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Simple Summary: This study shows the common occurrence of entomopathogenic fungi (EF) in the
habitats of Ixodes ricinus, which indicates the necessity to consider EF as a potential factor influencing
the tick population. However, the obtained results highlight the need for further research to fully
understand the interaction between soil microorganisms and tick occurrence.

Abstract: (1) Background: In addition to the microclimate, host availability, and tick microbiota,
soil environmental microorganisms can affect tick populations. This study aimed to (1) determine
the presence and diversity of entomopathogenic fungi (EF) in forests, where ticks are abundant,
and (2) estimate the effectiveness of the isolated EF strains against Ixodes ricinus. (2) Methods: EF
were isolated using the trap insect method from soil collected from tick sites. A bioassay was used
to estimate the effectiveness of EF against ticks. (3) Results: The presence of EF was found in all
tested forest habitat types. A total of 53 strains belonging to the genera Metarhizium, Beauveria, and
Isaria were isolated. All the six strains subjected to the bioassay showed potential efficacy against
both adult and nymphal stages of I. ricinus; however, the strains differed in their effectiveness. The
most effective isolate against I. ricinus was the soil environmental strain of Metarhizium anisopliae.
(4) Conclusion: The study indicates that tick habitats can be the source of entomopathogenic fungi,
which have a lethal effect on ticks, as demonstrated in preliminary laboratory tests with I. ricinus.
However, for practical use, extensive field tests and further research on application methods and
long-term effects are necessary to develop effective and sustainable tick management strategies.

Keywords: entomopathogenic fungi; Metarhizium; Beauveria; Ixodes ricinus

1. Introduction

Ticks (Ixodida) are vectors of many pathogens and pose a serious threat to human
and animal health. In Europe, Ixodes ricinus is the most abundant tick species, with the
greatest role in spreading a wide variety of pathogens [1–3]. In recent years, research
has mainly focused on molecular methods of pathogen detection and characterization,
while the basic biology and ecology of I. ricnus have been relatively neglected [4]. There
is still a knowledge gap related to the factors affecting ticks during the non-parasitic life
phase [5]. Meanwhile, understanding the biotic and abiotic factors that influence the
tick population is key to developing effective control strategies and reducing the risk of
pathogen transmission [6,7]. The low survival rates of the different life stages (about 5%
of eggs, 10% of larvae, and 20% of nymphs) indicate the existence of natural mechanisms
regulating their populations [8]. I. ricinus spends the vast majority of its life, >99%, as
a free-living (off-host) organism [4]. During the off-host phase, including the engorged
phase after detaching, molting, and the unfed phase, ticks are particularly exposed to
external environmental factors, including temperature and saturation deficit. To avoid
dehydration, they take shelter in the deep leaf litter close to the soil surface [5]. Factors
within the soil ecosystem, like slope aspect, hydrology, and soil texture, influence off-host
tick survival. Ticks are also influenced by biotic factors, including plants, insectivorous
vertebrates, soil-dwelling arthropod predators, and the soil microbiota [5,9]. In the soil
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environment, ticks can come into contact with potentially lethal entomopathogenic fungi
(EF) spores because forest soils provide a convenient habitat for EF [10]. Entomopathogenic
fungi play a crucial role in limiting arthropod populations. They can be used to suppress
arthropods, including insects and, as mycoacaricides, mites and ticks of economic, medical,
and veterinary importance [11]. Moreover, several tick species are naturally infected by
EF [12,13].

The lethal effects of EF vary depending on the developmental stage of ticks, and EF
have shown the ability to control these vectors under both laboratory and field condi-
tions, but the performance of these fungi as control agents is highly strain specific and
requires further research [14]. Furthermore, there is a notable degree of genetic variability
within a single entomopathogenic species between isolates from disparate geographical
locations [15–17]. Entomopathogenic fungi produce enzymes, such as proteases, chitinases,
and lipases, that degrade host cuticle constituents (proteins, chitin, and lipids), thereby
facilitating hyphal penetration. Furthermore, some EF species are capable of producing
toxic compounds, including beauvericin, destruxin, bassianolide terpenes (trichocaranes
and fumosorinone), lactone compounds (cepharosporolides), acids (dipicolinic acid and
oxalic acid), and others [18–21]. However, not all fungal species have the same ability to
produce enzymes or toxins in terms of diversity, quantity, and activity. EF are considered
to be pathogens that are non-specific and can infect both mites and insects. However,
they have not been shown to develop specificity against ticks [22]. Mortality rates are also
generally higher in laboratory studies than in the field [23]. It is worth emphasizing that
locally isolated entomopathogenic fungi are better adapted to the natural conditions of
their geographical locations [24]. Therefore, it is important to obtain new, locally occurring
isolates, particularly from tick sites. These isolates are essential in developing effective
biocontrol agents for the native species of these arthropods. It is important to note that
research has demonstrated that certain strains of fungi, including Metarhizium anisopliae
and Beauveria bassiana, may display alterations in virulence following prolonged laboratory
cultivation. It has been proposed that these changes could potentially be mitigated by
periodic re-isolation of the fungi from the field or, alternatively, by using preservation
techniques that minimize genetic alterations [24].

The efficacy of entomopathogenic fungi under laboratory conditions against various
tick species and life stages and in reducing the number of eggs laid by infected females
has been found in many studies [22,25–30]. Many studies have also found that ento-
mopathogenic fungi can effectively reduce the abundance of ticks in the wild. The most
extensively studied entomopathogenic fungi for the biological control of tick abundance
are Metarhizium anisopliae and Beauveria bassiana [31]. However, research on EF efficacy
mainly focuses on tick species that are not found in Europe, such as Ixodes scapularis,
Rhipicephalus microplus, Amblyomma americanum, and Dermacentor variabilis [27,32,33]. Data
assessing the efficacy of entomopathogenic fungi against the most important tick species in
Europe, particularly Ixodes ricinus and Dermacentor reticulatus, are limited [34–37]. Previous
studies on the effects of EF on I. ricinus have mainly focused on the larvae and nymphs of
this species [34,35], engorged females [36], and unfed adults [37]. Moreover, research on EF
focuses mainly on identifying potential biological control agents and less on the natural
distribution of EF in soils and interactions with ticks [5].

Therefore, the aim of the study was to (1) determine the presence and diversity of
entomopathogenic fungi (EF) in forests, where ticks are abundant, and (2) estimate the
efficacy of EF isolates against Ixodes ricinus.

2. Materials and Methods
2.1. Study Area

Field surveys were conducted in three forest habitat types classified in Poland: broadleaf
forest (BF), mixed broadleaf and coniferous forest (MBCF), and coniferous forest (CF). The
forest habitat type was determined using land cover maps available in the Forest Data
Bank (https://www.bdl.lasy.gov.pl/portal/mapy, accessed on 24 April 2019). Finally, in the
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Miękinia Forest District of Lower Silesia, SW Poland, 9 sites (3 sites in each forest habitat type)
harboring I. ricinus [38] were selected for the study. All sites were located within the forest
complex and, in some cases, close to each other, within a few hundred meters, to avoid ecotone
effects. The detailed characteristics of the sites have been described by Dyczko et al. [38].

2.2. Soil Sampling

To isolate entomopathogenic fungi, soil samples were taken from the tick sites. From
each site, four bulk soil samples weighing approximately 1 kg were collected from a depth
of up to 15 cm. Each bulk sample was a mixture of five primary samples taken from evenly
spaced points, including four corners of the field and one from the center. Each soil sample
was collected using a disinfected metal shovel to prevent cross-contamination. The soil
samples were placed in individual plastic buckets and transported to the laboratory. They
were then sieved through a 2 mm sieve to remove larger roots and stones. The prepared
soil samples were stored at 4 ◦C for up to 4 weeks before further microbiological testing
according to Pérez-González et al. (2014) [39]. A total of 72 soil samples were collected
from nine locations during the 2018 and 2019 seasons.

2.3. Isolation of Entomopathogenic Fungi

Entomopathogenic fungi were isolated from the soil samples collected using the trap
insect method (Zimmermann, 1986) with larvae mealworm (Tenebrio molitor) (Figure 1) [40].
The procedure involved placing ten T. molitor larvae on 80g of the tested soil sample, which
was then moistened with sterile distilled water and placed on sterile Petri dishes. The dishes
were stored in the dark at 20–22 ◦C. During the initial 3 days, the plates were inverted
every 24 h to encourage larval movement within the soil and enhance the probability of
contact with fungal spores. If required, sterile distilled water was used to moisten the soil.
The evaluation of larval infection by entomopathogenic fungi was conducted every 3 days
for a period of 2 weeks or until all larvae had perished [41]. Dead, infected larvae were
transferred and incubated in humid chambers, which were sealed sterile Petri dishes lined
with sterile moist filter paper. This was done to increase mycelial growth and sporulation
on the insect body surface. The mycelium from the insect cuticle was then stab-inoculated
using a sterile dissecting needle on SAB (Sabouraud) medium with chloramphenicol. This
medium inhibits the growth of bacteria present in the tested sample, allowing for fungal
growth. To obtain pure sporulating colonies, isolates were inoculated onto potato dextrose
agar (PDA) medium. The fungal isolates were stored on slants with an appropriate medium
under refrigerated conditions. They were maintained with a transfer series. The fungi were
initially identified to the genus using a key for determining entomopathogenic fungi [42]
based on the observation of morphological features, including macro- and microscopic
images, using a light microscope. Preparations for microscopic observation were stained
with lactophenol (Sigma, Burlington, MA, USA).
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2.4. DNA Extraction

Fungal conidia were obtained using the trap insect method from one or two in-
fected T. molitor larvae from each soil sample. DNA was extracted from pure sporulating
colonies. DNA extraction was performed according to the methodology described by Ke-
pler et al. [43]. Conidia were inoculated into small Petri dishes (3 cm diameter) containing
PDA medium. The Petri dishes were then incubated for 7 to 10 days without access to
light at 23 ± 2 ◦C. After the incubation period, the conidia were scraped from the medium
using a scalpel blade and then transferred to 2 mL microtubes (in accordance with the
isolation instructions provided in the commercial kits used). The resulting supernatant was
transferred to a sterile tube and stored at −20 ◦C until further analysis. The extracted DNA
was used as a template for polymerase chain reaction (PCR).

2.5. Molecular Identification of Entomopathogenic Fungi

The primer pair ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) and ITS5 (5′-GGAAGT
AAAAGTCGTAACAAGG-3′) [39] was used to amplify the fungal internal transcribed
spacer (ITS). The reaction mixture for a single sample had a volume of 25 µL: 12.5 µL
2×PCR Mix Plus (A&A Biotechnology, Gdansk, Poland), 1.25 µL of each primer, 7 µL of
sterile nuclease-free water, and 3 µL of template DNA. PCR conditions included initial
denaturation at 95 ◦C for 3 min. The protocol for PCR amplification involved 35 cycles of
denaturation at 95 ◦C for 30 s, primer annealing at 45 ◦C for 1 min, extension at 72 ◦C for
1 min, and a final extension at 72 ◦C for 5 min.

PCR products were separated on 1.5% agarose gel with the addition of SimplySafe
(Eurx, Gdańsk, Poland). The results of the electrophoretic separation were visualized under
UV light and stored on computer memory using Quantity One Basic (Bio-Rad, Hercules,
CA, USA). A positive reaction was defined as the presence of a product of approximately
600 bp [39] The DNA of positive samples was purified using a DNA purification kit
(GenoPlast Biochemicals, Rokocin, Poland) according to the manufacturer’s protocol, and
nucleotide sequences were determined by a specialized company (Genomed, Warsaw,
Poland). Obtained nucleotide sequences were compared with sequences available from
the National Center for Biotechnology Information (NCBI) https://blast.ncbi.nlm.nih.gov/
Blast.cgi (accessed on 13 March 2023). The sequences have been deposited in the GenBank
database and can be accessed via the following accession numbers: PP713035-PP713040.

2.6. Tick Collection for Bioassays

Tick specimens used in the bioassay were collected from vegetation in forest areas
in Lower Silesia during the peak spring activity period of I. ricinus in both 2018 and 2019.
Ticks were collected on dry and windless days between 9:00 and 15:00 using standard
flagging methods and placed in plastic containers with a green leaf to maintain proper
humidity conditions. The collected specimens were kept refrigerated at 6 ± 2 ◦C until the
bioassay was performed, with a maximum storage time of 14 days. A total of 2160 ticks
identified as I. ricinus were used, comprising 720 females, 720 males, and 720 nymphs.

2.7. Sporulation Test and Bioassays

Biological tests were conducted under laboratory conditions to assess the efficiency of
isolated entomopathogenic fungi against I. ricinus. Before the bioassay, all fungal strains were
cultured on PDA medium in standard 90 mm Petri dishes at 22 ◦C for 3 weeks [29,44]. The
mature colonies were then scraped into 0.1% Tween 80. The entire pellet was centrifuged at
4000 rpm for five minutes to separate the spores (upper fraction) from the filaments. This
was followed by a series of dilutions of the resulting suspensions (10−1, 10−2, 10−3). The
concentration of spores from the diluted sample (10−2 or 10−3) was measured in a Fuchs–
Rosenthal chamber.

Before conducting the bioassay, a spore germination test was carried out. The prepared
suspension (1 mL) was incubated in PDA medium at room temperature for 18 h. The
ratio of germinating to non-germinating spores (%s) was determined using the formula:
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%s = (gs/ngs) × 100 (%), where gs represents the number of germinating spores and ngs
represents the number of non-germinating spores. Only strains with a germination rate of
over 90% were used in the bioassay.

The lethality of each strain was tested by immersing an I. ricinus adult or nymph in a
suspension of spores [44,45]. To remove any external contaminants from the ticks, they were
washed with a sterile isotonic solution supplemented with 0.9% sodium chloride. They
were then immersed in the spore suspension for three minutes. For each developmental
stage of the ticks, initial concentrations and their 10- and 100-fold dilutions were used for
the bioassay. To obtain repeatable results for each strain and dilution, 3 replicates were
performed, and a control group, which was immersed in a sterile aqueous solution of
0.1% Tween 80, was also used. After immersion in the spore suspension, the ticks were
transferred to sterile containers containing moist filter paper and incubated for 21 days. The
ticks were kept at 23 ± 1 ◦C and 80% relative humidity in the absence of light. Mortality
was observed daily for a period of 3 weeks. Tick paralysis, which is characterized by erect
legs and a lack of response to stimuli, such as heat, light, and CO2, as well as traces of
mycelial overgrowth on the body surface, were considered lethal effects. Dead specimens
were separated and incubated in humid chambers to stimulate mycelial growth on the
cuticle surface.

2.8. Statistical Analyses

The impact of entomopathogenic fungi on ticks was measured by determining the
dose required to cause 50% mortality (LC50). LC50 values were calculated using Finney’s
(1952) probit analysis method with the LC50/LD50 calculator, which is specifically designed
to calculate dosages with Abbot’s correction [46].

3. Results

The entomopathogenic fungi were isolated from 7 of 9 sites in three forest habitat types
(broadleaf forest, mixed broadleaf and coniferous forest, and coniferous forest (Table 1)). In
total, 53 isolates were obtained from 72 soil samples. Macro- and microscopic observations
allowed the identification of EF species belonging to the genera Metarhizium, Beauveria, and
Isaria (Table 2 and Figure 2). Detailed sequence analysis of 13 strains randomly selected
from each site confirmed genera determined microscopically and additionally allowed
identification of 8 isolates to the species level.

Table 1. Entomopathogenic fungi isolated from soil samples collected from broadleaf forests (BFs),
mixed broadleaf and coniferous forests (MBCFs), and coniferous forests (CFs).

Type of
Forest Habitat

Site
Number of EF Isolates (%)

Metarhizium Beauveria Isaria

BF

1 4 4 -
6 15 - 1
9 1 - 10

Total 20 (37.7) 4 (7.5) 11 (20.8)

MBCF

2 12 1 -
5 - - -
7 - - -

Total 12 (22.7) 1 (1.9) -

CF

3 2 - -
4 1 - -
8 2 - -

Total 5 (9.4) - -

Total 37 (69.8) 5 (9.4) 11 (20.8)
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Table 2. Median lethal concentration (LC50) of different developmental stages of Ixodes ricinus infected
with different fungal strains of the genera Metarhizium and Beauveria.

Strain
Germination

(%)

Developmental Stage of Ticks

LC50 (cfu/mL)

Females Males Nymphs

1.3(3)
Metarhizium sp. 92 8.5 × 105 3.4 × 106 1.2 × 107

1.4(4)
Beauveria
bassiana

96 1.9 × 107 2.9 × 106 2.6 × 106

2.3(1)
Beauveria sp. 91 2.9 × 106 3.0 × 106 6.6 × 107

3.4(2)
Metarhizium

anisopliae
95 6.1 × 105 1.6 × 105 1.4 × 106

6.4(6)
Metarhizium

anisopliae
92 2.9 × 105 1.8 × 106 1.9 × 106

9.4(4)
Metarhizium

anisopliae
90 2.8 × 106 1.3 × 107 1.4 × 107
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The number of isolates and species varied among sites and forest habitat types. The
commonest EF in the soil was Metarhizium (37 isolates, 69.8%), followed by Isaria (11 isolates,
20.8%) and Beauveria (5 isolates, 9.4%). The largest number of isolates of EF and the greatest
diversity were obtained from broadleaf forests (BFs). Strains obtained from this forest
habitat type accounted for 66.0% of all isolates, including 20 strains of Metarhizium, 4 of
Beauveria, and 11 of Isaria. The study showed that 24.5% (13 strains) of entomopathogenic
fungi strains were isolated from mixed broadleaf and coniferous forests (MBCFs), including
12 Metarhizium and 1 Beauveria strains. From coniferous forests (CFs), only five strains of
Metarhizium were isolated, accounting for 9.5% of the total strains.

The bioassay covered six environmental isolates, including four strains of Metarhizium
and two strains of Beauveria (Table 2, Figure 3). All the six strains subjected to the bioassay
showed a potential lethal effect against both adult and nymphal stages of I. ricinus; however,
the strains differed in their effectiveness. The efficacy of the entomopathogenic fungi was
assessed on the basis of the percentage of tick mortality required to calculate the median
lethal concentration (LC50). The most effective EF isolates against I. ricinus were two strains
of Metarhizium anisopliae: 3.4(2) and 6.4(6). Strain 3.4(2) was collected from the soil in
CFs, while strain 6.4(6) from was collected from the soil in BFs. The LC50 for strain 3.4(2)
M. anisopliae ranged from 1.6 × 105 cfu/mL for males up to 1.4 × 106 cfu/mL for nymphs,
while that for strain 6.4(6) M. anisopliae ranged from 2.9 × 105 cfu/mL for females up
to 1.9 × 106 cfu/mL for nymphs. For most strains, female ticks were more sensitive to
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Metarhizium compared to males and nymphs. Beauveria strains were less effective: the
LC50 value for nymphs ranged from 2.6 × 106 cfu/mL (strain 1.4(4)) to 6.6 × 107 cfu/mL
(strain 2.3(1)).
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4. Discussion

Our study showed that entomopathogenic fungi (EF) are widespread in the soil
collected from tick habitats, because EF were isolated from the soil collected from all tested
types of forest where I. ricinus are abundant. However, the number of isolates and species
of EF varied among sites and forest habitat types. Among the forest habitats selected, which
according to the Forest Data Bank www.bdl.lasy.gov.pl (accessed on 24 April 2019) represent
the largest area of forest habitats in Poland, the largest number of isolates of EF and the
greatest diversity of EF were obtained from broadleaf forests (BFs). Strains obtained from
BFs accounted for 66.0% of all isolates and included the EF of three genera: Metarhizium,
Beauveria, and Isaria. Fewer EF isolates were obtained from the soil collected from mixed
broadleaf and coniferous forests (MBCFs) and coniferous forests (CFs). In this study, we did
not statistically confirm the relationship between the occurrence of EF and tick abundance
due to the insufficient sample size, which restricts the statistical power needed to detect
potentially ecological interactions; however, the impact of EF on local tick populations
cannot be excluded. Future studies should aim to collect more extensive data across
different geographical regions, including broadleaf forests (BFs), where the largest number
of EF was isolated and, as previous studies have shown [38], the largest number of ticks was
obtained, to enhance the robustness of statistical analyses. The observed higher number
and diversity of EF isolates, such as Metarhizium, Beauveria, and Isaria, in broadleaf forests
(BFs) could be influenced by interactions with both abiotic and biotic factors, including soil
pH, soil type, method of soil cultivation, organic matter content, temperature, humidity,
and host density [47–49]. The influence of other microorganisms cannot be excluded either;
especially, mycorrhizal fungal communities, which form symbiotic relationships with
the roots of most plant species, play crucial roles in nutrient cycling, soil structure, and
maintaining moisture levels [50–52].

www.bdl.lasy.gov.pl
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The important role of soil in forest areas in maintaining EF is also documented in other
studies. Popowska-Nowak et al. (2016) conducted studies in various regions of Poland [53]
and found that M. anisopliae and I. fumosorosea are the most commonly isolated EF species
from the soil of several-year-old forest nurseries, particularly in spring. Majchrowska-
Safaryan and Tkaczuk (2021) found in coniferous, deciduous, and mixed forests the presence
of Beauveria spp., Cordyceps spp., Metarhizium spp., and Lecanicillium spp.; however, the
mean densities of EF varied by forest type, sampling date, and soil depth [54]. In addition,
they found that the densities of EF were usually higher in leaf litter than in soil; however,
Tuininga et al. (2009), taking into account EF from soil, leaf litter, and ticks in a forested area
known to harbor I. scapularis, suggested that ticks are more likely to encounter EF in soil
than in leaf litter [9].

Differences in the qualitative and quantitative results of the isolated strains may have
arisen due to various factors that influence the EF species’ composition and abundance in
soil. Furthermore, understanding the composition and distribution of indigenous fungal
species is crucial in evaluating their effectiveness and potential use in biological control
within a particular ecosystem. Moreover, the rapid pace of environmental change fur-
ther emphasizes the urgency to expand our knowledge of EF. Understanding how these
fungi interact with arthropod hosts in changing ecosystems is crucial for predicting their
impacts on tick population dynamics and for developing sustainable tick population man-
agement strategies. A sustainable tick population management strategy that leverages
entomopathogenic fungi could involve the use of fungi-based biopesticides to control tick
populations in a way that is environmentally friendly and reduces reliance on chemical
pesticides [33].

Determining the presence of entomopathogens in tick environments is not sufficient
to determine their impact on ticks, because different isolates are characterized by different
lethality values, and more comprehensive research is required. Bioassays are an important
test to verify the virulence of EF isolates and to indicate the most virulent isolates with the
greatest potential for biocontrol [12]. We used six environmental isolates in bioassays to
evaluate their acaricidal efficacy on ticks, including four strains of Metarhizium collected
from soil in broadleaf forests (BFs) and coniferous forests (CFs) and two strains of Beauveria
collected from BFs and mixed broadleaf and coniferous forests (MBCFs). The bioassay
results indicated that the potential for tick control is variable among the fungal strains
tested; however, all the six environmental fungal isolates that we tested showed potential
efficacy against both adult and nymphal stages of I. ricinus. Fungi can evolve to increase
the success of their biological cycle, which is influenced by the arthropods they use to
reproduce [42,55]. We cannot exclude the fact that in the forests, ticks can serve as a host
for EF, and therefore, local EF strains may be better adapted to the local tick population.
Genomic studies of EF have shed light on the mechanisms that allow their adaptation to
different hosts and environments, further supporting their application in pest management.
For example, the genera Beauveria and Metarhizium have been extensively studied for
their virulence genes and potential for genetic improvement for enhanced biocontrol
capabilities [56,57]. The enhancement of biocontrol capabilities in EF, such as Beauveria
and Metarhizium, can indeed be pursued through both selection pressure cultivation and
genetic engineering. Selective breeding and artificial selection involve the selection of
fungi with desirable traits and their breeding to produce more effective biocontrol agents.
For example, the application of artificial selection for fungicide resistance to B. bassiana
and M. brunneum has demonstrated that selective breeding can enhance specific beneficial
traits in these fungi [58]. Furthermore, research has actively used genetic engineering to
enhance the virulence and environmental resilience of these fungi. Techniques include the
introduction of genes that enhance pathogenicity or resistance to environmental stresses.
For instance, a study conducted by Shang et al. (2012) demonstrated that the genetic
engineering of B. bassiana with a tyrosinase gene is an effective method for improving
fungal tolerance against UV damage [59]. Both methods have their respective merits and
can be used depending on the research objectives, regulatory considerations, and specific
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characteristics desired in the fungal strains. While selection pressure relies on naturally
occurring genetic diversity and evolution, genetic engineering provides a more rapid and
precise method for developing specific traits. Furthermore, EF have clear benefits, including
ecological safety, mass production, and the ability to infect their hosts through the cuticle
rather than waiting for the host to ingest them to cause infection [60]. While the ecological
safety of EF is noted, specific studies on the impact of these fungi on non-target species
within the forest ecosystems are crucial. Understanding these interactions is necessary to
ensure the ecological integrity of control measures. It has also been reported that EF can
affect the entire tick life cycle (free-living and parasitic stages) [61]. The impact of EF on
free-living stages (such as larvae, nymphs, and adults in the environment) and parasitic
stages (ticks that are attached to hosts) is twofold. This dual impact enables the effective
reduction in tick populations. The impact on free-living stages helps to control ticks at
multiple stages in their life cycle, potentially reducing the chances of tick survival and
reproduction [62]. Furthermore, EF can be applied to the environment to target free-living
stages and potentially be used on animal hosts to target parasitic stages [63]. In addition, the
use of EF that affects multiple stages of the tick life cycle may also reduce the likelihood of
ticks developing resistance [64]. When ticks are targeted at multiple developmental stages,
it increases the overall effectiveness of the fungal agents, as ticks have less opportunity to
adapt or survive through one specific stage.

In our study, the most effective isolates against the tested development stages of I. ricinus
were two environmental strains of Metarhizium anisopliae (3.4(2) collected from the soil in
CFs and 6.4(6) collected from the soil in BFs), with LC50 values ranging from 1.6 × 105 up to
1.8 × 106 cfu/mL. However, different mortality rates of the different stages of I. ricinus
were observed. The study found that for most strains, females are the most sensitive
developmental stage and most susceptible to EF, while males were more resistant to the
strains used. A high mortality rate among adult I. ricinus was also noted in a previous
study by Szczepanska et al. [37], who found that females are more susceptible to the envi-
ronmental strain M. anisopliae compared to males (LC50 2.6 × 103 cfu/mL for females and
5.2 × 104 cfu/mL for males). A lower mortality rate, similar to that obtained in our study,
was reported in a study by Fernández-Salas et al. [61] among R. microplus larvae by a strain
of M. anisopliae (MaV50), for which the LC50 value was 1.3 × 106 cfu/mL. Additionally, in
our study, nymphs were found to be less susceptible to EF than adults. A previous study by
Samish et al. [64] on R. sanguineus nymphs treated with M. anisopliae showed that the reduced
mortality of nymphs compared to adults may be due to differences in the cuticle composition.
Higher mortality rates are typically observed in engorged ticks compared to unfed ticks and
in adult ticks compared to juvenile ticks. In addition, moving beyond laboratory conditions to
field trials would offer invaluable data on the real-world effectiveness of EF in controlling tick
populations. These studies can also reveal practical challenges and the impact of environmen-
tal variability on EF efficacy. Further, more comprehensive research is required to analyze the
impact of the presence of fungi on the tick population.

5. Conclusions

Although the microclimate and host availability are important factors in maintaining
tick populations, the presence of entomopathogenic fungi in the ecosystem may also influ-
ence tick dynamics. This study highlighted the common presence of entomopathogenic
fungi in the tick habitat, with a lethal potential against the local tick population. Therefore,
the soil collected from the forest habitats of Ixodes ricinus can be an important source of
entomopathogenic fungi. However, the number of species and isolates of EF, as well as their
effectiveness against ticks, varies between sites. The locally sourced entomopathogenic
fungi are well adapted to local microclimatic conditions, making them promising candi-
dates for biocontrol. Nevertheless, in order to advance these findings toward practical
applications, further laboratory tests and extensive field testing are required to select
the best entomopathogenic fungi isolate and to confirm the effectiveness and safety of
entomopathogenic fungi in natural habitats.
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3. Černý, J.; Lynn, G.; Hrnková, J.; Golovchenko, M.; Rudenko, N.; Grubhoffer, L. Management Options for Ixodes ricinus-Associated
Pathogens: A Review of Prevention Strategies. Int. J. Environ. Res. Public. Health 2020, 17, 1830. [CrossRef] [PubMed]

4. Kahl, O.; Gray, J.S. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick-Borne Dis. 2023, 14, 102114. [CrossRef]
5. Burtis, J.; Yavitt, J.; Fahey, T.; Ostfeld, R. Ticks as Soil-Dwelling Arthropods: An Intersection Between Disease and Soil Ecology.

J. Med. Entomol. 2019, 56, 1555–1564. [CrossRef] [PubMed]
6. Randolph, S. Tick ecology: Processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology

2004, 129, S37–S65. [CrossRef]
7. Pfäffle, M.; Littwin, N.; Muders, S.; Petney, T. The ecology of tick-borne diseases. Int. J. Parasitol. 2013, 43, 1059–1077. [CrossRef]
8. Randolph, S.E.; Craine, N.G. General framework for comparative quantitative studies on transmission of tick-borne diseases

using Lyme borreliosis in Europe as an example. J. Med. Entomol. 1995, 32, 765–777. [CrossRef]
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