanical Garden, and Brinkiškės village (Table 2).
The Shannon diversity (exponential of Shannon entropy, eH’) of Culicoides species was
significantly different among all sampling sites. The highest Shannon diversity was found
at Brinkiškės village and the lowest at the Verkiai Regional Park (Table 2). In other words,
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abundances of Culicoides species were more equally distributed in Brinkiškės village than
in any other site. On the contrary, the abundances of Culicoides species in Verkiai Regional
Park were the most contrasting of our sampling sites.
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Table 2. Culicoides sample size (n), number of observed species (D), estimated sample coverage (C),
estimated coefficient of variation (CV), and exponential of Shannon entropy (eH’) per sampling site
with 95% confidence intervals (95% CIs).

Study Site n D C CV eH’ (95% CI)
Botanical Garden 871 10 0.99 1.39 4.46 (4.20–4.72)
Puvočiai village 490 9 1 1.74 3.35 (2.96–3.73)

Brinkiškės village 107 8 1 0.50 6.93 (6.31–7.54)
Verkiai Regional Park 485 7 0.99 1.64 2.56 (2.36–2.76)

Culicoides species richness from the Botanical Garden and Puvočiai village were signif-
icantly higher compared to Brinkiškės village and Verkiai Regional Park (Figure 5). The
most similar sites in terms of Culicoides species composition were the Botanical Garden and
the Verkiai Regional Park (Figure 6). Puvočiai village clustered separately from these two
sites, and the most contrasting site is Brinkiškės village (Figure 6).

Haemosporidian parasite DNA was detected in 154 biting midges (7.9%) belonging
to C. pictipennis (95 individuals), C. kibunensis (42), C. festivipennis (six), C. segnis (five), C.
obsoletus complex (four), C. impunctatus (one), and C. reconditus (one) (Table 1). In total,
ten species and 23 lineages of haemosporidian parasites were detected. In addition, nine
Haemoproteus species and 20 lineages were identified, including four newly molecularly
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described lineages (CULKIB04, CULKIB05, CULPIC01, and CULPIC02). Additionally, one
Plasmodium species and three lineages were identified, with two new lineages molecularly
described (CULFES01 and CULOBS01). Notably, ten of the recovered parasite lineages
are still not identified down to the species level (Table 1). Eight samples showed signs of
co-infections by different Haemoproteus lineages.
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The highest number of Culicoides parous females, PCR-positive individuals, and the
highest prevalence of parasite lineages was detected at the Botanical Garden, followed by
the Verkiai Regional Park, Puvočiai, and Brinkiškės villages (Tables 3 and 4). Of all the
recovered lineages, 16 were detected in only one study site, 12 being exclusively found at
the Botanical Garden. Only H. asymmetricus (TUPHI01) and H. minutus (TURDUS2) were
detected in all localities, being the lineages with the highest prevalences (Table 4).
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Table 3. Ratios of Haemoproteus infections according to PCR, and the presence of sporozoites in
salivary gland preparations (MIC). Results are presented per Culicoides species and study sites: the
Botanical Garden (BG), Puvočiai village (P), Brinkiškės village (B), and the Verkiai Regional Park
(VRP). Microscopical analyses were conducted only in PCR-positive samples.

BG P VRP B
Culicoides species PCR MIC PCR MIC PCR MIC PCR MIC

C. pictipennis 30/197 12/30 8/38 0/8 53/337 7/53 4/19 2/4
C. obsoletus complex 0/40 - a 4/314 0/4 0/95 - a 0/14 - a

C. kibunensis 37/395 17/37 1/8 0/1 2/32 0/2 2/16 2/2
C. festivipennis 3/145 1/3 0/11 - a 0/12 - a 3/14 1/3
C. impunctatus 0/7 - a 1/73 0/1 - b - b 0/27 - a

C. segnis 3/34 2/3 0/2 - 1/7 0/1 1/11 0/1
C. pallidicornis 0/47 - a - b - b 0/1 - a 0/2 - a

C. punctatus 0/2 - a 0/35 - a 0/1 - a 0/4 - a

C. reconditus - b - 1/5 1/1 - b - b - b - b

Culicoides sp. 0/3 - a 0/2 - a - b - b - b - b

C. pulicaris 0/1 - a 0/2 - a - b - b - b - b

C. circumscriptus 0/1 - a - b - b - b - b - b - b

Total 73/871 32/73 15/490 1/15 485 7/49 107 5/5
a All insects tested were PCR-negative. b Culicoides species not found at the study site.

Table 4. Distribution of parasite lineages according to the locations. The Botanical Garden (BG),
Puvočiai village (P), Brinkiškės village (B), and the Verkiai Regional Park (VRP).

Parasite Species and Lineage BG P VRP B
Haemoproteus asymmetricus TUPHI01 37 6 39 4

H. minutus TURDUS2 11 3 9 3
H. parabelopolskyi SYAT02 2 3

H. belopolskyi HIICT1 3 1
H. parabelopolskyi SYAT01 1 2
Haemoproteus sp. SYAT13 2
H. homominutus CUKI1 2

Haemoproteus sp. CULPIC02 1
H. magnus ROFI1 1

H. homogeneae SYAT16 1
H. majoris CCF5 2

H. majoris PARUS1 1 1
Haemoproteus sp. CCF2 1

Haemoproteus sp. CULKIB04 1
Haemoproteus sp. CULKIB05 1

Haemoproteus sp. HAWF6 1
Haemoproteus sp. CIRCUM05 1

H. syrnii CULKIB01 1
Haemoproteus sp. CULPIC01 1

H. majoris CWT4 1
Plasmodium sp. CULFES01 1
Plasmodium sp. CULOBS01 1

P. vaughani SYAT05 1
Co-infection 4 2 1 1

Negative 798 475 429 97
Total 871 490 485 107

Microscopic analysis of salivary gland preparations from the PCR-positive samples
showed the presence of sporozoites in 45 (29.2%) of them, being 21 from C. pictipennis,
19 from C. kibunensis, two C. festivipennis, two C. segnis, and one from C. reconditus (Table 1).
This is the first time that C. reconditus has been confirmed as a natural vector of Haemoproteus
parasites, and, in the present study, it was infected by H. magnus ROFI1 (Figure 7e). Addi-
tionally, this is also the first case that C. kibunensis is confirmed as a competent vector of H. ho-
mominutus CUKI1 (Figure 7b), H. parabelopolskyi SYAT01 (Figure 7f) and SYAT02 (Figure 7h),
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and Haemoproteus sp. SYAT13 (Figure 7j). Culicoides pictipennis was also confirmed as a com-
petent vector of H. parabelopolskyi SYAT01 (Figure 7g), Haemoproteus sp. SYAT13 (Figure 7k),
H. homogeneae SYAT16 (Figure 7d), H. asymmetricus TUPHI01 (Figure 6m), and H. minu-
tus TURDUS2 (Figure 7p). Culicoides segnis had sporozoites of H. asymmetricus TUPHI01
(Figure 7n) and H. minutus TURDUS2 (Figure 7q), while C. festivipennis had sporozoites
of H. belopolskyi HIICT1 (Figure 7a). Sporozoites of H. homominutus CUKI1, H. magnus
ROFI1, H. homogeneae SYAT16, H. parabelopolskyi SYAT01, and Haemoproteus sp. CULPIC02
(Figure 7c) and SYAT13 (Figure 7j,k) are being reported for the first time. In one of the
samples, many sporozoites were identified, sometimes all in the same field (Figure 7r). One
of the samples presenting a co-infection was positive by microscopy (Table 1). All insects
that were PCR-positive for Plasmodium DNA were negative on microscopy.
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CUKI1 (b), Haemoproteus sp. CULPIC02 (c), H. homogeneae SYAT16 (d), H. magnus ROFI1 (e), H. 
parabelopolskyi SYAT01 (f,g,r) and SYAT02 (h,i), Haemoproteus sp. SYAT13 (j,k), H. asymmetricus 
TUPHI01 (l–n), and H. minutus TURDUS2 (o–q). Arrowhead indicates sporozoite nucleus. Methanol 
fixed and Giemsa-stained. Scale bar 10μm. 

The sporozoites from different Haemoproteus parasites and lineages are 
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Figure 7. Sporozoites found in the salivary gland preparations of Culicoides festivipennis (a),
C. kibunensis (b,f,h,j,l,o), C. pictipennis (c,d,g,i,k,m,p,r), C. reconditus (e), and C. segnis (n,q). These
sporozoites belong to Haemoproteus belopolskyi cytochrome b lineage HIICT1 (a), H. homominutus
CUKI1 (b), Haemoproteus sp. CULPIC02 (c), H. homogeneae SYAT16 (d), H. magnus ROFI1 (e), H. parabe-
lopolskyi SYAT01 (f,g,r) and SYAT02 (h,i), Haemoproteus sp. SYAT13 (j,k), H. asymmetricus TUPHI01
(l–n), and H. minutus TURDUS2 (o–q). Arrowhead indicates sporozoite nucleus. Methanol fixed and
Giemsa-stained. Scale bar 10 µm.

The sporozoites from different Haemoproteus parasites and lineages are morphologi-
cally very similar to each other (Figure 7), being readily recognized in the salivary gland
preparations by an elongated shape, with an average length that usually exceeds 10 µm,
with their ends being approximately equally pointed, and a more or less centrally located
nucleus [7]. Despite that, some slight morphological differences and similarities were
noted, i.e., sporozoites of H. homominutus CUKI1 (Figure 7b), H. asymmetricus TUPHI01
(Figure 7l–n), and H. minutus TURDUS2 (Figure 7o–q) seem to have a bigger length and
width than the other ones. On the other hand, sporozoites of H. parabelopolskyi SYAT01
and SYAT02 (Figure 7f–i) seem to be thinner and shorter than the later ones. Due to the
differences in the number of sporozoites on positive salivary gland preparations, their
morphometry could not be compared statistically, and it could not be confirmed if this
morphological feature can have any taxonomical importance. For the same reason, the
comparison between sporozoites from the same Haemoproteus lineage found in different
Culicoides species could not be carried out.
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4. Discussion

These findings will increase the current knowledge about the host–parasite–vector
system for Haemoproteus transmission in nature. Culicoides reconditus was confirmed as
a natural vector of Haemoproteus parasites, sporozoites of six Haemoproteus lineages were
reported for the first time, and 12 new interactions between Haemoproteus lineages and
Culicoides species were identified. The Botanical Garden was the location with the highest
abundance of Haemoproteus parasite lineages and Culicoides species, compared to the other
study sites. This might be mainly due to the higher availability of different microhabitats,
which include areas of deciduous and coniferous trees, various bushes, naturally occurring
and planted plants, presence of ponds and small rivers that give moisture to the soil, dead
leaves, and soil rich in organic matter, that would provide breeding sites for the Culicoides
biting midges.

All eleven species of Culicoides collected and analyzed in the present study had been
previously reported in Lithuania [48]. However, it is interesting to mention that a previous
study conducted in the same localities reported C. pictipennis as one of the least abundant
species [11], while, in the present study, it was the biting midge species with the highest
abundance (Table 1). This might be due to the differences in the trapping dates. In the
previous study, the trapping started at the end of June, and in the present study at the
beginning of the same month (C. Chagas personal communication), when these insects are
present at higher densities. Yet, fluctuations in densities of insect populations are also a
possibility, especially in temperate zones, where these changes are more pronounced and
highly dependent on climatic conditions [49–53].

Some Culicoides species can be considered as rare in Lithuania, such as C. fagineus,
C. albicans, C. fascipennis, C. newsteadi, C. chiopterus, and C. deltus [10,12–14]. None of these
species were collected in the present study. Other species that are usually collected in small
numbers are C. reconditus, C. circumscriptus, and C. pulicaris [52], and our study corroborates
with this (Table 1 and Figure 3). Two other species, C. pallidicornis and C. punctatus, were
more abundant in the Botanical Garden and Puvočiai village, respectively, with only a
few or no individuals collected in other localities (Table 3 and Figure 3). For example,
C. punctatus were more commonly found during May and June in the Curonian Spit, Baltic
Sea, Lithuania [12], and our sampling did not happen in May, neither at those localities.
The prevalence of C. impunctatus can also be mentioned since it is also highly abundant in
certain regions of the studied area [54], while in others it is found only in low numbers [11].
Our study corroborates these findings, with the highest number of C. impunctatus parous
females collected in Puvočiai and Brinkiškės villages (Table 3, Figure 3).

As previously mentioned, the differences in sampling time between studies is a
possible explanation for these findings [49–51,53]. Additionally, the availability of breeding
sites for Culicoides can also markedly interfere in this abundance and prevalence [55–58].
As a group, it is possible to say that they occur in organically rich substrates. However,
they have a broad range of habitats, including swamps, tree holes, mangroves, shallow
margins of ponds, among others [53,59], and a diversity of breeding sites might also be
among the main reasons for the diversity of Culicoides species in different locations. This is
one of the explanations for the high number of observed and expected Culicoides species
richness found in the Botanical Garden in comparison to the other study sites, as well
as for the differences of species found in each locality (Figure 5). Further, the Botanical
Garden was second in Shannon diversity, after Brinkiškės village, meaning that Culicoides
species abundances are more equally distributed than in the other sites (Table 2). This could
suggest that these sites are heterogeneous habitats, both in their availability of breeding
sites and feeding resources, contrasting with the Verkiai Regional Park that presented the
lowest Shannon diversity. The Verkiai Regional Park, despite being located in a peri-urban
area, is an extensive forest area. Therefore, this habitat seems to be more homogeneous in
its vegetation and breeding sites for biting midges.

The Botanical Garden presented the highest number of parous females, as well as
detected Culicoides species, being the only study site where C. circumscriptus was detected,



Insects 2024, 15, 157 13 of 19

and C. festivipennis, C. kibunensis, C. pallidicornis, and C. segnis were present in higher
numbers (Table 3). The low numbers of C. circumscriptus could be because the traps were
placed closer to the ground level (1.5–2 m from the ground), and these biting midges are
more commonly found between 20 and 26 m above the ground [30,60].

The prevalence of Haemoproteus parasites detected using only molecular tools in
Culicoides was 7.9% (Table 1), which is similar to other studies conducted in Lithuania that
used the same integrative approach [10,12–14]. The molecular prevalence of the parasites
was higher than in Bulgaria [28,29], but lower than in Spain [26]. However, another
study conducted in the Czech Republic showed a higher prevalence in the analyzed
pools of Culicoides insects, with almost half of them being PCR-positive for Haemoproteus
parasites [61]. In terms of the diversity of Haemoproteus lineages, we recovered 20 different
ones while the mentioned studies reported a maximum of 11 lineages in Lithuania [10–14]
and nine in Bulgaria [29]. In the opposite direction, the investigated samples in the Czech
Republic have the lowest diversity of Haemoproteus lineages (five) [61]. In the present study,
this might be due to the high diversity of study sites, with different degrees of land use and
anthropogenic influence on each of them, which would lead to a higher number of bird
species living in each area and, consequently, a high diversity of parasite lineages. Most
of the mentioned studies also reported the presence of Plasmodium DNA in the analyzed
insects. This is not an uncommon finding [10,14,21,26,27,62]. However, Plasmodium does
not complete its sporogonic development in Culicoides insects [7,63] and their presence
simply indicated that they had a blood meal on an infected bird [9,64].

The Botanical Garden was also the location with the highest diversity of Haemopro-
teus lineages, with 12 out of 20 being reported exclusively at this study site (Table 4).
Some Haemoproteus parasites species are known for having a high host specificity to their
vertebrate hosts at the order level [7]. This is the case of Haemoproteus sp. SYAT13 and
H. homogeneae SYAT16 that, until now, were reported only in Sylvia atricapilla and H. ho-
mominutus CUKI1 which was reported to only be infecting Turdus philomelos and Turdus
viscivorus [65] (Supplementary Table S1). This indicates that these bird species were proba-
bly more commonly found in the Botanical Garden than in the other study sites. A recent
study conducted in Slovakia has shown that the population of Sylvia atricapilla was the
most abundant species captured in all seasons, except for winter [66]. This might be the
case in Lithuania as well, despite the absence of studies in this sense.

In the opposite direction, other Haemoproteus lineages and species are reported in a
few bird families and even species [67]. This is the case of two parasite lineages that in this
study were reported exclusively in the Puvočiai village, H. majoris CWT4 and H. magnus
ROFI1 (Table 4). Combined, both parasite lineages have been reported in 21 different
bird species, 11 for each Haemoproteus lineage (Supplementary Table S1). Since these
parasites can infect a high diversity of bird species, it is difficult to infer from which of
these 21 species the female Culicoides biting midge got this infection. Haemoproteus sp.
CIRCUM05 was found only in the Brinkiškės village, and this parasite lineage was reported
only in Corvidae (Supplementary Table S1). Birds from this family are highly successful
in cities and areas with anthropogenic influence [68], which is the case of the Brinkiškės
village study site. Haemoproteus syrnii CULKIB01 is another parasite that has been reported
in a few Strigiformes species (Supplementary Table S1) and it was recorded only in the
Verkiai Regional Park during our study. Due to the specificity of this parasite lineage to
infect hosts from Strigiformes, it is possible to infer that the analyzed Culicoides had a blood
meal in a bird belonging to this order. Additionally, we can also infer that the Verkiai
Regional Park likely has a more suitable environment for this group of birds compared
with the other three.

Only H. asymmetricus TUPHI01 and H. minutus TURDUS2 were found in all study sites
and had the highest prevalence (Tables 1 and 4). They were described in Turdus philomelos
and Turdus merula [7,69], respectively, and are more frequently reported in these bird
species, even though they can also be found in several other bird species (Supplementary
Table S1). The high diversity of vertebrate hosts might be one of the probable explanations
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for their high prevalence in this study and for their presence in all four study sites. It is also
necessary to mention that T. philomelos and T. merula are abundant and commonly found
in Lithuania during the spring and summer months, with their population showing an
increased tendency [70].

This study reports the highest number of co-infections detected by PCR methods in
Culicoides (double peaks were identified in the electropherograms) compared to previous
studies, especially in Lithuania [10–14]. Haemosporidian co-infections are commonly
found in naturally infected birds [66,71–74] and there is the possibility of having more
than one parasite lineage developing in the same Culicoides individual. Unfortunately,
the effects of having more than one parasite developing in the same vector are far from
being fully understood [75,76], especially with Culicoides, and should be targeted in future
studies. One of the individuals with co-infection was also positive for sporozoites; since it
is not possible to confirm parasite species based on the sporozoites morphology with the
current knowledge, we prefer not to make any inferences. It is also necessary to mention
that a high number of parasite lineages described in Sylvia atricapilla (SYAT01, SYAT02,
SYAT05, SYAT13, and SYAT16) were found in the investigated insects (Table 1). This bird
species is well known for the high prevalence of co-infections [66,77], which might also
have influenced the high prevalence of co-infections in the studied Culicoides.

Remarkably, almost 30% of the PCR-positive Culicoides were also positive for Haemopro-
teus sporozoites (Table 3). This was the highest positivity ever reported using this integrative
approach (insects’ dissection, microscopy, and molecular-based methods) [10–14]. Some of
the salivary gland preparations had just a few sporozoites, while in others, they were seen
in high numbers (Figure 7r). This might be due to (i) the recent release of sporozoites by the
oocysts or (ii) higher levels of infections of the Culicoides females. However, it is difficult to
confirm this, since there are no studies related to the life span of Haemoproteus sporozoites
in the Culicoides salivary glands, to the number of sporozoites that can be injected during
the female blood meal or even if all these characteristics are species-related or if they differ
depending on the vector species.

Culicoides reconditus is being reported as PCR-positive and able to support sporogo-
nic development of Haemoproteus parasites for the first time. This biting midge species is
widespread in Europe [37], but it is usually sampled in small numbers in Lithuania [10,11,14].
However, it was noted to be one of the main Culicoides species in blue tit Cyanistes caeruleus
nest boxes in Germany [78]. Due to their lower numbers, this might not be the main
Haemoproteus vector in Lithuania, although the present study confirms that it can also be
involved in this parasite’s transmission in the country. More studies should be conducted
at different locations to understand their feeding preferences, breeding sites, and their role
in Haemoproteus transmission.

Haemoproteus sporozoites that develop in Culicoides are similar to each other [7], but
past studies have reported some differences and suggested that morphological analyses
could be applied for parasite identification in vectors [79]. Sporozoites of H. homominutus
CUKI1 (Figure 7b), H. asymmetricus TUPHI01 (Figure 7l–n), and H. minutus TURDUS2
(Figure 7o–q) seem to have a bigger length and width than the other ones, e.g., H. parabe-
lopolskyi (compare Figure 7b with Figure 7g–i). However, without morphometrical and
statistical analysis, it is not possible to draw any conclusions. In the present study, the dif-
ferences in the number of sporozoites in the infected Culicoides did not allow such analysis,
and future studies addressing this issue should be conducted. Noteworthy, all mentioned
lineages are closely related and are known for their fast development into the ookinete
stage after the Culicoides blood meal, resulting in a structure with small size and no out-
growths, as well as presenting gametocytes with a pale staining cytoplasm [65,69,80,81]. It
is worth mentioning that T. merula and T. philomelos are also commonly found with natural
co-infections of haemosporidian parasites not only from different but also from the same
genus [82], which can also be an explanation for the high number of co-infections found in
our study.
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Even though several parasite lineages were detected in the present study, it is still
not possible to completely understand the mechanisms that promote and/or limit parasite
transmission in nature. However, it is possible to confirm that C. kibunensis, C. pictipennis,
and C. segnis are important Haemoproteus vectors in Lithuania (Tables 1 and 3, Figure 3).
Not only for being relatively abundant, but also for their ornithophilic habits [83–85]. The
biology of hosts and vectors should also be considered in future studies targeting this issue.

5. Conclusions

Culicoides kibunensis, C. pictipennis, and C. segnis are important Haemoproteus vectors
in Lithuania. Culicoides reconditus was reported for the first time to support the complete
sporogonic development of H. magnus cytb lineage ROFI1. A high number of Haemoproteus
parasite lineages (23) and a high prevalence of sporozoites (~30% of PCR-positive) in the
investigated Culicoides females of some species indicated that many parasite species are
circulating in Lithuania and that they can be potentially transmitted to birds of different
species during their reproductive season, including juveniles. Twelve new associations
between Haemoproteus lineages and Culicoides species were reported. The mechanisms that
limit Haemoproteus transmission are far from being completely understood, and studies
targeting this issue should be encouraged.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects15030157/s1, Supplementary Table S1: Haemoproteus and
Plasmodium lineages found in the present study and their vertebrate host vectors. The data were
compiled based on the information available in the MalAvi database (http://130.235.244.92/Malavi/,
accessed on 20 November 2023).
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