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Simple Summary: Previous studies following this research allow us to contribute to the importance of
potential distribution models of species and ecological niches. The Anastrepha genus, considered one
of the most important at a quarantine level, demands a constant search for information to understand
different ecological dynamics. We characterised the fundamental niches of four Anastrepha species
in different El Niño–Southern Oscillation (ENSO) episodes (El Niño, El Neutro and La Niña) with
ecological niche modelling in NicheA software 3.0. The results of a comparison of the ellipsoids that
represent the fundamental niche existing for the species showed changes in the El Niño, El Neutro
and La Niña episodes. Furthermore, when making a comparison between Anastrepha species and the
different ENSO climatic episodes, we found that they share great environmental similarity between
them. Finally, our results present different levels of risk of establishment of these species in the
Neotropics, which will allow us to develop efficient plans for integrated pest management.

Abstract: To compare the environmental space of four Anastrepha species in different ENSO episodes
(El Niño, El Neutro and La Niña), we built ecological niche models with NicheA software. We
analysed the fundamental niche and the combined establishment risk maps of these species devel-
oped with the ArcGisPro combine geoprocess. A comparison of the ellipsoids that represent the
fundamental niche existing for the species showed changes in the El Niño, El Neutro and La Niña
episodes. For A. grandis in the El Niño vs. El Neutro episodes, there was a Jaccard index of 0.3841,
while the comparison between the La Niña vs. El Neutro episodes presented a Jaccard index of
0.6192. A. serpentina in the El Niño vs. El Neutro and La Niña vs. El Neutro episodes presented
Jaccard indices of 0.3281 and 0.6328, respectively. For A. obliqua, the comparison between the El
Niño vs. El Neutro and La Niña vs. El Neutro episodes presented Jaccard indices of 0.3518 and
0.7472, respectively. For A. striata, comparisons between the episodes of El Niño vs. El Neutro and La
Niña vs. El Neutro presented Jaccard indices of 0.3325 and 0.6022, respectively. When studying the
comparison between Anastrepha species and the different ENSO climatic episodes, we found that
in the El Niño episode, the comparisons with the best environmental similarity were A. obliqua vs.
A. striata and A. obliqua vs. A. serpentina, with higher Jaccard indices (0.6064 and 0.6316, respectively).
In the El Neutro episode, the comparisons with the best environmental similarity were A. serpentina
vs. A. striata and A. obliqua vs. A. striata, which presented higher Jaccard indices (0.4616 and 0.6411, re-
spectively). In the La Niña episode, the comparisons that presented the best environmental similarity
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were A. obliqua vs. A. serpentina and A. obliqua vs. A. striata, with higher Jaccard indices (0.5982 and
0.6228, respectively). Likewise, our results present the risk maps for the establishment of these species
throughout the Neotropics, allowing us to predict the level of risk in order to develop integrated pest
management plans.

Keywords: Anastrepha grandis; A. serpentina; A. obliqua; A. striata; distribution

1. Introduction

Studies on how environmental conditions vary at different temporal and spatial scales
have increased in recent years [1–3]. It is argued that the use of the word “niche” in an
ecological context has theoretical bases, from 1917 to the present [4–8]. For this reason,
niche studies are constantly updated and evolving, and insect species of the Tephritidae
family, faced with this climatic variability, can vary their establishment patterns since they
inhabit a wide variety of environments [9]. The family Tephritidae, to which the fruit
fly belongs, is the most economically important, comprising approximately 4000 species
distributed in tropical and subtropical areas [10–12]. Those known as fruit flies belong to
various genera, including Dacus, Rhagoletis, Ceratitis, Bactrocera, Anastrepha and Zeugoda-
cus [13,14]. Seven Anastrepha species are economically important in the Neotropical region
due to their wide range of commercial host plants and distribution. These species include
Anastrepha ludens (Loew) (Mexican fruit fly), A. obliqua (Macquart) (the West Indian fruit fly),
A. fraterculus (Wiedemann) (South American fruit fly), A. suspensa (Loew) (Caribbean fruit
fly), A. serpentina (Wiedemann) (Sapotaceas fly), A. striata Schiner (guava fly) and A. grandis
(Macquart) (melon fly) [15]. These flies cause direct physical damage to the fruit pulp due
to larvae and secondary damage caused by the entry of pathogenic microorganisms. There
are also indirect implications, such as quarantine measures and export restrictions, thus
limiting the development of various economies dedicated to fruit production [16–19].

Insects are vulnerable to extreme climate variability and fluctuations in climate com-
ponents, such as temperature and precipitation, during certain periods of time [20]. Heat
waves and seasonal temperature variations affect the development, movement, repro-
duction and behaviour of many organisms [21]. In recent years, insects have become a
good model for evaluating the relationship between variations in environmental temper-
ature and various traits of their life history [22]. This has allowed researchers to predict
their responses to global warming and understand the physiological mechanisms that
allow them to cope with temperature variations, such as changes in respiration, the use
of antioxidants and certain proteins that protect them from heat [23]. Furthermore, the
effects on their life cycles, genetic composition, hybridisation, distribution, and popula-
tion abundance have been determined [24]. This is particularly true for members of the
Tephritidae family, who inhabit a wide variety of environments [10–12]. In recent years, the
production of fruits and vegetables has intensified considerably because of new patterns in
the international economy (characterised by the globalisation of markets and technological
development), changes in consumption patterns and competition between the different
actors involved [25]. The harvested area of fruits and vegetables has grown worldwide in
the last 30 years, reaching an average annual growth rate (AGR) of 3.33% between 1990
and 2019 [26–28].

Recent studies by the Atlantic Oceanographic and Meteorological Laboratory (AOLM)
of the National Oceanic and Atmospheric Administration (NOAA) project variations in the
El Niño–Southern Oscillation (ENSO) cycle due to the accumulation of greenhouse gases.
The greenhouse effect predicts global climate impacts on temperatures and precipitation
towards the second half of the 21st century [29]. Furthermore, a future pattern of changes in
sea surface temperature (SST) equal to the La Niña phenomenon will increase the zonal tem-
perature gradient and zonal advective feedback in the central equatorial Pacific, potentially
increasing the frequency and amplitude of strong events of the El Niño phenomenon [30].
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It is expected that, over the next few years, climate variability will cause alterations in the
geographical distribution of insects because of the rearrangement of climatic zones [31,32].
Therefore, the magnitude of these impacts will be associated with the phenomenon of
climate variability. The regions of Latin America, South America and the Caribbean are
among the most vulnerable areas to climate variability since the majority of the species that
live there are endemic or restricted to a specific tropical ecosystem [33–36]. Evaluations
of how the environmental space available for a species can change in the face of climate
variability can be used to improve integrated pest management (IPM) plans and production
systems in different countries. Therefore, it is relevant to understand the impact of the
ENSO on the ecological niche of Anastrepha species in the Neotropics and Panama. Due to
the above, we have developed work on the potential distribution of these species in order
to form groups of recordings on this topic and strengthen their applications in the scientific
field [37].

2. Materials and Methods
2.1. Investigation Area

The study area was defined in the American Neotropics due to the economic impor-
tance of fruit activities and the occurrence of the species to be studied [8,38–40]. For spatial
analyses, we used the ecoregion maps of the World Wildlife Fund (WWF), and the extension
area between latitudes 30◦ N and 30◦ S was defined [37,41–45].

2.2. Species Presence

We used four species of the genus Anastrepha as study models (A. grandis, A. serpentina,
A. obliqua and A. striata) due to their importance in horticulture at the Neotropical level
and the need to understand their environmental requirements [37,46–48]. We obtained
records of the presence of these species from the following sources: the Global Biodiversity
Information Facility (GBIF), Species Link, the Centre for International Agricultural Bio-
science (CABI) and the National Directorate of Plant Health of the Ministry of Agricultural
Development (MIDA) [37,49,50].

2.3. Climate Data

We analysed climate information in the Pacific Ocean from agencies specialising in
atmospheric variability phenomena, which are the cause of uncertainty in environmental
patterns today [37]. The agencies included NOAA in the United States (National Weather
Service, Los Angeles, CA, USA, 2018), the Australian Government Meteorological Office
(Bureau of Meteorology, Melbourne, Australia, 2018) and the Tokyo Climate Center in
Japan (Japan Meteorological Agency, Tokyo, Japan, 2019). The information analysed from
2000 to 2019 allowed these 3 agencies to reach a consensus: 5 El Niño episodes, 3 Neutral
episodes and 6 La Niña episodes [37]. These episodes were characterised by four rasters
(minimum, maximum, medium and range), for which each of the environmental layers
included the improved vegetation index (EVI, monthly Modis-Terra MOD 11C2v006), the
temperature of land surface (LST, Modis-Terra MOD 11C3v006 monthly), the near-real-time
precipitation rate (NRTPR, 3 h TRMM 3B42RTv7) and the normalised differential vegetation
index (NDVI, Modis-Terra MOD 11C2v006 monthly). We selected these variables based on
knowledge of the biology and natural history of the species, and 16 environmental layers
were created for each episode with a spatial resolution of 0.25◦ or 25 km at the equator,
allowing us to evaluate the behaviour of the ENSO cycle episodes [51–59].

2.4. Characterisation of the Existing Fundamental Niche

To compare the environmental space of the four Anastrepha species in the different
ENSO episodes (El Niño, El Neutro and La Niña), we built ecological niche models with
NicheA software ver 3.0, defining them as ellipsoids of minimum volume on an envi-
ronmental background represented by a cloud of points in a three-dimensional grilled
plane. NicheA first represents the studied space and constructs ellipses with the available
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occurrences as approximations of all the suitable environments of a species [60,61]. By
projecting this ecological background with the 16 environmental variables of each episode,
8 datasets were constructed using the following criteria for selection: all variables (set 1);
a Pearson’s correlation coefficient analysis to reduce collinearity (set 2) [57], where vari-
ables with a correlation value >|0.8| were removed using the corrplot package of R 3.6.0
statistical software [58,59]; a Jackknife analysis in MaxEnt [62] to assess the individual
contribution of variables without spatial autocorrelation to the models, which included
variables contributing ≥80% (set 3) [59]; variables with a variance inflation factor (VIF)
<10 (set 4); all variables related to the NDVI (set 5); all variables related to the EVI (set 6);
all LST-related variables (set 7); and all variables related to precipitation (set 8). The en-
vironmental dataset that met the selection of optimal parameterisations according to the
Kuenm package [63] was sectioned to represent the environmental space of the species in
each climatic episode. Subsequently, these were cut to the extent of the Neotropical region,
being individually normalised to avoid the effect of the scale of each of them in the 3D
representation (sequence in NicheA software [64]: >> Toolbox >> Utility Functions >> Nor-
malisation/standardisation of variables), and with these, a principal component analysis
(PCA) was created (sequence in NicheA software: NicheA >> Toolbox >> Background data
> Component analysis main). Finally, this PCA was uploaded to NicheA to generate the
background in the 3D representation (sequence in NicheA software: NicheA >> Toolbox >>
Background data >> Draw Background Cloud Folder).

When characterising the niches of the species in each of the ENSO episodes, the
occurrences were loaded (sequence in NicheA software: NicheA >> Toolbox >> Niche
appearance >> Generate N(s) from occurrences) to design the corresponding folder that
contained the niche attributes for each species in each context. Afterwards, the resulting
folder was loaded in the background (sequence in NicheA software: NicheA >> Toolbox
>> Niche Appearance >> Open N(s)) to graphically describe the realised niche through a
minimum-volume ellipsoid representing the realised niche, and the points represent the
environmental values of the episodes. To evaluate whether there were changes in the niches
of the species, in the different episodes evaluated, the environmental spaces of each of
these species built in the different episodes were set up on the background of the El Neutro
episode, which was taken as a reference for all species comparisons. The result was three
ellipsoids of minimum volume for each species: one for the El Niño episode, one for La
Niña and another for average Neutral conditions. The comparison was performed using
the niche overlap function (sequence in the NicheA software: NicheA >> Toolbox >> Niche
Analysis Tools >> Quantify Niche Overlap), which performs paired contrasts by calculating
the volumes of the ellipsoids and the portion of these that overlap in the multidimensional
space. In addition, a modified Jaccard index was used to quantify niche overlap.

2.5. Establishment Risk Maps

Establishment risk maps were created with the product of binary maps that repre-
sented the potential distribution of each species in each climate episode [37,65–68]. By
developing combined maps using the ArcGisPro combine geoprocess [69,70], this process
generated a table of information for each created raster. Using the combinations of the
Neutral episode, which is the one that presents the greatest number of combinations, the
list of classes was produced and used to reclassify the three rasters using the reclassify
geoprocess. An attempt was made to establish an order based on the names of the species
(grandis, obliqua, serpentina and striata) according to the order in which they were combined.
This established 16 possible combinations, which were then numbered for reclassification.
New reclassification values were obtained, with which the shapes or layers were reclassi-
fied. When converting the classified raster layers to vector or shape file format to better
work on the arrangement or grouping of classes, the raster to polygon geoprocess was
used. When converting to vector data or shape files, thousands of polygons were generated
for the 16 classes. After obtaining the shape files, the generated polygons were dissolved
using the dissolve geoprocess. New fields were then added to the data tables of the three
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dissolved shapes to describe the 16 classes and to create new maps for the Neotropics and
Panama [71–73].

3. Results

The comparison of the ellipsoids that represent the fundamental niche existing for the
species showed changes in the El Niño, El Neutro and La Niña episodes. For A. grandis
in the El Niño vs. El Neutro episodes, there was a Jaccard index of 0.3841, while the
comparison between the La Niña vs. El Neutro episodes presented a Jaccard index of
0.6192 (Figure 1A). Anastrepha serpentina in the El Niño vs. El Neutro and La Niña vs. El
Neutro episodes presented Jaccard indices of 0.3281 and 0.6328, respectively (Figure 1B).
For A. obliqua, the comparison between the El Niño vs. El Neutro and La Niña vs. El
Neutro episodes presented Jaccard indices of 0.3518 and 0.7472, respectively (Figure 1C).
For A. striata, comparisons between the episodes of El Niño vs. El Neutro and La Niña vs.
El Neutro presented Jaccard indices of 0.3325 and 0.6022, respectively (Figure 1D).
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Figure 1. Estimated ecological niche models for Anastrepha grandis (A), A. serpentina (B), A. obliqua (C)
and A. striata (D) and their superposition in environmental space. The axes are the main components
of the 16 bioclimatic variables that describe the background of average conditions of the projection
area, and the ellipsoids represent El Niño (blue), El Neutro (yellow), La Niña (green) and niches in
the respective average conditions.

When making the comparison between Anastrepha species and the different ENSO
climatic episodes, we found that in the El Niño episode, the comparisons with the best
environmental similarity were A. obliqua vs. A. striata and A. obliqua vs. A. serpentina,
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with higher Jaccard indices (0.6064 and 0.6316, respectively) (Figure 2A). In the El Neutro
episode, the comparisons with the best environmental similarity were A. serpentina vs.
A. striata and A. obliqua vs. A. striata, which presented higher Jaccard indices (0.4616 and
0.6411, respectively) (Figure 2B). In the La Niña episode, the comparisons that presented the
best environmental similarity were A. obliqua vs. A. serpentina and A. obliqua vs. A. striata,
with higher Jaccard indices (0.5982 and 0.6228, respectively) (Figure 2C).
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Figure 2. Estimated ecological niche models for Anastrepha species and overlap in environmental
space. The axes are principal components of 16 bioclimatic variables that describe the background
of average conditions of the El Niño (A), El Neutro (B) and La Niña (C) projection areas, and the
ellipsoids represent the species A. grandis (yellow), A. serpentina (green), A. obliqua (blue) and A. striata
(red) under the respective average conditions.

When analysing the risk maps for the neotropics, in the El Niño event, the high risk
levels in the combination of A. grandis, A. obliqua and A. striata occurred in central Mexico,
central Guatemala, the western coastal area of Colombia, eastern Brazil, coastal areas of
Peru and the central area of Argentina. The combination of A. grandis, A. serpentina and
A. striata occurred in western Guatemala, central Colombia, southern Peru, western central
Bolivia, southeastern Brazil, southern central Uruguay, central Chile and the central part of
eastern Argentina. The combination of A. obliqua, A. serpetina and A. striata was present
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in points in the north, west and south of Mexico, the west coast of Guatemala, north
Nicaragua, north Costa Rica, central Panama, north Colombia and Venezuela, central and
southern Brazil and northern central Argentina. The very high risk level of establishment
in all combinations of A. grandis, A. obliqua, A. serpentina and A. striata was present in
southeastern Mexico, Guatemala, Belize, northern Honduras, Nicaragua, northern Costa
Rica, much of Panama, Colombia, Venezuela, Ecuador, Peru, Guyana, Suriname, Brazil,
southern Bolivia, Paraguay, northern Argentina and Uruguay (Figure 3A).
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Figure 3. Combined risk maps of establishment for Anastrepha species in the American Neotropics,
in episodes of El Niño (A), El Neutro (B) and La Niña (C). The legend specifies the following:
drawing—border of countries, colours—Anastrepha species, numbers—level of risk of establishment,
and united letters—different species. Synthesis: grey—No Data, black—0, NP—No Presence; letters:
GR—A. grandis, OB—A. obliqua, SE—A. serpentina, ST—A. striata. Numbers with different colours
represent the level of establishment risk of the species: 1, green—low establishment risk; 2, low to high
shades of blue—medium establishment risk; 3, low to high shades of orange—high establishment
risk; 4, red—very high establishment risk.

In the El Neutro event, a high risk of establishment was presented by the combination
of A. grandis, A. obliqua and A. serpentina in coastal areas of the Yucatán and western Mexico,
central Guatemala, central eastern Panama, northern points in Colombia and Venezuela,
northern and southern Brazil, much of Guyana, and southern Suriname. The combination
of A. grandis, A. obliqua and A. striata occurred in central Mexico and Guatemala, northern
Peru, eastern Brazil, southern Bolivia and a large part of central western Argentina. The
combination of A. grandis, A. serpentina and A. striata occurred in northwest Guatemala,
southern Peru, much of Uruguay, and eastern Argentina, and the combination of A. obli-
qua, A. serpentina and A. striata occurred in much of Mexico, northern Guatemala, Belize,
Honduras, central Salvador and Nicaragua, central Costa Rica, western central Panama,
northern and central Colombia and Venezuela, western Ecuador, the eastern centre of Brazil
and eastern Argentina. A very high risk level of establishment in the Neotropics was found
with the combination of the four species in southern Mexico, central Guatemala and Belize,
a large part of Honduras and Nicaragua, central Costa Rica and Panama, a large part of
central and south of Colombia and Venezuela, central Guyana, Suriname, French Guiana,
north-central and southern Brazil, east-central Peru, north-central Bolivia, southeastern
Paraguay, north-central Argentina and northwest Uruguay (Figure 3B).

In the La Niña event, a high risk of establishment was presented by the combination
of A. grandis, A. obliqua and A. striata in south-central Mexico, central Guatemala, south-
west Colombia, northeast and coastal areas of Peru and Chile, southwest Brazil, much of



Insects 2024, 15, 331 8 of 16

Argentina, and west-central Uruguay; by the combination of A. grandis, A. serpentina and
A. striata in central Chile, east-central Argentina, southern Uruguay and Brazil; and by
the combination of A. obliqua, A. serpentina and A. striata in coastal and central areas of
Mexico, coastal areas of Guatemala, Salvador, northern Nicaragua, central and northwest
Costa Rica, central Panama, central-northern Colombia and Venezuela, southwest Ecuador,
central-west and east Brazil, southern Bolivia, much of Paraguay, and northern Argentina.
Combinations of a very high risk of establishment with all species were found in central
and southern areas of Mexico; a large part of Guatemala, Belize, Honduras, Nicaragua,
Costa Rica and Panama; northern and southern Colombia and Venezuela; a large part of
Guyana, Suriname, and French Guiana; much of north-central and southern Brazil; Peru;
Bolivia; southern Paraguay and east-central Brazil (Figure 3C).

By analysing the cut for Panama, it was found that medium risk levels of establishment
were presented in the El Niño episode with the combination of A. grandis and A. serpentina
in western Panama (Bocas del Toro). A high irrigation level was observed with the combi-
nation of A. grandis, A. obliqua and A. serpentina in the coastal centre in Bocas del Toro, the
north of Colon, and San Blas; with the combination of A. grandis, A. serpentina and A. striata
in the northwest part of Chiriquí and southwest Bocas del Toro; and with the combina-
tion of A. obliqua, A. serpentina and A. striata in central-west Bocas del Toro, south-central
Chiriquí, the central zone in Veraguas, Herrera, Los Santos, and coasts of Coclé and Panama
Oeste. Very high establishment risk levels were found with all combinations of species in
the provinces of Darién, Panamá, Colon, Panamá Oeste, north of Coclé, north and south of
Veraguas, south of Los Santos, and much of Bocas del Toro and Chiriquí (Figure 4A).

In the El Neutro episode, the level of low risk of establishment was presented for
A. serpentina in the southwest of Bocas del Toro, and a medium risk level was presented
by the combination of A. grandis and A. striata in the north centre of Los Santos, south of
Herrera and the central coast in Panama. A high level of establishment risk was presented
by the combination of A. grandis, A. obliqua and A. serpentina in east-central Bocas del
Toro, north and south-central Veraguas, southwest and northeast Colon, north-central
Panama and San Blas, and some points of north and south Darién and by the combination
of A. obliqua, A. serpentina and A. striata in southwest and east Bocas del Toro, north-central
and south Chiriquí, central Veraguas, northwest Coclé, south Los Santos, the coastal centre
in Panama, and northwest Darién. A very high risk of establishment in all species occurred
in a large part of the territory of Chiriquí, Bocas del Toro, Veraguas, Coclé, Herrera, Los
Santos, Western Panama, southeastern Panama and north-central Darién (Figure 4B).

In the La Niña episode, a low risk of establishment was presented by A. serpentina
in the southwest of Bocas del Toro, and a level of medium risk was presented by the
combination of A. grandis and A. striata in the centre of Coclé. A high irrigation level was
presented by the combination of A. grandis, A. obliqua and A. serpentina in northeast and
west Colon, central San Blas, points in central, east, and west Panama, and north-central
Darién. A very high risk of establishment for all species occurred in a large part of Bocas
del Toro, Chiriquí, north and south Veraguas, south Los Santos and Herrera, a large part of
Coclé, Panama Oeste, Panama and Darién (Figure 4C).
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Figure 4. Combined maps of risk of establishment for Anastrepha species in Panama in episodes of El
Niño (A), El Neutro (B) and La Niña (C). The legend specifies the following: white quadrant—border
of provinces, pink quadrant—Colombia, cream quadrant—Costa Rica, colours—Anastrepha species,
numbers—establishment risk level, joined letters—the different species. Synthesis: grey colour—No
Data; black colour—0; SP—No Presence; letters: GR—A. grandis, OB—A. obliqua, SE—A. serpentina,
ST—A. striata. Numbers with different colours represent the level of establishment risk for the species:
1, green—low establishment risk; 2, low to high shades of blue—medium establishment risk; 3, low
to high shades of orange—high establishment risk; 4, red—very high establishment risk.
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4. Discussion

Changes in the distribution and niche of species in relation to climatic variability and
anthropogenic effects are occurring in leaps and bounds; therefore, studies on this research
topic are becoming increasingly important [74–77]. We characterised the changes in the ex-
isting fundamental niches for four species of the genus Anastrepha with occurrences during
El Niño, El Neutro and La Niña episodes and found that these species have the potential
to occupy different ecological spaces depending on the climatic ENSO scenario [37,78–80].
It is possible that aspects inherent to the biology of different Anastrepha species, such as
the interaction with biotic variables, such as host plants, competing organisms, parasitoids,
and predators, and local abiotic elements of the area accessible for the establishment of the
insect, influence the niche breadth in response to the climatic variations of a locality [22,76].
There is an information gap associated with the host of the native species of Anastrepha in
Central America since these native species have been little studied and their parasitoids are
unknown [81]. There are a limited number of investigations that evaluate biotic and abiotic
interactions; in Panama they do not exist, and in other regions of the Neotropics they are
few (Mexico and Colombia) [82]. Our results for the four species showed changes in the con-
figuration of the ellipsoids, as these species can adapt to survive. With these environmental
variations regulating their physiological functions, depending on the ecological zone and
according to the climatic episode, they could compete for resources in certain locations
that they were not previously established [22]. The results demonstrated that the niches
of the species evaluated share certain similarities in the shape and size of the occupied
environmental space represented by the ellipsoids. These overlaps increase in El Neutro
vs. La Niña events, in which these species manage to improve their fitness mainly via
reproduction (longevity, better oviposition and fertile eggs) [77,83,84] and by being located
in geographical areas in the Neotropics with stable temperature and environmental humid-
ity conditions and with great biodiversity of specific and temporary host plants [85–87].
El Neutro vs. El Niño events presented similarities in the niche volume, which changed,
decreasing the overlap. These ellipsoids represented only a portion of the fundamental
niche due to the increase in temperatures and dry and arid conditions (such as desert areas,
steppes or the Andes Mountain range), with scarce rainfall that restricts the expansion of
species by affecting their reproductive biology at various stages (death of adults) and a
decrease in the range of specific host plants [77,88,89]. On a practical level, these changes
presented in the different climatic events will guide and strengthen decision making in
IPM plans in the case of various species of fruit flies of the genus Anastrepha, which are
of interest to various institutions associated with pest management at the international
level [90]. Some fruit fly species, such as A. striata, can present a certain plasticity to changes
in climatic conditions, maintaining or expanding their environmental space in different
episodes and becoming a more competitive species for resources [22,91].

The overlap between the studied fruit fly species during the different ENSO episodes
presented niches within an environmental space defined according to their ellipsoids. Some
presented greater or lesser overlap, indicating that a certain number of species are affected
during the El Niño and El Neutro episodes by competing for the same trophic resources
if they maintain the same specific or alternative host plants and if they are influenced by
the same climatic conditions (temperatures between 20 and 30 ◦C, average humidity of
75%) [22,91]. Under these abiotic and biotic precepts, A. obliqua and A. striata maintain
their greater overlapping capacities in different geographical areas based on Hutchinson’s
theory of duality, according to the ellipsoid corresponding to the species [89,92]. In the
La Niña episode, species such as A. serpentina presented changes in the overlap, which
could be due to high temperatures (35 ◦C), greater humidity and excessive precipitation
at an ecological level [92,93]. All the information generated and compiled allows contin-
gency plans to be organised for the control of insect pests, thereby optimising regional
economic resources [94]. Furthermore, previous studies demonstrate that these species
have a high degree of environmental suitability in the neotropics, thus corroborating the
present study [37].
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Databases of insect species at the international level need to establish projects that
maintain updated research on this topic to strengthen the preventive control of these
Anastrepha species [95–98]. The maps that present a very high risk of the establishment
of all fruit fly species in the El Niño episode agree with the low levels of precipitation
and average temperatures in tropical and subtropical zones. This could be due to the cli-
matic variability that causes high levels of climatic, social and economic uncertainty in the
American geography, and the availability of fruit hosts at the time that would increase the
establishment risk [98–100]. As these climatic variables are among the most important at a
biological level for Anastrepha species, they tend to influence their expansion or contraction
on an ecological level, which will affect fruit plots and commercial export crops at harvest
and postharvest, which are the dates of the greatest commercialisation [21,77]. The high
degree of climate uncertainty in recent years with the El Niño and La Niña phenomena
projects various in-depth analyses regarding the ENSO episodes that justify the study of
models in short periods due to the constant changes in the temperatures of the Pacific
Ocean [21,99]. Apparently, these changes in climatic patterns (precipitation and stable, av-
erage temperatures) increase the level of establishment risk for Anastrepha species, enabling
them to find suitable areas for their reproduction [21–102]. The establishment risk maps
presented will allow institutions, researchers and producers to be guided in specific areas
of the Neotropics to design control plans to prevent the potential establishment of their
populations according to a greater or lesser level of intensity of the environmental variable
on site [100,102,103].

The fly species evaluated here have a high risk of establishing themselves throughout
Panama due to a more stable climate throughout the different episodes of the El Niño
phenomenon and its limited territorial geography with a fairly homogeneous flora that
facilitates the expansion of these species, except in very dry and warm places in certain
months of the year when the species A. grandis would not thrive [37,104,105]. These results
indicate that the fruit fly species of the genus Anastrepha do not have geographical barriers
in this region of the world, but their dispersion is limited by small changes in the availability
of environmental space caused by the environmental variability of the ENSO cycle. This can
be analysed with niche studies on small scales, which could help make better prevention
decisions that alert the institutions responsible for phytosanitary safety and food safety
policies of a country and thus optimise time and money [106].

5. Conclusions

The results of this research make it possible to guide and manage preventive phy-
tosanitary plans in the IPM of species of fruit flies of the genus Anastrepha throughout the
Neotropics in the face of climatic variability of the ENSO cycle. In addition, this research
guides future basic and applied research work on other insect pests that attack fruit trees of
interest to the international scientific community whose studies are limited to niche topics.
In recent years, climate variability has changed the perspective in the field of research, and
this methodological approach helps to materialise pest control plans throughout the world.
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