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Abstract: Ectosymbioses among bark beetles (Curculionidae, Scolytinae) and fungi 

(primarily ophiostomatoid Ascomycetes) are widespread and diverse. Associations range 

from mutualistic to commensal, and from facultative to obligate. Some fungi are highly 

specific and associated only with a single beetle species, while others can be associated 

with many. In addition, most of these symbioses are multipartite, with the host beetle 

associated with two or more consistent partners. Mycangia, structures of the beetle 

integument that function in fungal transport, have evolved numerous times in the 

Scolytinae. The evolution of such complex, specialized structures indicates a high degree 

of mutual dependence among the beetles and their fungal partners. Unfortunately, the 

processes that shaped current day beetle-fungus symbioses remain poorly understood. 

Phylogeny, the degree and type of dependence on partners, mode of transmission of 

symbionts (vertical vs. horizontal), effects of the abiotic environment, and interactions 

among symbionts themselves or with other members of the biotic community, all play 

important roles in determining the composition, fidelity, and longevity of associations 

between beetles and their fungal associates. In this review, I provide an overview of these 

associations and discuss how evolution and ecological processes acted in concert to shape 

these fascinating, complex symbioses. 
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1. Scolytinae-Fungus Symbioses 

The term symbiosis was coined by Albert Frank in 1877 to describe nonparasitic interactions 

involving microbes [1]. The meaning was further refined by de Bary in 1879 to mean “the living 

together of two differently named organisms” [1], a definition that remains in widespread use today. 

Symbioses encompass a wide range of interaction types. Among the least studied are mutualisms, once 

relegated to the status of curiosities of nature, but now considered important determinants of biological 

organization, and community structure and process [2–5]. In this review, I consider several factors that 

may have shaped a diverse array of ectosymbioses, including mutualisms, among bark beetles and fungi. 

For more general treatments of these symbioses, I refer the reader to several recent reviews [6–12].  

In the context of scolytine beetle-fungus interactions, both the beetle and the tree they infest are often 

referred to as hosts. To avoid confusion, I will confine my use of the term “host” in this chapter to 

denote strictly the beetle. 

Bark beetles make up approximately 3700 of the 7500 species in the weevil (Curculionidae) 

subfamily Scolytinae [13–15]. The remainder consists of ambrosia beetles (3400 species) and various 

seed and pith-feeding beetles (~400 species). A striking characteristic of the Scolytinae is the 

widespread association of its members with fungi. All ambrosia beetles, and many bark beetles, are 

associated with fungi [7,9,16]. Of the seed and pith feeders, little is known. However, fungi are 

associated with members of this group as diverse as conifer cone beetles (Conophthorus spp.) (Six, 

pers. obs.) and the coffee berry borer (Hypothenemus hampei) [17]. 

Bark beetles are commonly associated with Ascomycetes in four teleomorph genera,  

Ophiostoma, Ceratocystiopsis, Grosmannia, and Ceratocystis [7,9,10,18]. While these fungi produce 

morphologically similar teleomorphs, Ophiostoma, Grosmannia, and Ceratocystiopsis form a 

monophyletic group in the Ophiostomatales, separate from Ceratocystis, which is inthe Microascales 

[19,20]. The two fungal groups also have different host plant affiliations. The fungi in the 

Ophiostomatales are most often associated with conifers, while Ceratocystis species are usually 

associated with angiosperms [21]. Anamorphs associated with Ophiostoma and Ceratocystiopsis include 

Hyalorhinocladiella and Sporothrix, while some Ophiostoma species also produce Pesotum. 

Grosmannia species produce Leptographium anamorphs [18], whereas Ceratocystis produce 

Thielaviopsis anamorphs [22]. A relatively small number of bark beetles are consistently associated 

with Basidiomycetes in the genera Entomocorticium and Phlebiopsis [23,24]. 

Ambrosia beetles are often associated with anamorphic species in the genera Ambrosiella and 

Raffaelea but some are also associated with Ophiostoma, Leptographium, and Fusarium [9,16,25–28]. 

Interestingly, early molecular phylogenies revealed that Ambrosiella and Raffaelea were each 

paraphyletic and multiply derived out of Ophiostoma and Ceratocystis [29,30]. Furthermore, one 

monospecific genus Dryadomyces was found to nest within a clade containing both Ambrosiella  

and Raffaelea species allied with Ophiostoma [31]. These inconsistencies were addressed by 

Harrington et al. [32] who retained all Ambrosiella with Ceratocystis affinities within Ambrosiella but 

transferred those associated with the Ophiostomatales to Hyalorhinocladiella. New combinations were 

made in Raffaelea for Ambrosiella species allied with the Ophiostomatales as well as a transfer of 

Dryadomyces to Raffaelea.  
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Figure 1. Examples of ambrosia beetles and their galleries. From left to right, top to 

bottom: Diuncus gallery; Trypodendron gallery; Xyleborina ambrosia beetles; Xylosandrus 

crassiusculus gallery. All photos courtesy of Jiri Hulcr. 

 

 

Bark and ambrosia beetles are categorized by their use of host plant substrate, but there is no 

absolute distinction between the two groups and most are associated with fungi to some extent.  

Most ambrosia beetles construct galleries in the sapwood of trees (Figure 1). The term ‘ambrosia’ 

refers to the fungal gardens the beetles cultivate on their gallery walls and use as an exclusive food 

source [16,33]. The beetles are obligately dependent upon the fungi, from which they acquire amino 

acids, vitamins and sterols [16,33]. The activities of female beetles have been hypothesized to control 

the growth and composition of ambrosial gardens. If the female dies, the garden is quickly overgrown 

by contaminating fungi and bacteria, which ultimately results in the death of the brood [26,34].  

The activities of the larvae may also control non-mutualistic fungi, although the mechanism for this is 

unknown (X). Dispersing adult beetles transport the fungi to new host trees in highly specialized 

structures of the exoskeleton called mycangia (Figure 2), thus maintaining the association from 
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generation to generation [7,35]. The interaction is clearly mutualistic. The symbiosis allows the beetles 

to exploit a nutritionally poor resource (wood) and reduce interspecific competition, while providing 

the fungi consistent transport to a relatively rare and ephemeral resource (a new host tree of the 

appropriate condition and successional stage) [11,16]. 

Figure 2. Examples of mycangia. From left to right, top to bottom: maxillary cardine of 

Dendroctonus ponderosae showing opening of sac mycangium (arrow) courtesy of 

Katherine Bleiker; Close up of mycangium of D. ponderosae showing fungal mass extruding 

from opening courtesy of Katherine Bleiker; Oval brush mycangium on female Pityoborus 

rubentris Mal Furniss; close up of brush mycangium of P. rubentris containing spores Mal 

Furniss; Ascospores in pit mycangium (puncture) of Ips pini Mal Furniss; mesonotal paired 

sac mycangia of Xylosandrus mutilates (dissected from beetle) courtesy of W. Doug Stone. 
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Figure 2. Cont. 

 

Figure 3. Examples of bark beetles and their galleries. Left to right, top to bottom: Pupal 

chambers containing Dendroctonus.ponderosae pupae and spore layers of fungi, courtesy 

of the author; D. ponderosae adult, courtesy of the author; Bark section showing extensive 

beetle development in light portions colonized by mutualistic fungal symbionts and lack of 

development in highly stained portion of bark colonized by the antagonistic fungus, O. 

minus (arrow) courtesy of Fred Stephen; I. pini courtesy of Jesse Logan. 
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In contrast, bark beetles construct their galleries in the phloem layer of trees just under the outer 

bark (Figure 3). Unlike ambrosia beetles, bark beetles feed on tree tissues (phloem), and gain some of 

their nutrients directly from the host. Phloem contains more nutrients than sapwood, but nonetheless 

has a low nutritional value relative to the dietary requirements of insects [36–38]. Nitrogen is the 

limiting factor in the diets of most herbivorous insects [39]. This is true even for insects that feed on 

foliage, which is relatively high in nitrogen compared with other tree tissues, including phloem. For 

instance, the nitrogen content of loblolly pine phloem (a host to several bark beetles) is approximately 

0.38% [40] compared with 1–5% in the foliage [39]. Insects contain approximately 6–10% nitrogen, 

indicating that to complete development they must either consume large amounts of plant material 

relative to their final body size [41,42] or modify their diet in such a way as to increase the nitrogen 

content [38]. In the case of bark beetles, diet modification may include the use of fungal associates to 

supplement the nutritional limitations of their phloem diet [38,43]. 

Evidence supports the existence of both high consumption and diet modification strategies in bark 

beetles. Ayres et al. [38] compared nitrogen budgets of two co-occurring bark beetles, Ips grandicollis 

and D. frontalis, which have different feeding strategies. Ips grandicollis is a non-mycangial beetle 

that constructs long feeding galleries in phloem. In contrast, Dendroctonus frontalis, a mycangial 

beetle, produces short galleries terminating in ‘feeding chambers’ where it spends most of its 

development feeding on ambrosial growth of its mycangial fungi [44, S.J. Barras, pers. comm.].  

Ayres et al. [38] found that the nitrogen concentration around successfully developing larvae of  

D. frontalis is more than twice that of phloem of uninfested trees; the phloem with the highest nitrogen 

concentration was located where feeding chambers were colonized by the mycangial fungi. Similarly, 

Hodges et al. [43] also found that phloem nitrogen in Pinus taeda increased 131% when D. frontalis 

and its associated fungi were introduced. 

Ayres et al. [38] also found nitrogen concentrations significantly impacted D. frontalis fitness. 

Regions in trees where larvae survived to pupate contained the highest nitrogen concentration, and 

trees and regions with the highest nitrogen concentrations produced the biggest beetles. Beetle size is 

strongly correlated with beetle survival, fecundity, pheromone production and dispersal [45–53], and 

thus, is a good indicator of beetle fitness. Interestingly, one mycangial fungus, Entomocorticium sp., 

was superior to another, Ceratocystiopsis ranaculosus, at concentrating nitrogen [38]. This difference 

may explain why D. frontalis individuals that develop with Entomocorticium are larger and have 

higher lipid contents than those that develop with C. ranaculosus [54], and why beetle populations 

with a higher prevalence of Entomocortium sp. exhibit more rapid population growth [54–56]. 

In contrast to D. frontalis, Ips grandicollis appears to employ the high consumption rather than the 

diet modification strategy [38]. These beetles feed extensively in phloem, do not produce feeding 

chambers, and do not appear to depend on fungi for nutrition, although they do vector ophiostomatoid 

fungi [57,58]. Although I. grandicollis adults are only slightly larger than D. frontalis adults, their larvae 

consumed 79% more phloem than D. frontalis larvae [38], supporting the hypothesis that without diet 

supplementation with fungi, larvae must consume more phloem to meet their nitrogen requirements. 

Given that I. grandicollis is likely to feed at least incidentally on the various fungi it vectors, these 

results indicate that not all fungi areequally effective as supplements to beetle diets. 

Other dietary requirements of the insect macrosymbiont may also influence feeding strategy.  

For example, insects require sterols for normal growth, metamorphosis, and reproduction. However, 
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insects, unlike most other animals, are unable to synthesize these compounds, and thus, are dependent 

upon a dietary source [59–61]. Sterols are present in plant tissues, but typically only in low 

concentrations [62], or in forms not usable by insects [59]. For phloem-feeding bark beetles, whose 

food may contain inadequate concentrations of usable types of sterols, fungal symbionts may provide 

an alternate source. Fungi typically produce ergosterol, a sterol which is highly usable by many  

insects [59]. In several insect-fungus symbioses, the insect associate depends on ergosterol production 

by the fungal associate to meet its sterol requirements [63,64]. This is the case for xyleborine ambrosia 

beetles [33,65,66] and possibly the coffee berry borer, H. hampei [17, but see 67], and may also be true 

for some bark beetles [68]. 

The ergosterol contents of ophiostomatoid fungi associated with ambrosia and bark beetles have 

been investigated for only a few species. For fungi associated with Xyleborus ambrosia beetles, 

ergosterol content ranged from 0.12–0.24% [69]. However, for three species of fungi associated with 

two Dendroctonus bark beetle species, the ergosterol content was much higher at 0.88–1.06% [68], 

indicating that these fungi may also provide good sources of sterols for their hosts. 

For phloeomycophagous bark beetles, the importance and role of fungi in host nutrition may vary 

by life stage. An experimental study on D. ponderosae reported that larvae feed primarily in sterile 

phloem, and thus do not depend on fungi to complete development [70]. In that study, single pairs of 

D. ponderosae were introduced into logs with ends waxed to retard drying, then held at constant 

temperatures. Some first instar larvae and all teneral adults were associated with fungi, but intermediate 

stages of development occurred in sterile phloem. However, in a recent study [71] conducted under 

field conditions, in naturally infested trees with natural attack densities of beetles (and fungi), 

approximately two-thirds of 1st instars and 100% of all later instars were located in phloem colonized 

by fungi. Gut dissections revealed that the symbiotic fungi were ingested by larvae along with their 

phloem diet. In addition, larvae often migrated back into older portions of the gallery, presumably to 

feed where the fungi were best established. Such turning behavior by larvae in axenic phloem was also 

observed by [72], who speculated that such behavior may be linked to the need for larvae to feed in 

areas containing fungal growth. 

Development and feeding on fungus-colonized phloem is common for many bark beetles and has 

also been observed in other experimental studies [73]. However, not all fungi are equally desirable as 

food and each association must be considered independently when assessing potential benefits from 

fungal feeding. For example, D. frontalis encountering areas stained by the antagonistic fungus,  

O. minus, turn to avoid feeding in these areas. However, the tunneling behavior of D. ponderosae and 

I. pini is unaffected by the presence of staining caused by G. clavigera and O. ips [73]. Furthermore, in 

choice tests, D. ponderosae larvae chose stained phloem (containing G. clavigera and O. montium) for 

feeding significantly more often than unstained phloem [74]. 

Although Adams & Six [71] found that larvae of D. ponderosae are phloeomycophagous, the mere 

ingestion of fungi does not, by itself, indicate that fungal feeding is beneficial to a developing brood. 

Unfortunately, the relative intractability of these systems to manipulative experimentation has limited 

our knowledge of how mycophagy affects host development and fitness. However, studies conducted 

on two mycangial Dendroctonus species in naturally infested material indicate that fungal associates 

can have a considerable impact on host beetle fitness by affecting larvae. Dendroctonus frontalis 

individuals that develop with mycangial fungi are larger than those that develop without mycangial 
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fungi [38,54,75]. Because adult beetle size is determined by larval nutrition, larger adult size in the 

fungus-associated beetles cannot be a result of maturation feeding on spore layers by teneral  

adults [76]. Furthermore, larval survival is higher, and feeding galleries of Dendroctonus are shorter, 

in the presence of mutualistic fungi than in their absence, indicating that fungus-colonized tissues have 

higher nutritional contents [38,75,77]. Not surprisingly, the multiple fungal partners associated with a 

host tend to vary in their effects on beetle broods. For D. frontalis, Entomocorticium sp. supports 

higher host survival and larger body size than does C. ranaculosus. For D. ponderosae, G. clavigera 

supports faster brood development and higher brood production than does O. montium [77]. Similar 

results were found in an experiment conducted with a non-mycangial beetle, I. paraconfusus. Axenically 

reared beetles, and those reared with the antagonistic fungus O. minus, were smaller than beetles 

reared with symbiotic fungi associated with the beetle, and larval tunnels were significantly longer 

when larvae were associated with O. minus than when not associated with fungi [72]. 

The role of mycophagy in adult nutrition is poorly understood. Teneral adults of mycangial bark 

beetles feed on dense layers of spores that grow on the pupal chamber walls, before emerging to 

disperse to new host trees (Figure 3) [70,77]. This also may be true for several non-mycangial beetles 

that are consistently associated with fungi that produce spore layers in their pupal chambers. This 

period of feeding on spores as new adults may be important for beetles to acquire fungi in their 

mycangia and/or on their exoskeletons for dispersal to the next host tree and the next generation of 

beetles. However, feeding on spores at this time also appears to be important in adult reproduction. 

New adults of D. ponderosae that did not feed on the conidia of mutualistic fungi (G. clavigera,  

O. montium), tunneled and fed extensively in phloem. In contrast, insects that fed on spores did not 

tunnel and feed in phloem and emerged very close to the pupal chamber [74]. New D. ponderosae 

adults that did not feed on spores had very high rates of rejection of logs, produced few galleries, and 

did not produce broods. In contrast, new adults that fed on spores of either of the beetle’s symbiotic 

fungi tended not to reject logs, usually produced galleries, and many also produced broods [77]. 

Axenic I. paraconfusus adults also did not oviposit, while those associated with fungi did [72]. These 

results indicate that feeding on fungal spores by new adults may be critical for adult nutrition and 

reproduction for at least some bark beetle species. 

Obligate symbiosis is typically defined as the inability of one or both interacting partners to live 

without the other. At its simplest, this can mean that if, in a single reproductive cycle of a partner pair, 

one partner is removed, the other partner dies or cannot reproduce. However, the term can also denote 

partnerships where the separation of host and symbiont results in fitness costs that, over only a few 

generations, eventually result in the loss of one or both partners. Determining whether a particular 

symbiosis is obligate can be an immensely difficult task. It is challenging, and sometimes impossible, 

to produce aposymbiotic hosts. Furthermore, the processes used to remove symbionts can be extremely 

stressful to hosts, bringing into question the validity of experiments conducted with such hosts.  

A challenge in testing for dependence is that hosts must be reared at least through the F2 generation to 

control for maternal effects [66,78]. For insects such as bark beetles that can be difficult to rear 

through the F1 generation, this is a serious obstacle. To date, obligacy has been shown (and looked for) 

in only a few bark beetle-fungus symbioses [56,77]. No studies that claimed to successfully rear 

beetles without symbiotic fungi meet stringent requirements for testing for dependence on symbiotic 

fungi for nutritional supplementation, either because they were conducted only through the F1 
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generation [72,79], or because the beetle’s diet was supplemented or contaminated with fungi or fungal 

products [80–82]. 

For bark beetles, detecting obligacy can be further complicated by multipartite associations 

involving hosts with two, less often three, consistent fungal associates. In some associations, these 

symbionts may provide a similar benefit to the host (symbiont redundancy) [56,77]. In such cases, the 

host may be dependent on the presence of a symbiont, but not any one symbiont, in particular. The 

concept of ecological (or functional) redundancy has been particularly well-developed in the field of 

biodiversity conservation, but much less so in symbiology, where most efforts have focused on pollinator 

assemblages [83]. The concept of symbiont redundancy is further developed for bark beetle-fungus 

symbioses in a later section. 

To this point, I have focused primarily on fungi as mutualists of bark beetles. However, many 

ophiostomatoid fungi are inconsistently associated with particular beetle species and often are associated 

with several beetle species across a wide geographic area (ex. O. piceae, O. penicilliatum). Such 

broadly distributed fungi are probably opportunistic commensals, benefiting from transport, but without 

significant reciprocal effects on the host [7,10]. Other fungi in this group are antagonists and their 

presence results in lowered host fitness. For example, D. frontalis developing in areas colonized by  

O. minus seldom survive (Figure 3) [84,85]. Why some ophiostomatoid fungi are beneficial while 

others are antagonistic, or have no apparent effect on their host, is unknown, but may reflect their 

ability to concentrate nitrogen [38], to produce adequate amounts of sterols [68], or to produce  

toxic metabolites [86]. 

Our ability to make generalizations about bark beetle-fungus symbioses is constrained by a lack of 

knowledge on all but a very few systems. Only a few studies have been conducted and the majority of 

these have focused on the tree-killing, economically important beetles. This focus on aggressive 

beetles has yielded a highly biased view of bark beetle-fungus interactions, including a near exclusive 

focus for many years on the potential, and still unsubstantiated, role of the symbiotic fungi in  

tree-killing [12]. However, in the Scolytinae, tree-killing is actually a relatively rare event of life 

history. Instead, most scolytines are restricted to weak, dying, or more often, recently killed trees. For 

example, of the hundreds of scolytine species in North America, only 7–10 commonly kill trees [14]. 

The majority of the remaining non-tree-killing species are associated with fungi in one way or another, 

but remain mostly unstudied. 

2. Evolution of Scolytinae-Fungus Symbioses 

The Scolytinae are thought to have arisen in the Late Jurassic or Early Cretaceous periods, with the 

most recent estimates dating to about 100 million years ago [87–89]. Conifers are probably the 

ancestral hosts of the Scolytinae and its most closely related subfamilies in the Curculionidae [90,91].  

The putative sister group to these subfamilies, the Derolominae, is associated with monocots, implying 

that a common ancestor shifted from angiosperms to conifers [91]. In the Scolytinae, this switch was 

followed by several returns to angiosperms, then several subsequent reversals to conifers. Each shift to 

angiosperms was accompanied by increased species diversity, whereas reversals to conifers resulted in 

low diversity [91]. 
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Ophiostomatoid fungi apparently arose 200 million years ago [92], with the groups containing 

Ophiostoma (and allied genera) and Ceratocystis probably diverging around 170 million years ago [91]. 

Therefore, these fungi predate the Scolytinae and may have evolved adaptations for insect dispersal 

prior to their association with scolytine beetles. They were probably originally vectored by other 

arthropods, possibly including weevil ancestors of the Scolytinae [91]. 

The ambrosia and bark beetles do not form exclusive monophyletic groups within the Scolytinae; 

rather, the two fungal feeding strategies evolved several times independently. The origins of ambrosia 

feeding all followed shifts to angiosperms, although there apparently were reversals to conifer feeding 

by some temperate ambrosia beetles [88]. The ambrosial feeding habit has evolved at least eight times 

(possibly more) from different beetle tribes containing phloem-feeding beetles associated with 

Ophiostoma, Grosmannia, and/or Ceratocystiopsis species [91,93]. These ambrosial feeding strategies 

have been estimated to have evolved 21–60 million years ago, depending on beetle lineage. Likewise, 

within the Scolytinae, phloeomycophagous bark beetles occur in several dispersed tribes, ranging from 

the Tomicini to the Ipini [91]. 

The paraphyletic nature of the ambrosia beetle-associated genera, Ambrosiella and Raffaelea, with 

derivations from both Ophiostoma and Ceratocystis, may reflect these multiple origins and host shifts. 

When some beetles switched to angiosperms, some apparently maintained associations with 

Ophiostoma. Others may have switched to Ceratocystis, which they may have encountered for the first 

time in their new hosts. Ceratocystis species have morphological adaptations for insect dissemination 

similar to those of Ophiostoma, and may have been pre-adapted for vector relationships with these 

beetles. If some Ceratocystis species also provided nutritional benefits, then once associations formed, 

similar lifestyles may have led to a convergence of form in the fungi, and to the multiply derived 

genera that are evident today. The modern association of Ceratocystis species with a very few  

conifer-using bark beetles may indicate that some fungi ‘followed’ beetles back to conifers. 

Interestingly, at least one lineage of Ambrosiella (now transferred to Hyalorhinocladiella) is not 

associated with ambrosia beetles, but rather with species of Ips, Polygraphus, and Hylurgops [30], 

indicating an independent origin of this morphological form with bark beetles in conifers. Past reliance 

of fungal taxonomy on morphology has led to the current unnatural classification used for many fungi 

associated with Scolytinae. In many cases, convergent evolution for an insect-adapted lifestyle has led 

to similar forms resulting in unrelated fungi being placed within the same genus. Rigorous revisions of 

these genera to better reflect actual relationships will vastly improve our understanding of these fungi 

and how interactions with scolytine hosts ultimately influence their form, function, and distribution. 

Floristic composition and diversity may be important drivers of diversity in herbivorous  

insects [94,95]. Indeed, enhanced rates of diversification in angiosperm-feeding beetle lineages 

resulted in nearly half of the species in the order Coleoptera, which contains much of the insect 

biodiversity on Earth [95]. However, for many insects, including the Scolytinae, host plant diversity 

may be only one of several factors influencing diversification. For ambrosia beetles, the adoption of a 

strictly mycophagous habit may have led to extensive species radiations in the Xyleborini and the 

Platypodini [96]. However, these radiations occurred mainly in tropical rainforests, where both warm 

temperatures and high humidity favor fungal growth [97] and the diversity of trees is very high, 

confounding our ability to detect drivers of diversity in these systems. In addition, the massive 

radiation of the Xyleborini occurred simultaneously with the development of inbreeding. Because, in 
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several lineages of ambrosia beetles, the development of a strictly fungus-feeding lifestyle did not 

result in extensive radiations and they remain relatively species poor, we cannot conclude that the 

development of strict fungal feeding in and of itself supports radiation. However, while conifer-using 

lineages within the Scolytinae are species-poor, relative to some angiosperm-using lineages, three 

tribes [Tomicini (including the Hylastini), Ipini, and Corthylini] are among the most species-rich 

conifer associations known [91] indicating that fungus feeding may, at least at times, support greater  

species diversity. 

The development of mutualisms with fungi also may have supported the diversification of scolytine 

lineages inhabiting conifers. Two of the three most diverse conifer-using tribes in the Scolytinae, the 

Tomicini and the Ipini, contain most known examples of mycophagous bark beetles. The third tribe, 

the Corthylini (which also contains an ambrosia beetle lineage), contains the species-rich Pityophthorina, 

many of which use conifers, and which are also associated with fungi [98–100], but remain 

uninvestigated for mycophagy. 

Mutualism allows organisms to excel in marginal habitats, exploit new niches, avoid  

competition, and buffer environmental variability [11,101]. In the cases of both ambrosia beetles and 

mycophloeophagous (combined fungus-phloem feeders) bark beetles, the use of fungi for food  

has expanded the capacity of these insects to use nutrient-poor plant resources [15]. 

Nutrition/transport-based mutualisms evolved many times in the Scolytinae and transitions from a 

strictly plant-based diet to a combined or strictly fungus-feeding strategy perhaps evolved relatively 

rapidly. The evolution of mycangia may be a particularly useful metric of both the advantage, and the 

rapidity, of the evolution of fungus-beetle mutualisms. Mycangia evolved independently many times in 

the Scolytinae. They are present in almost all ambrosia beetle species and in many bark beetles. 

Furthermore, mycangia within the same genus occur in different body regions, or differ in their 

distribution between the sexes, indicating independent, rapid origins over a very short evolutionary 

time frame [91,102]. Mycangia occur across many beetle tribes, including some basal groups, suggesting 

that fungus feeding has been advantageous to the Scolytinae from its origin. 

The propensity of Scolytinae to form nutrition/transport-based mutualisms with fungi is probably 

linked to two characteristics that have exemplified the subfamily since its beginnings: the exploitation 

of inner plant tissues and the formation of associations with fungi that grow there. However, the exact 

path leading to the formation of these mutualisms is unknown. Two models for evolutionary transitions 

from a plant-based diet to ‘fungiculture’ in insects have been proposed [103]. In the ‘transmission first’ 

model, the insect is first associated with a fungus as a vector, then begins to obtain nutrition from the 

fungus, and finally relies on the fungus as a food source [11,103]. In the ‘consumption first’ model,  

an insect lineage begins to incorporate fungi into a generalized diet and then becomes a specialized 

fungivore. Implicit in the second model is that both insect and fungus must also develop adaptations 

for vectoring to ensure transmission from generation to generation. Both models are tenable for the 

Scolytinae, and it is likely that various forms of both models have occurred to produce the associations 

that we see today. 

If current day associations with fungi reflect phylogenetic history, then scolytine beetles were 

associated with Ophiostoma (and allied genera) from their origin. Many, if not all, of the most 

primitive members of this subfamily (ex. Hylurgops, Hylastes, Pseudohylesinus) vector Grosmannia 

and Ophiostoma species, but with no evident benefit to the host. Such apparently strictly vector 
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associations occur throughout the Scolytinae (ex. Scolytus, Orthotomicus), interspersed between the 

phloeomycophagous bark beetle and ambrosia beetle lineages. Such vector associations are 

unsurprising, given that ophiostomatoid fungi are very well adapted to insect dispersal [104] and that 

these adaptations appear to have arisen prior to the origins of the Scolytinae [91]. In addition, both 

beetles and their associated fungi colonize early in succession, colonizing living (at least in the initial 

stages of attack) or freshly killed plant material. As a consequence, both must arrive very early in the 

colonization sequence. Among the many loose associations that formed, some eventually developed 

into nutrition/transport-based mutualisms of the ambrosial type with beetles exploiting angiosperms, 

and of the phloeomycophagous type for beetles exploiting conifers. Of note is that while some 

ambrosia beetles attack conifers, there are no known phloeomycophagous species among the bark 

beetles that colonize angiosperms. 

Regardless of how these associations originated, it appears that once established, reversals from the 

fungus-feeding state are rare or nonexistent. No reversals to a non-ambrosia feeding state are known in 

ambrosia beetles [91] or for other insect-fungus nutrition/transport-based mutualisms, including the 

fungus-gardening ants and termites [11]. This indicates that the transition to obligate mycophagy is a 

major and potentially irreversible change that constrains subsequent evolution [11]. Even where beetles 

have lost the capacity to vector the fungi, they continue to exploit fungi through mycocleptism [105]. 

The independent evolution of fungus feeding many times in the Scolytinae suggests that an overall 

tight concordance of phylogenies of the beetles and their fungal associates should not be expected. 

However, for particular lineages of beetles, especially those with shared mycangial types and common 

obligate associations with fungi, we might expect evidence of tightly linked evolutionary histories and 

cospeciation. This has not been explicitly investigated, except in one study where it was found that 

some Ceratocystiopsis and Dendroctonus possessing pronotal mycangia, and some Grosmannia and 

Dendroctonus possessing maxillary mycangia, show evidence of cospeciation [102]. However, the 

same study revealed that host switching and/or colonization events also occurred in these same 

associations. While no other studies looking explicitly for cospeciation have been conducted in the 

Scolytinae, the distribution of fungal species among various host beetles indicates that host switching 

has been common, even among ambrosia beetle lineages and their fungal associates [7,28,91]. 

There are several reasons why strict cospeciation of beetle hosts and fungal symbionts may be rare, 

or at least difficult to detect, in the Scolytinae. Two factors appear to greatly facilitate cospeciation: 

strict vertical transmission of symbionts, and restricted options to acquire hosts or symbionts from 

outside the relationship [106,107]. Neither criterion appears to be strictly met by scolytine-fungus 

associations. The presence of highly specific organs to transmit symbionts (mycangia) at first may 

seem to indicate strict vertical transmission. However, unlike endosymbioses with symbionts transmitted 

directly from mother to offspring via the egg, in scolytine-fungus ectosymbioses, the fungi are inoculated 

by the beetles into plant tissues where they grow for a period of time independent of the host before 

being reacquired by offspring as teneral adults. This period of growth in wood presents a weak link in 

the transmission process and provides an opportunity for horizontal transmission of symbionts. 

Vertical transmission may be more reliable in some ambrosial systems than in others, and more 

reliable in ambrosial systems than in phloeomycophagous systems. For example, in ambrosial species 

of the Xyleborini, only females possess mycangia, and mating occurs between siblings in the natal 

substrate [108–110]. For these beetles, males do not disperse and only females contribute inoculum to 
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the brood. However, for some ambrosia and most bark beetles, both sexes disperse to, and mate in, 

new substrates prior to initiating a brood [108]. For these insects, both sexes carry fungi to the 

breeding substrate, greatly decreasing the likelihood of strict vertical transmission. This is true 

regardless of whether one or both sexes, or neither sex, possess mycangia. For mycangial beetles, one 

or both parents may transmit mycangial fungi not only in mycangia but also on their exoskeletons 

(although mycangial fungi are often transmitted at much lower rates on the exoskeleton than in 

mycangia, [111]). For non-mycangial beetles, fungi are transported on the exoskeleton, although 

efficacy of vectoring can vary by sex [112]. Very importantly, parents often originate from different 

broods and often from different trees. This means that the fungi that each contributes to its offspring 

may be different species or different genotypes of the same species. 

For both ambrosia and bark beetles, this is further complicated because commensal ophiostomatoid 

fungi are often also transported by parents. Multiple scolytine beetle species (and their fungal 

associates) often cohabit one tree, further increasing the potential pool of fungi that a brood might 

contact. Therefore, even if a beetle begins development with one fungus faithfully transmitted by only 

one parent, it is liable to be exposed to, and potentially acquire, several other fungi by adulthood. Such 

exposure, over time, may result in host switching or colonization events. It may also account for the 

multipartite nature of many of these associations. The ability of hosts to occasionally acquire new 

partners might have led, not only to the replacement of old associates with new, but also to the addition 

of new associates to old. In some cases, new associates may be acquired because of their superior 

qualities. In contrast, some symbionts may be ‘cheaters’ that have infiltrated established associations 

between the host and superior, established symbionts. 

However, despite evidence that host switching and colonization events were common over 

evolutionary time, many mutualistic beetle-fungus symbioses are highly specific. This indicates that 

host switching is constrained, and that mechanisms exist to ensure fidelity of partners. In contrast, 

associations of fungi with beetles that merely act as vectors are less constrained. This may explain why 

some beetles easily acquire novel ophiostomatoid species when introduced into new habitats or when 

new fungi are introduced into their native range by exotic beetles or in wood [100,113,114]. 

Abiotic factors may also greatly affect acquisition of fungal associates by beetles, and thus may also 

act to disrupt vertical transmission. As a season progresses, variation in environmental conditions can 

cause variability in the relative growth rates of fungal symbionts. This influences which fungi 

sporulate in the pupal chamber at the time of teneral adult maturation feeding, and thus determines 

which fungi are acquired by the beetles and dispersed to the next host plant and the next generation of 

beetles [115] (discussed further in a later section). Therefore, as environmental conditions vary over a 

season, over years, and by location, fungal assemblages associated with a beetle species may vary and 

shift merely by the influence of abiotic factors. Indeed, the abiotic environment has played, and 

continues to play, an important role in determining the distribution of the fungi with beetle hosts on 

both local and regional scales. 

Absence of evidence of strict cospeciation does not imply that these are wholly unconstrained 

associations. Cospeciation and host switching/colonization events represent phylogenetically- and 

ecologically-mediated evolutionary processes [116]. These processes, while seemingly independent, 

can be coupled, with phylogenetic relationships strongly influencing the nature of a host shift that is 

otherwise ecologically mediated [116]. In the case of scolytines and ophiostomatoid fungi, host shifts 
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occur, but usually to phylogenetic relatives (within Ophiostomatales or Microascales), although often 

not to a sister species. Therefore, while we see little evidence of cospeciation, host transfers appear to 

be mostly constrained to members within the Scolytinae and the ophiostomatoid fungi. 

Phylogenetic conservatism, however, has not been absolute between ophiostomatoid fungi and 

scolytines. For example, D. frontalis possesses two mycangial fungi. One, Entomocorticium sp. A, is a 

Basidiomycete. This fungus appears to be a superior symbiont compared with the more coevolved 

ophiostomatoid associate, C. ranaculosus, indicating that this Basidiomycete was acquired 

opportunistically because of its benefit to the host. Furthermore, ophiostomatoid fungi can also be 

consistently found in Protea infructescences, in soil, and even in the mounds of fungus-gardening 

termites [117,118]. These ophiostomatoid fungi in Proteas and termite mounds lie in a highly-derived 

clade within Ophiostoma and thus these associations probably formed after those between Ophiostoma 

and bark beetles [18]. Therefore, while phylogenetic conservatism clearly has imposed constraints, 

new opportunities have been exploited, resulting in the formation of associations between beetles and 

non-ophiostomatoid fungi and ophiostomatoid fungi and non-scolytine hosts. 

3. The Role of Biotic and Abiotic Factors in Shaping Scolytinae-Fungus Symbioses 

The structure of biological communities is seldom determined by a single major factor or process, 

but by many independent and interacting processes. This is also true for subsets of interactions within 

the broader community including symbioses. Below, I discuss the major biotic and abiotic factors and 

processes that influence the structure of symbiotic fungal assemblages associated with bark beetles. 

3.1. The Host Plant 

The host plant provides the substrate and nutritional resources that support the growth and 

reproduction of both beetles and fungi. The majority of scolytines and their associated fungi colonize 

freshly killed plant material (whether the beetles themselves kill the plant or arrive after the fact), 

which means that, at least initially, the plant is a relatively inhospitable environment. Host tree 

defenses present at the time of colonization [119] can repel or even kill host beetles and are often 

fungitoxic or fungistatic. Aggressive beetles reduce host tree effects by a pheromone-mediated mass 

attack that kills the tree and quickly reduces tree defenses [120]. Fungal associates are often 

pathogenic to the host plant, facilitating their survival in still living or newly-killed plant tissues until 

defenses subside. Interestingly, most fungi associated with tree-killing beetles (primary and secondary, 

e.g., D. frontalis, I. pini) possess relatively low levels of virulence [6,10]. In contrast, fungi associated 

with beetles that develop in living trees, where the tree does not die (e.g., Hylurgops, Hylastes, D. 

valens, D. terebrans), possess relatively high levels of virulence [121–123]. These differences in 

virulence may reflect differences in fungal life histories. For fungi associated with tree-killing beetles, 

high levels of virulence are unnecessary because plant defenses are active only briefly. On the other 

hand, fungi associated with beetles developing in living hosts may require greater virulence to avoid 

containment and to be able to persist in a continuously defensive tree until new brood adults disperse 

up to a year after initial introduction. 

The challenge of using trees as substrate does not end once defenses have abated. The quality and 

condition of a host tree changes, often radically, over the development period of the beetles. Tree 
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tissues are highest in nutrients and moisture at the time of colonization, but by the time of brood adult 

emergence and dispersal, much of the phloem resource has either been consumed or has become badly 

degraded and depleted of nutrients [8]. Furthermore, moisture loss over this period can be considerable, 

often contributing to the mortality of substantial numbers of the beetle brood and contributing to 

decreasing areas in the tree colonized by symbiotic fungi [124,125]. 

Changes in chemistry, moisture and nutritional content of the host plant can affect the distribution 

and relative prevalence of fungal associates within a tree. Adams and Six [71] observed that the 

relative prevalence of G. clavigera and O. montium (the former a moderately virulent pathogen, the 

latter a weak pathogen/saprobe) associated with D. ponderosae shifted dramatically over beetle 

development. These shifts were probably driven by changes in tree defenses and moisture conditions 

(and temperature, discussed below). Variation in virulence among fungal associates affects the rate and 

timing of their capture of resources within the tree. Initially, fungi with greater virulence (and typically 

greater tolerance to high levels of moisture and low levels of oxygen) grow more rapidly and capture 

more resource [126]. However, as defenses decline and tree tissues begin to dry, the less virulent, more 

saprophytic fungi, begin to dominate. Furthermore, while some fungi are highly competitive in one set 

of conditions, they may be poor competitors under others [125]. Thus, changes over time within the 

tree influence not only relative rates of growth and primary resource capture, but also the outcome of 

direct competition among the various fungi [125,127]. 

3.2. Microbes 

Bark beetles and their symbiotic fungi coexist with a multitude of microbes. These include yeasts 

and bacteria that colonize beetle galleries and that are likely vectored into the tree by the beetles, and 

endophytic bacteria and fungi that grow within host tree tissues irrespective of the presence of the 

beetles. While most studies conducted on microbes associated with beetle galleries are surveys [128 and 

others], only a few have focused on the potential ecological roles of these microbes in these 

microhabitats [129–133]. Nair et al. [134] isolated a bacterium, Bacillus mojavensis, from galleries of 

the ambrosia beetle, Xylosandrus compactus, that inhibited several fungi, including the ambrosial 

fungus of the beetle. Adams et al. [135] found that both yeasts and bacteria have substantial effects on 

the growth of the two mycangial fungi of D. ponderosae. The yield of O. montium grown in vitro 

individually with two yeasts and a bacterium isolated from larval galleries was much greater than the 

yield of O. montium grown alone. However, the relative yield of G. clavigera grown with these same 

microbes was less than when it was grown alone. These results suggest that at least some microbes 

found in larval galleries facilitate the growth of O. montium and are antagonistic to G. clavigera.  

A bacterium isolated from uncolonized phloem (a putative endophyte) strongly inhibited relative yield 

of both G. clavigera and O. montium and appears to be an antagonist to both. Subsequent work has 

characterized various effects of bacteria associated with bark beetles on symbiotic fungi indicating 

they may, at least in part, mediate interactions between the symbiotic fungi and the host beetle [136]. 

Cardoza et al. [132] observed D. rufipennis producing oral secretions that inhibited the growth of 

fungi associated with the host beetle. These oral secretions contained bacteria that inhibited one or 

more of the fungi, including the ophiostomatoid symbiont, L. abietinum. Further, actinomycetes in 

mycangia may provide some protection to beneficial fungi from antagonistic ones [137]. 



Insects 2012, 3 

 

 

354

Work on bark beetle gut communities indicates a high diversity of microbes associated with this 

niche; however, the roles of these microbes and their potential interactions with bark beetle symbiotic 

fungi remain poorly understood [138,139]. Overall, it appears that at least some co-occurring microbes 

impact the distribution of symbiotic fungi through antagonistic or facilitative interactions, with 

potentially important indirect effects on the fitness of host beetles. 

3.3. Arthropods 

Bark beetles and their symbiotic fungi also share trees with many arthropods. These arthropods 

include natural enemies (predators and parasitoids), phloem and wood borers, and fungivores, as well 

as other bark beetle species. Some of these arthropods significantly affect beetle-fungus symbioses. 

Bark beetle species that cohabit the same tree can compete for resources. Their fungi may also 

compete for space and resources while also disrupting contact between a beetle and its normal fungal 

assemblage. 

Some mites, phoretic on bark beetles, have close symbioses with ophiostomatoid fungi [140,141]. 

These mites feed on their associated fungi and vector them in sporothecae, the structures of their 

exoskeletons being analogous to bark beetle mycangia. Mites and their associates can have profound  

effects on the fitness and population dynamics of bark beetles and their associated fungi [141]. 

Interestingly, a mite-scarab beetle-ophiostomatoid fungus interaction recently reported from Protea  

infructescences [116] indicates that such complex associations involving mites are not limited to bark 

beetle systems. 

Some natural enemies of bark beetles also interact, at least indirectly, with bark beetle-associated 

fungi. In the Ips pini—O. ips and the D. ponderosae-O. montium-G. clavigera systems, parasitoids are 

attracted to fungus-colonized tree tissues and apparently use fungus-produced volatiles for locating 

beetle larvae and pupae [142,143]. In contrast, in the D. frontalis-fungus symbiosis, fungi were not 

required for attraction to occur [144]. Whether such exploitation of fungal symbionts by parasitoids to 

locate hosts affects beetle or fungal fitness or population dynamics is unknown. 

3.4. Temperature  

Fungi are extremely sensitive to temperature and most species grow only within a relatively narrow 

range of temperatures. Optimal growth temperatures and ranges of temperatures supporting growth 

vary substantially among species. Such differences can greatly affect the distribution of fungi, their 

relative prevalence, and the outcome of competitive interactions when fungi occur together in a substrate. 

For example, Six and Bentz [115] found that temperature plays a key role in determining the relative 

abundance of the two symbiotic fungi associated with dispersing D. ponderosae. The two fungi 

possess different optimal growth temperatures. When temperatures are relatively warm, O. montium is 

dispersed by new adult beetles, but when temperatures are cool, G. clavigera is dispersed. Shifts in the 

prevalence of the two fungi probably reflect the effects of temperature on sporulation in pupal 

chambers when brood adults eclose, begin to feed, and pack their mycangia with spores. The two fungi 

are not highly antagonistic to one another when grown in culture [145] and are often observed or 

isolated together from phloem or from the same pupal chamber [71,146,147]. The ability of these 

species to intermingle in tree substrates, and the rarity of fungus-free dispersing beetles, indicates that 
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both fungi are probably present in many pupal chambers, but that depending upon temperature, 

typically only one will sporulate and be acquired in mycangia at a particular point in time. This 

determines which fungus is dispersed to the next tree and the next generation of beetles, with 

substantial implications for the fitness of both beetles and fungi. 

Significant effects of temperature on interactions between D. frontalis and its two mycangial fungi, 

and an antagonistic phoretic fungus (associated with mites phoretic on D. frontalis) were also 

observed. The relative abundance of the two mycangial fungi of D. frontalis changes seasonally, with 

Entomocorticium sp. A prevailing in winter and C. ranaculosus in summer [84]. Their relative 

frequency was significantly affected by temperature. Increased temperatures probably decreases beetle 

reproduction directly through effects on the physiology of progeny and indirectly through effects on 

mycangial fungi. Entomocorticium performs poorly at higher temperatures while C. ranaculosus  

is unaffected. 

4. Stability and Redundancy in Multipartite Systems 

Symbioses, particularly mutualisms, are predicted to be inherently unstable and prone to erosion 

because of cheating by established symbionts or invasion by exploiters [148]. This may be especially 

true for multipartite symbioses, such as most bark beetle-fungus symbioses, where interactions among 

symbionts may also affect stability. Many fungal associates of bark beetles are phylogenetically related 

and have similar life histories. They are introduced into trees by the host beetle, are thought to use the 

same resources within the tree, and potentially compete for the same space, and ultimately, for the 

same host beetles when it comes time for dispersal. Thus, the multiple fungal associates of beetle 

species appear to occupy essentially the same niche. This should result in strong direct competition 

among symbionts, leading to replacement of weaker competitors by stronger competitors. Moreover, 

for mutualisms, different symbionts, being different organisms, are not expected to provide exactly the 

same degree of benefit to the host. Therefore, symbionts that provide inferior benefits should be 

selected against, and superior symbionts should move toward fixation with the host. Despite these 

predictions, many multiple-partner associations have apparently been relatively stable for long periods 

of evolutionary time [102], indicating the existence of factors or mechanisms that contribute to  

their stability. 

Questions of how and why a host maintains two or more mutualistic symbionts are particularly 

interesting. At first glance, inferior symbionts appear to be inherently detrimental to the host because 

they displace the more beneficial symbiont(s) from a proportion of the host population. This should 

lower the fitness of individual hosts relative to those with superior symbionts. This may be especially 

important for aggressive beetle species that mass attack trees, and whose success ultimately is linked to 

host population size. 

When considering which symbionts are superior, it is important to remember that roles and intensities 

of effects vary with environmental conditions. Environmental heterogeneity is a fundamental attribute 

of biological communities [149], and the function of any given species can vary considerably across 

natural gradients, both within a community and among different communities [150]. This variability in 

function as conditions change has been called ‘context dependency’ [151]. Gradients of temperature, 

moisture, and other environmental variables comprise the essential axes of species’ ecological niches 
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and these factors exert major influences on the ecological performance of organisms in nature [152]. 

Within the geographic range of an organism, some conditions will be more suitable for survival growth 

and reproduction. This means that some symbionts that are ecologically extraneous (or inferior) at one 

point on a multifactoral environmental gradient may be essential (or superior) at another. 

Symbionts associated with a beetle can appear to occupy a common niche when in actuality the 

niches may differ greatly. Each partner in these symbioses responds differently to the same set of 

environmental gradients. This may translate to relatively large differences in the effectiveness of 

different symbiont genotypes (different species or strains of one species) under different environmental 

conditions. Furthermore, if shifts in the environment are unpredictable or rapid relative to the 

generation time of the host, then host specialization on one symbiont may not be favored. Under such 

circumstances, multiple symbionts may be advantageous, because they increase the chance that at least 

one symbiont partner is effective under any prevailing set of environmental conditions. 

For example, as reviewed above, the two fungi associated with D. ponderosae possess different 

temperature tolerances [115,153,154]. These differences determine which fungus is vectored by 

dispersing host beetles as temperatures fluctuate over a season. This temperature-driven symbiont 

shifting may provide a mechanism that has allowed both fungi to persist in a long-term symbiosis with 

their host. By growing at different temperatures, and thus at different times, the fungi minimize 

competition with one another except at a narrow range of temperatures where the growth of both fungi 

is equally supported. In turn, the beetle may benefit by reducing its risk of being ‘left alone’ by 

exploiting not one, but two symbionts, whose combined growth optima span a wide range of 

environmental conditions. For bark beetles, such as D. ponderosae, which inhabit a broad geographic 

range and highly variable habitats, possessing multiple symbionts may be especially important. 

It may be useful to view multipartite symbioses from the perspective of functional redundancy. The 

idea that many species in ecosystems perform the same or very similar functions (members of a 

functional group) has been used extensively in conservation theory [155]. The concept of functional 

redundancy suggests that the presence of a diversity of functionally equivalent species enhances the 

resilience of an ecosystem and its ability to function after perturbation [155]. This concept may also be 

applicable to symbioses, especially ectosymbioses, where hosts often have multiple symbionts that 

fulfill similar roles (symbiont redundancy) and where both partners are exposed to vagaries of the 

environment. Symbiont redundancy may contribute to resilience and help maintain functions in 

symbioses that occur in variable habitats where one symbiont alone may not suffice. Symbionts in the 

same ‘functional group’ may be redundant in the resources provided to a host, but possess different 

responses along environmental gradients, allowing the symbiont community as a whole to respond to 

changes in the environment that occur both seasonally and from year to year. 

5. Conclusions and Future Directions 

Symbioses between Scolytinae and fungi are complex, varied and still poorly understood. While 

our understanding of these systems remains rudimentary, the recent revival of interest in them has led 

to a rapid accumulation of information. Molecular taxonomic tools have enabled researchers to 

accurately identify fungal partners and to resolve phylogenetic relationships of beetles and fungi alike. 

This renaissance emerged because of the willingness of investigators to test new paradigms and to 
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apply ecological and evolutionary theory to these interactions. Because of this, the near future should 

be a very exciting period, moving us rapidly toward an integrated understanding of how these 

organisms interact with each other and the environment, revealing how their interactions have 

developed and been maintained over time. 
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