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Simple Summary: Wolbachia bacteria occur naturally as symbionts of many insect species and are
responsible for various phenomena that modify the hosts’ reproductive biology. Among them,
cytoplasmic incompatibility (CI) refers to the sterility of eggs produced by crosses between infected
males and females that are uninfected or infected by a non-compatible strain of these bacteria. CI
can be exploited for vector control by establishing an opportune Wolbachia infection in a laboratory
population of a target insect species and then releasing the infected males into the environment as
sterilizing agents. In the present work, a suitable Wolbachia strain was introduced into a Spanish
population of the Asian tiger mosquito, Aedes albopictus, through hybridization with the laboratory
line, ARwP, already tested as an efficient control tool against this vector. The obtained hybrids were
compared with the ARwP to ascertain the effects derived from transferring the infection to a different
Ae. albopictus population. No significant differences between lines were found regarding survival,
female fecundity, and egg fertility. Importantly, the eggs produced by crosses between males of the
hybrid lines and unmodified wild females were 99.9% sterile. This result encourages further studies
to explore the feasibility of a Wolbachia-based control program against the Asian tiger mosquito
in Spain.

Abstract: The emergence of insecticide resistance in arbovirus vectors is putting the focus on the
development of new strategies for control. In this regard, the exploitation of Wolbachia endosymbionts
is receiving increasing attention due to its demonstrated effectiveness in reducing the vectorial
capacity of Aedes mosquitoes. Here, we describe the establishment of a naïve Wolbachia infection in a
wild Aedes albopictus population of eastern Spain through a hybridization approach to obtain males
capable of sterilizing wild females. The obtained lines were compared with the Wolbachia donor,
Ae. albopictus ARwP, previously artificially infected with Wolbachia wPip, regarding immature and
adult survival, female fecundity, egg fertility, and level of induced sterility. Our results did not show
significant differences between lines in any of the biological parameters analyzed, indicating the full
suitability of the hybrids to be used as a control tool against Ae. albopictus. In particular, hybrid males
induced 99.9% sterility in the eggs of wild females without the need for any preliminary treatment.
Being harmless to non-target organisms and the environment, the use of this bacterium for the control
of Ae. albopictus deserves further exploration. This is especially relevant in areas such as eastern
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Spain, where this mosquito species has recently spread and may represent a serious threat due to its
competence as a vector for dengue, chikungunya, and Zika viruses.

Keywords: Asian tiger mosquito; genetic control; Wolbachia; cytoplasmic incompatibility; population
suppression; hybridization; genotyping; arboviruses

1. Introduction

Strategies aimed at controlling mosquito-borne diseases still seem far from the goal of
significantly and steadily reducing infections, deaths, and economic losses due to the costs
of prevention, control treatments, and cures [1,2]. Instead, also due to climate warming,
urbanization, and connectivity, key vectors keep on expanding their geographical distribu-
tion, especially in temperate climate areas, leading to an increase in the global population
at risk of arboviral diseases [3]. In the current context of global change, it is a priority to
focus on the development of best practices for mosquito control while seeking to avoid the
consequences of the further spread of infectious disease vectors [4]. However, this objective
should be reconciled with the need to meet the Sustainable Development Goals (SDGs),
with particular attention to the protection of the environment and biodiversity [5].

The development of vaccines and prophylaxis drugs targeting arboviruses, along
with prevention measures and community involvement, have certainly helped in reducing
health-related risks [4,6], but mosquito control methods have often shown only temporary
success [7,8]. This is mainly due to the remarkable capacity of mosquitoes to adapt to a
changing environment [9] and to develop insecticide resistance [10,11]. Also, insecticide
spraying is often unable to reach cryptic habitats of immature and adult mosquitoes, espe-
cially in urban areas [12]. Insecticide resistance and the negative side effects of insecticides
on non-target organisms and the environment make the integration of chemical control
with other vector suppression strategies a priority [4,7,13,14]. The lack of effective vaccines
or drugs against certain vector-borne pathogens further stresses this need [15,16].

In search of effective and environmentally friendly methods to fight disease vectors,
autocidal control strategies are considered a promising option to be integrated with other
control measures [17,18]. These strategies are based on the continuous release of large
numbers of sterile males belonging to the target species to reduce the chance of wild fe-
males reproducing and, consequently, leading to a gradual decline in the resident vector
population. Male sterilization can be achieved through the administration of ionizing
radiation (sterile insect technique, SIT) or sterilizing chemicals, or by taking advantage of a
phenomenon of reproductive incompatibility induced by bacteria of the genus Wolbachia
(incompatible insect technique, IIT). Genetic engineering can also pursue the same goal, for
example, obtaining sterile males through the CRISPR/Cas9 method [19], or producing lab-
oratory lines carrying a late-acting dominant lethal gene that is transmitted to the offspring
of wild females by mating (release of insects carrying a dominant lethal, RIDL; [20,21]).

Among the aforementioned strategies, IIT is receiving increasing attention, because
the incompatible males’ ability to completely sterilize wild females is accompanied by a
full preservation of male fitness since they have not undergone any pre-release sterilizing
treatment or genetic modification [22,23]. This is a clear advantage over other genetic
control approaches in terms of achieving high effectiveness but also safety and sustainability,
and facilitating public acceptance [24,25].

Wolbachia are endosymbionts of nematodes and arthropods; among the latter, they are
estimated to infect approximately 40% of all species [26]. Although the interaction with
the hosts is generally mutualistic, in many cases, Wolbachia are responsible for profound
alterations in the hosts’ reproductive biology and physiology, which favor the spread of the
infection even when only a small percentage of the individuals are initially infected [27–29].
IIT takes advantage of one of these physiological alterations, the induction of the phe-
nomenon of cytoplasmic incompatibility (CI). CI can be described basically as a failure in
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the development of the embryo when a Wolbachia-infected male inseminates either an unin-
fected female or a female infected by an incompatible Wolbachia strain [30]. Based on the
specific features of the known Wolbachia strains, various infections have been established ar-
tificially in Aedes albopictus and Aedes aegypti to exploit CI as a suppression tool [31–36]. IIT
has already demonstrated its effectiveness in suppressing both Ae. albopictus and Ae. aegypti
in different areas of the world, either alone [31,36–41] or in combination with SIT [42,43],
gradually increasing the record of successes achieved.

Given a target vector species and a target area, the first step in an IIT-based control
program is the generation of a suitable Wolbachia-infected laboratory line of the target
species whose males can fully sterilize wild females. A new association of Wolbachia
with a host is generally artificially generated by embryonic or adult transinfection by
microinjection [44]. However, other populations of the same species can be subsequently
infected by hybridization (i.e., crossing wild males with artificially infected females of the
same species). This process can be easy when unidirectional CI patterns occur, as in the
case of Ae. aegypti [31], but it is also feasible in the case of bidirectional CI patterns that are
not full. This is the case with Ae. albopictus ARwP, a Wolbachia-transinfected line harboring
Wolbachia wPip [32], and wild populations (wAlbA-/wAlbB-infected) of this mosquito
species. In fact, wild Ae. albopictus males have been found to become partially fertile with
aging when they inseminate wPip-infected Ae. albopictus females. This phenomenon is due
to the age-dependent depletion of wAlbA in males, while wAlbB alone is unable to induce
a full CI pattern in the crosses with wPip-infected females [45].

Once a laboratory line capable of producing incompatible males has been obtained,
further studies are necessary before open-field releases. In fact, the effectiveness of the
strategy depends not only on the number of released males but also on the level of induced
CI and their quality in terms of survival and mating competitiveness [46–48]. The genetic
background has a demonstrated effect on certain characteristics of the host–Wolbachia
association [49,50] and, additionally, artificial rearing conditions may gradually induce
selection for biological traits that can be advantageous in mass-rearing settings but might
not be fully appropriate in the open field [51]. Moreover, different environmental contexts
and different target wild populations may require specific adjustments to maximize results.
In this regard, it has been demonstrated that matching the local population genetics,
especially its insecticide resistance background, was critical to achieving a successful
invasion in the case of releases of Wolbachia-infected Ae. aegypti aiming at the replacement
of the wild population [52]. This preliminary step can also reasonably fit the IIT strategy
because sterile males with the same genetic background as the target population are
more likely to have also acquired alleles conferring resistance to certain insecticides or
adaptability to the local climate.

In the present work, we report the results of a hybridization process aiming at intro-
ducing wPip Wolbachia from Ae. albopictus ARwP into the genetic background of an Ae.
albopictus population from Barcelona (Spain). The success of this procedure was assessed
by PCR targeting Wolbachia and mtDNA-specific genes. Results of the characterization of
hybrid lines to evaluate their suitability for mass rearing and as a genetic control tool are
also reported.

These studies are part of a research project aiming at exploring the feasibility of a
Wolbachia-based control program against Ae. albopictus in eastern Spain. In 2004, this vector
was recorded for the first time in the country [53]; twenty years later, the species is now
established in 40 provinces of Spain and has become a serious threat to human welfare and
health [54]. Indeed, the impact of this invasion in economic and public health terms has
resulted in the investment of hundreds of thousands of euros in mosquito control programs.
Despite this, the occurrence of several autochthonous dengue cases in Mediterranean areas
of Spain [54] highlights the urgency of new control measures and renewed coordinated
efforts to prevent serious outbreaks of arboviral diseases.
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2. Materials and Methods
2.1. Ae. albopictus Lines and Their Maintenance

The line, BN, was derived from a wild Ae. albopictus population from Barcelona (Spain),
kindly provided by Dr. Mara Moreno-Gómez (Henkel Ibérica, S.A., Barcelona, Spain) and
maintained in laboratory conditions at Universitat de València since 2020. As commonly
found worldwide in Ae. albopictus, this population naturally harbors Wolbachia wAlbA
and wAlbB, but some wild individuals lacking one or both of these two strains have been
previously reported in eastern Spain [55]. The line, BA, is a Wolbachia-free Ae. albopictus
population obtained at the Universitat de València by curing the natural Wolbachia infection
of BN, according to the methods described by Dobson and Rattanadechakul [56]. The Ae.
albopictus ARwP line was established in 2008 at the Casaccia Research Center of the National
Agency for New Technologies, Energy and Sustainable Economic Development (CR ENEA
Casaccia, Rome, Italy) through embryonic microinjection of Wolbachia wPip isolated from
a wild population of Culex pipiens molestus into a wild local population that was cured of
natural Wolbachia infections [32]. This line is characterized by a bidirectional CI pattern in
crosses with wild Ae. albopictus [22]. A specific sub-population of ARwP, called ARwPL, was
kept isolated from the rest of the colony to perform all the experiments described here. The
three populations were maintained at the CR ENEA Casaccia, where all the experiments
involving live insects were performed.

Unless stated differently, the larvae belonging to the above populations were reared
inside 1L larval trays at a density of 1 larva/mL, provided with increasing doses (0.2, 0.4,
0.6, and 0.8 mg × larva × day) of a liquid diet consisting of 50% tuna meal, 36% bovine liver
powder, and 14% brewer’s yeast (according to the IAEA-BY diet but without the addition
of vitamins) [39]. Adults were maintained inside 30 × 30 × 30 cm cages at a temperature of
27.0 ± 0.5 ◦C, relative humidity (RH) of 70.0% ± 10.0%, and 14:10 h light/dark cycle, and
they were supplied with cotton balls soaked in 10% sucrose ad libitum. Blood meals were
provided via anesthetized mice in agreement with the Bioethics Committee for Animal
Experimentation in Biomedical Research and in accordance with procedures approved by
the ENEA Bioethical Committee according to EU Directive 2010/63/EU. The mice belonged
to a colony housed at CR ENEA Casaccia, and they were maintained for experimentation
based on authorization no. 80/2017-PR released (on 2 February 2017) by the Italian Ministry
of Health.

2.2. Hybridization Protocol

Two hybrid lines were established in parallel. The ARwPBA line was developed by
crossing ARwPL females with 3 ± 1-day-old BA males. In this type of crossing, a similar
percentage of egg hatching was expected as in that of ARwPL male × ARwPL female crosses,
because uninfected males are fully compatible with Wolbachia-infected females. The sex
of the progeny was determined to allow for the use of the hybrid females in a subsequent
cross with BA males. This procedure was repeated for 5 generations (G1–G5).

Crosses between ARwPL females and BN males were also performed for 5 generations.
In this case, 3 ± 1-day-old ARwPL females were mated with 18 ± 1-day-old BN males
to exploit the male age-related reduction of the CI level in wild male × wPip-infected
female crosses [47]. The mean level of egg fertility in ARwPL females × aged BN males was
measured. Even the reduced egg fertility was expected to be enough to obtain a sufficient
number of female larvae to be used for the subsequent hybridization cycles.

After 5 generations of backcrossing, the ARwPBA and ARwPBN lines were expected
to have about 97% of the genetic background of the BA and BN lines, respectively, while
harboring Wolbachia wPip from ARwPL.

2.3. Monitoring of the Establishment and Maternal Transmission of the Infection

The establishment of the wPip infection was monitored during the hybridization
process by randomly sampling 10 females in each generation (G1–G4) and identifying the
percentage of wPip-infected individuals by polymerase chain reaction (PCR) analysis. At
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G5, the maternal transmission of the infection was similarly measured by counting the
wPip-positive individuals out of 20 females born to mothers previously tested positive
for wPip.

DNA was extracted from individual mosquitoes by dissecting and homogenizing their
abdomens in 100 µL of STE buffer with 0.4 mg/mL of proteinase K [57]. A wPip-specific
primer pair, targeting the wsp gene [58], was designed and used to recognize Wolbachia wPip:
wPip-F bis: 5′-GTTAGTGGTGCAACATTTACTCC-3′; wPip-R: 5′-AATAACGAGCACCAGC
AAAGAGT-3′. The PCR cycling procedure was 94 ◦C for 5 min followed by 35 cycles of
94 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 40 s, and a single final step at 72 ◦C for 10 min.
Amplicons were electrophoresed on 1.5% agarose gels, stained with ethidium bromide
(1 µg/mL), and visualized under ultraviolet light. The wPip-negative samples were then
PCR-tested to ascertain the absence of Wolbachia or, eventually, the presence of Wolbachia
wAlbA and wAlbB by using primers and PCR protocols specific to these strains [56].

2.4. Sequencing of the COI Gene in Hybrid Populations

To confirm the introgression of the mtDNA together with Wolbachia in comparison
with the original wild-type line, BN, Ae. albopictus lines BA, BN, ARwPL, ARwPBA, and
ARwPBN were also characterized by targeting the cytochrome oxidase I (COI) gene as
mitochondrial DNA (mtDNA) marker, as previously performed in similar studies [59].
DNA from whole adult female mosquitoes (5 individuals per line) was extracted with
the commercial DNeasy Blood + Tissue DNA Extraction Kit, Qiagen (Hilden, Germany)
following the manufacturer’s instructions. The samples were analyzed by PCR using
the primers LCOI490 (5′-GGTCAACAAATCATAAAGATATTGG-3′) and HCO2198 (5′-
TAAACTTCAGGGTGACCAAAAAATCA-3′), as described by Lucati et al. [59]: 5 min at
95 ◦C, followed by 5 cycles of 60 s at 95 ◦C, 90 s at 45 ◦C, 45 s at 72 ◦C, and then 30 cycles of
45 s at 95 ◦C, 45 s at 50 ◦C, and 45 s at 72 ◦C, concluding with a last step of 7 min at 72 ◦C.
The PCR products were checked by 2% agarose gel electrophoresis, stained with SafeView
Classic stain (NBS Biologicals, Huntingdon, Cambridgeshire, UK), and visualized under
UV light. Positive samples were sent to the sequencing facility of the Universitat de València
(Servicio Central de Soporte a la Investigación Experimental, SCSIE) for the purification and
sequencing of the samples. The quality of sequencing products was assessed by manual
inspection of each chromatogram. The sequences were aligned using CLUSTALW2 [60]
with default settings and compared with sequences in the databases by using BLASTN
(http://www.ncbi.nlm.nih.gov/BLAST accessed on 1 March 2024). The DNA sequences
determined in this study have been deposited in GenBank (see Accession Numbers in
Figure S1).

2.5. Determination of Fitness Parameters and Induced CI Levels of the Hybrid Lines

At G5, ARwPBA, and ARwPBN were compared with ARwPL with regard to immature
survival until the adult stage, adult survival, female fecundity, and egg fertility. The CI
level induced by ARwPBA and ARwPBN males when crossed with BN females was also
measured. Specifically, three larval trays with 100 L1 larvae in 100 mL of water and feeding
were prepared per line, as above described. The obtained adults were counted to measure
the percentage of larvae that survived to the adult stage. Three cages per line were then
populated by 20:20 males:females. Adult survival was measured by counting and removing
from the cages the dead individuals three times per week (Monday, Wednesday, and Friday)
over 40 days, taking into account that the mean adult survival in nature is not expected to
exceed about 20 days [61]. When 1-week-old females were provided with a blood meal and
produced eggs, they were collected using oviposition cups half-filled with rainwater and
provided with germination paper lining the inside. Eggs were allowed to dry, counted, and
then hatched to measure female fecundity (eggs/female) and egg fertility (egg hatch rate).

For CI-level studies, 10 males belonging to the two hybrid lines were crossed with
10 BN females. After blood-feeding, eggs were hatched to measure their fertility. BN female
× BN male crosses were also conducted as a control. The experiment was repeated 3 times.

http://www.ncbi.nlm.nih.gov/BLAST


Insects 2024, 15, 206 6 of 15

2.6. Data Analysis

Results were expressed as mean ± standard error of the mean (SEM), and the arcsine
square root transformation was applied to analyze proportional data. The Brown–Forsythe
and the Shapiro–Wilk tests were performed to assess equality of variances and normal-
ity, respectively.

The survival curves of ARwPBA, ARwPBN, and ARwP adults were compared using the
Kaplan–Meier method and the log-rank (Mantel–Cox) test. A one-way analysis of variance
(ANOVA) was used to compare female fecundity, egg fertility, and immature survival
between lines. An ANOVA was also used to compare the level of induced CI in the crosses
of BN females with males of ARwPBN, ARwPBA, and BN. In the case of significant p values
the Holm–Sidak test was performed as a post hoc test.

Statistical analysis was performed using the Sigma-Stat software (Sigma-Stat 4.0, Systat
Software Inc., San José, CA, USA), with the level of significance set at p < 0.05.

3. Results
3.1. Establishment and Maternal Transmission of the Infection

As confirmed by PCR analysis, both hybridization protocols succeeded in establishing
Wolbachia wPip in Ae. albopictus BA and BN, even though the average fertility in crosses be-
tween BN males aged 18 ± 1 days and ARwP females was only 4.70 ± 0.41%. Nevertheless,
not all ARwPBA and ARwPBN individuals were found to be infected with Wolbachia wPip
(Figure 1). In the ARwPBA, wPip infection ranged from 80 to 100% in females, and, at G5,
two out of twenty individuals obtained from wPip-positive mothers were found uninfected,
indicating an imperfect maternal transmission of the infection. Instead, in the ARwPBN, the
infection by Wolbachia wPip encountered 100% fixation by G3 and continued up to G5. All
the individuals that were negative to wPip were found also negative to wAlbA and wAlbB.
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Figure 1. Wolbachia wPip-infected females in Ae. albopictus ARwPBA and ARwPBN over 5 subsequent
generations since the first cycle of hybridization. ARwPL: Wolbachia wPip-infected Ae. albopictus
from Rome (Italy) [31]; ARwPBN: wild strain of Ae. albopictus from Barcelona (Spain) infected with
Wolbachia wPip from ARwPL through hybridization; ARwPBA: aposymbiotic strain of Ae. albopictus
obtained in Valencia from the wild strain of Barcelona and then infected with Wolbachia wPip from
ARwPL through hybridization. From G1 to G4 (light grey), females were randomly sampled among
all emerged adults and checked for wPip infection by PCR (n = 10). At G5 (dark grey), tested females
were born from eggs oviposited by females that had been ascertained to be wPip-positive (n = 20).



Insects 2024, 15, 206 7 of 15

3.2. Comparison of the COI Gene Sequences between Ae. albopictus Lines

The mtDNA alignment of the COI gene was obtained for five sequences of about
500 bp per mosquito line, and no evidence of genetic diversity, regarding haplotypes or
even single nucleotides, was detected (Figure S1). Consequently, at the level of this gene, it
was not possible to highlight any genetic dissimilarity between Ae. albopictus lines BA, BN,
ARwP, ARwPBA, and ARwPBN.

3.3. Fitness and CI Levels of Hybrid Lines Compared to ARwP

The immature survival rate did not differ significantly between Ae. albopictus ARwPL,
ARwPBA, and ARwPBN (F2,6 = 2.08; p = 0.21; Figure 2) and ranged from 81 to 90%.
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aposymbiotic strain of Ae. albopictus obtained in Valencia from the wild strain of Barcelona and then
infected with Wolbachia wPip from ARwPL through hybridization. Error bars show the standard
error of the mean of three repetitions. Differences between lines were not statistically significant by
one-way ANOVA.

Adult survival was not found to significantly differ between Ae. albopictus ARwPL,
ARwPBA, and ARwPBN, and this result was confirmed in both sexes (Figure 3). Mean
survival ranged from 31 to 32 days in males of the three Ae. albopictus lines (p = 0.724,
log-rank test) while it was higher in females, where it ranged from 36 to 38 days in the three
tested lines (p = 0.519, log-rank test).

Both mean female fecundity (F2,6 = 2.72; p = 0.14; Figure 4, left) and egg fertility
(F2,6 = 0.14; p = 0.88; Figure 4, right) were found to not significantly differ between the three
Wolbachia wPip-infected lines.

As shown in Figure 5, the ARwPBN and ARwPBA males acquired an almost full level
of induced CI when crossed with BN females (about 99.9%), and the differences in egg
fertility compared to the control were significant (F2,12 = 1010.83; p < 0.05; Figure 5). The
differences between the two hybrid lines were not significant (F1,8 = 0.03; p = 0.86).
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Figure 3. Survival curves of male and female adults belonging to Ae. albopictus ARwPL, ARwPBA,
and ARwPBN, three lines infected with the same Wolbachia strain through hybridization. ARwPL: Wol-
bachia wPip-infected Ae. albopictus from Rome (Italy) [31]; ARwPBN: wild strain of Ae. albopic-
tus from Barcelona (Spain) infected with Wolbachia wPip from ARwPL through hybridization;
ARwPBA: aposymbiotic strain of Ae. albopictus obtained in Valencia from the wild strain of Barcelona
and then infected with Wolbachia wPip from ARwPL through hybridization. In both sexes, differences
between lines were not statistically significant by log-rank (Mantel–Cox) test.
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Figure 4. Female fecundity (left) and egg fertility (right) in Ae. albopictus ARwPL, ARwPBA, and
ARwPBN. ARwPL: Wolbachia wPip-infected Ae. albopictus from Rome (Italy) [31]; ARwPBN: wild
strain of Ae. albopictus from Barcelona (Spain) infected with Wolbachia wPip from ARwPL through
hybridization; ARwPBA: aposymbiotic strain of Ae. albopictus obtained in Valencia from the wild strain
of Barcelona and then infected with Wolbachia wPip from ARwPL through hybridization. Error bars
show the standard error of the mean (SEM) of three biological replicates, each containing 19–20 fed
females. In both cases, values were not significantly different by one-way ANOVA.



Insects 2024, 15, 206 9 of 15

Insects 2024, 15, x FOR PEER REVIEW 9 of 15 
 

 

show the standard error of the mean (SEM) of three biological replicates, each containing 19–20 fed 
females. In both cases, values were not significantly different by one-way ANOVA. 

As shown in Figure 5, the ARwPBN and ARwPBA males acquired an almost full level 
of induced CI when crossed with BN females (about 99.9%), and the differences in egg 
fertility compared to the control were significant (F2,12 = 1010.83; p < 0.05; Figure 5). The 
differences between the two hybrid lines were not significant (F1,8 = 0.03; p = 0.86). 

 
Figure 5. Egg fertility (when Ae. albopictus BN females were crossed with Ae. albopictus males 
ARwPBN, ARwPBA, and BN). BN: wild strain of Ae. albopictus from Barcelona colonized in Valencia 
(Spain); ARwPBN: wild strain of Ae. albopictus from Barcelona (Spain) infected with Wolbachia wPip 
from ARwPL through hybridization; ARwPBA: aposymbiotic strain of Ae. albopictus obtained in Va-
lencia from the wild strain of Barcelona and then infected with Wolbachia wPip from ARwPL through 
hybridization. Error bars show the SEM of three biological replicates. The mean egg fertility was 
found to differ significantly between crosses by one-way ANOVA. 

4. Discussion 
Newly established associations between Wolbachia and host species may go through 

a phase of unstable equilibrium due to genetic conflict between the two organisms [27]. In 
certain cases, the host can be unsuitable for these symbionts [62], or the infection is tem-
porarily successful but is lost within a few generations [63]. In other cases, Wolbachia be-
comes established and may be apparently neutral to the host [64], may negatively affect 
its fitness [65], or enhance it instead [66], but several generations may be necessary for the 
stabilization of the symbiosis through selection [47,67]. 

Negative effects on host fitness due to Wolbachia have been previously reported to 
occur, especially in the first generations after the establishment of the infection, and may 
affect immature mortality, adult longevity, female fecundity, and egg fertility 
[32,66,68,69]. Wolbachia can alter these traits through direct interaction with host cytoplas-
mic and nuclear components [70] but also indirectly because of the alteration of the mi-
crobial community, which may affect the expression of genes involved in metabolism [71]. 

In the case of the Ae. albopictus lines tested here, ARwPBN and ARwPBA, the naïve in-
fection by Wolbachia wPip was found to rapidly establish even though not all individuals 
tested positive for the presence of the bacteria. This result could be partly due to the lack 
of sensitivity of standard PCR when Wolbachia density is very low and only one Wolbachia 
target gene is used [45,72,73], but it may also highlight a gradual process of coadaptation 
by selection between Wolbachia and the new genetic background of the two lines. Indeed, 
genotypes not favoring the establishment and full maternal transmission of the infection 
are expected to be counter-selected and gradually eliminated due to the CI phenomenon 

Figure 5. Egg fertility (when Ae. albopictus BN females were crossed with Ae. albopictus males
ARwPBN, ARwPBA, and BN). BN: wild strain of Ae. albopictus from Barcelona colonized in Valencia
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from ARwPL through hybridization; ARwPBA: aposymbiotic strain of Ae. albopictus obtained in
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was found to differ significantly between crosses by one-way ANOVA.

4. Discussion

Newly established associations between Wolbachia and host species may go through
a phase of unstable equilibrium due to genetic conflict between the two organisms [27].
In certain cases, the host can be unsuitable for these symbionts [62], or the infection is
temporarily successful but is lost within a few generations [63]. In other cases, Wolbachia
becomes established and may be apparently neutral to the host [64], may negatively affect
its fitness [65], or enhance it instead [66], but several generations may be necessary for the
stabilization of the symbiosis through selection [47,67].

Negative effects on host fitness due to Wolbachia have been previously reported to
occur, especially in the first generations after the establishment of the infection, and may
affect immature mortality, adult longevity, female fecundity, and egg fertility [32,66,68,69].
Wolbachia can alter these traits through direct interaction with host cytoplasmic and nuclear
components [70] but also indirectly because of the alteration of the microbial community,
which may affect the expression of genes involved in metabolism [71].

In the case of the Ae. albopictus lines tested here, ARwPBN and ARwPBA, the naïve
infection by Wolbachia wPip was found to rapidly establish even though not all individuals
tested positive for the presence of the bacteria. This result could be partly due to the
lack of sensitivity of standard PCR when Wolbachia density is very low and only one
Wolbachia target gene is used [45,72,73], but it may also highlight a gradual process of
coadaptation by selection between Wolbachia and the new genetic background of the two
lines. Indeed, genotypes not favoring the establishment and full maternal transmission of
the infection are expected to be counter-selected and gradually eliminated due to the CI
phenomenon [74]. The complete fixation of the infection by G3 in ARwPBN seems to attest
to a fast accomplishment of this process in this line, but ARwPBA can also reasonably be
expected to reach this goal in a few more generations [40]. Nonetheless, the almost full level
of CI induced by G5 ARwPBA males could indicate that the proportion of Wolbachia wPip-
infected individuals was already closer to 100% than expected based on the PCR results.

The first documented introduction of Wolbachia wPip in Ae. albopictus (in replacement
of the double wAlbA–wAlbB natural infection) caused an initial reduction in female fecun-
dity and egg fertility compared to the wild and aposymbiotic controls, and this fitness cost
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persisted for several generations after the establishment of the symbiotic association [32].
These effects gradually faded over time, due to selection and outcrossing. In fact, at present,
ARwP fitness does not differ significantly from that of wild individuals characterized by
the same genetic background [40]. In contrast, our results demonstrated that Wolbachia
wPip was not responsible for any evident fitness effect in the two hybrid lines compared
to ARwP. The female fecundity and egg fertility of hybrid lines were also found to be not
significantly different compared to the BN line, demonstrating a not significant fitness effect
related to the Wolbachia strain regarding these parameters (Figure S2).

The absence of any significant difference between ARwPL, ARwPBN, and ARwPBA
with regard to immature and adult survival, female fecundity, and egg fertility may suggest
coadaptation of Wolbachia wPip with the host Ae. albopictus over 15 years of coevolution.
This phenomenon has been highlighted before in other systems and can also be very fast
due to selection [75,76].

Nevertheless, it is also possible that ARwP (derived from an Italian wild population
caught in an area north of Rome [32]) and BN (established from individuals collected in
Barcelona), even if collected in geographic areas thousands of kilometers apart, might not
be so distant from a genetic point of view. The COI gene did not show any significant
difference between the mtDNA of the two populations, but this result is not surprising
due to the reduced diversity of Ae. albopictus for COI [59,77]. Therefore, the hypothesis
of genetic similarity between ARwP and BN should be ascertained by including in the
genotyping also nuclear genes, microsatellites, or single nucleotide polymorphisms (SNPs)
that have a higher resolution power [59,78]. If confirmed, this close relationship could
suggest the occurrence of recent exchanges of Ae. albopictus individuals between the two
areas. However, this kind of effort goes beyond the need for a research program aimed
primarily at evaluating the feasibility of an IIT-based control program against Ae. albopictus
in eastern Spain.

As a first step in such a program, the reported hybridization process allowed the
production of two Ae. albopictus lines, ARwPBN and ARwPBA, that: (i) have males capable
of fully sterilizing the wild females without the need for any physical or chemical treatment
or genetic manipulation, (ii) are characterized by a common genetic background in an area
of eastern Spain, and (iii) show traits fully suitable for their long-term maintenance and
mass rearing.

More generally, the reported findings support the suitability of using a hybridization
approach to produce an incompatible Ae. albopictus line. In fact, establishing a new infection
ex novo in a wild population of a vector species through Wolbachia transinfection requires
specific infrastructures and specialized personnel together with a great deal of time. Indeed,
high numbers of microinjection attempts are generally required to succeed (because of
the generally low success rate), and the goal can be jeopardized by causes related to the
suitability of the host, the stability of the infection, and the possible effects of the novel
infection on host fitness [66,76].

Instead, an infection achieved via hybridization has the potential to quicken the process
because a specific host–symbiont association can be obtained, not by injecting Wolbachia,
but by gradually introducing the target genetic background into a Wolbachia-infected
population that already presents ideal characteristics for IIT programs. Furthermore, the
hybridization protocol can be programmed and monitored to obtain the desired result in a
defined time by verifying the key biological parameters to predict the adaptability of the
new association to mass-rearing conditions and its potential as a suppression tool (in terms
of the induced level of CI and male mating competitiveness) [50].

A hybridization approach could also be addressed for the introduction of incompatible
males of gene variants conferring resistance to certain insecticides to increase their survival
in comparison with wild males when released in a target area subjected to insecticidal
treatment. Indeed, concurrent pesticide applications have been suggested as a means to
assist a Wolbachia-based population replacement if the released individuals carry a higher
level of resistance than the resident population [79]. This strategy could also be applied in
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the case of incompatible male releases in the context of an integrated program of vector
control [4,13].

All of these considerations support the efficacy and sustainability of large-scale IIT
programs planned to target a defined area with its specific resident vector population and
may support a broader application of this strategy to be integrated with other control
methods. In the context of the present research, a series of challenges must be addressed to
close the gap between laboratory settings and field implementation. Further studies should
be conducted to ascertain the male mating competitiveness of hybrid lines in comparison
with local wild males under semi-field conditions to evaluate the effectiveness of the
strategy [48]. According to other Wolbachia-based control programs, a safety assessment
study will be also necessary before open field trials [80]. In the case of bi-CI patterns,
the safety of releasing incompatible males, even in the presence of a low percentage of
residual females, has been already demonstrated because the naïve Wolbachia infection is
unlikely to spread in the wild population [40]. However, protocols to eliminate female
contamination need to be considered [37], and all the possible safety concerns regarding
the release of Wolbachia-infected mosquitoes must be evaluated. After that, small-scale
trials under open field conditions should be implemented to demonstrate the potential of
IIT, favor community acceptance, and help to set appropriate release protocols to achieve
efficacy and sustainability [38,39]. All these steps are necessary before moving to large-scale
programs that imply specific mass-rearing facilities and major investments.

Partnerships with public health organizations, ecological monitoring groups and both
public and private mosquito control entities will undoubtedly enhance the scalability and
sustainability of this control method.

5. Conclusions

Our findings demonstrate that the introgression of the genetic background of a wild
population in a Wolbachia-infected line capable of producing incompatible males can be a
fast option to start to evaluate the feasibility of an IIT program. In the case of Ae. albopictus,
this objective can be pursued by crossing populations with different Wolbachia infections
if CI is not full, or by the preliminary establishment of an aposymbiotic line from the
wild-type target to facilitate hybridization.

Both the ARwPBA and ARwPBN hybrid males, derived from these two alternative
outcrossing protocols, showed a 99.9% level of induced CI when crossed with wild females
sharing the same genetic background and without the need for any sterilizing treatment.

The obtained information can serve as a preliminary step to evaluate the effectiveness
of an IIT-based control strategy against Ae. albopictus in eastern Spain and help estimate
the investments needed for a larger-scale open field program. Furthermore, it can provide
the basis for modeling predictions and designing more accurate field experiments aimed
at establishing incompatible male release protocols specific to the target context and inte-
grated with other control measures. Such preliminary studies will contribute to improving
efficacy and saving costs of the overall control program to achieve positive results but also
sustainability in the long term.
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//www.mdpi.com/article/10.3390/insects15030206/s1, Figure S1: GenBank codes for the partial
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and mean egg fertility (right) in Ae. albopictus ARwPL, ARwPBA, ARwPBN, and BN.
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