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Abstract: Studies of predation of ladybird beetles (Coccinellidae) have focused on a 
limited number of predator taxa, such as birds and ants, while other potential predators 
have received limited attention. I here consider amphibians as predators of ladybirds. 
Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and 
toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders 
(Caudata) eat ladybirds less frequently, probably as their habits less often bring them into 
contact with the beetles. Amphibians do not appear to be deleteriously affected by the 
potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, 
use primarily prey movement as a release cue to attack their food; it is thus likely that  
their ability to discriminate against ladybirds and other chemically defended prey is 
limited. Because of this poor discriminatory power, amphibians have apparently evolved 
non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although 
amphibian-related ladybird mortality is limited, in certain habitats it could outweigh 
mortality from more frequently studied predators, notably birds. The gut analyses from the 
herpetological literature used in this study, suggest that in studying predation of insects, 
entomologists should consider specialized literature on other animal groups.  

Keywords: alkaloid; Anura; aposematism; Caudata; chemical defense; chemical resistance; 
Coccinellidae; foraging cues; generalist predation; prey discrimination 
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1. Introduction 

Ladybird (coccinellid) beetles have a prodigious array of natural enemies. In the last two decades 
there has been intense interest in the parasites and pathogens of ladybirds [1 4] and in intraguild 
predation by and of ladybirds [5 8]. However predation of ladybirds by more generalist predators has 
remained largely overlooked.  

A possible reason for the limited amount of attention devoted to such predation might be the 
formidable chemical defenses of ladybirds, which are often assumed to deter generalist predators. 
These are based on interspecifically variable distasteful or toxic alkaloids that are present throughout 
all ladybird life history stages [9 12]. Additionally, methylalkylpyrazines provide ladybirds with an 
unpleasant smell, which serves as an olfactory equivalent of warning coloration [13]. Although these 
chemical defenses clearly do provide ladybirds with a degree of protection from predation, as might be 
expected (e.g., [9,14 17]), this is by no means universal. Exceptions are numerous and informative, 
indicating a particular foraging situation where a predator is prepared to accept prey that is of low 
quality or even risky to consume, or, alternatively, some form of evolved immunity to some or all of 
these defensive chemicals (e.g., [18 20]).  

Past studies of generalist predation have tended to focus on birds, in large part because of the role 
they apparently play in the evolution of ladybird color patterns (e.g., [15,17,18]), and ants, which are 
more often competitors of ladybirds than predators [16,21,22]. Nonetheless predation is not limited to 
these groups. Ceryngier et al. [23] state Predation by vertebrates concerns virtually all the main 
groups: fish, amphibians, reptiles, birds and mammals s that vertebrate groups other than 
birds should be examined in more detail.  

In this paper, I consider the extent of predation of ladybirds across the three amphibian orders, in 
particular focusing on an extensive but, by entomologists, vastly underutilized resource, the very 
numerous studies of amphibian gut contents that have been carried out since the 1800s. I then go on to 
discuss observations relating to the effects of ladybird defensive chemistry on amphibians. I conclude 
by considering why amphibians eat ladybirds and why they are not more strongly affected by ladybird 
chemical defenses when they do.  

2. Gut Analyses of Amphibians  

Since the 19th century, amphibians have been the subject of frequent dietary analyses, particularly 
using gut dissection (e.g., [24 27]) and, more recently, also the less destructive stomach-flushing 
methodology [28,29]. Although noted as of value to entomologists in the past (e.g., [30,31]), this data 
seems rarely to be used by entomologists now. There are probably a number of reasons for this, the 
most important being a lack of awareness that so much data exists. This is exacerbated by the fact that 
much of this information is published in relatively obscure journals, even today, and that much more of 
it is many decades old. It should be borne in mind that, because of the latter two factors, even this 
review cannot be fully comprehensive, and that for every reference discussed, others exist that have 
not been seen by the author. 

In order to obtain a relatively unbiased comparison of the extent of predation of ladybirds by  
the three orders, Anura (frogs and toads), Caudata (salamanders and newts) and Gymnophiona 
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(caecilians), I collected papers on gut analyses of amphibians from a 10-year period (2002 2011) using 
the Web of Science database and Google as starting points for searches. I excluded papers on 
specialized feeding (e.g., [32]) and exclusively aquatic species (e.g., [33]). Papers included in the 
analysis were only those that identified beetles and other prey to the family level, a prerequisite for the 
identification of ladybirds (members of the Coccinellidae) in the diet.  

A total of 21 papers from 2002 2011 detailing gut analyses of 28 species of frogs and toads were 
examined. Seven of the 21 papers (33%) included examples of coccinellid predation, with predators of 
ladybirds comprising six of the 28 species (21%). Only seven papers on newts and salamanders, each 
covering one different species, were found, and of these only one (14%) included a record of predation 
of coccinellids. There is very limited available work on the diet of caecilians [34]. Of the five papers 
reviewed, two, each covering one species, included no Coleoptera as prey at all. In the other three 
covering a total of four species, although beetles formed a part of the diet, they were generally 
infrequent (0.7% 5.9% of all dietary items). In most cases no indication of beetle identity was given, 
and where it was, they were predominantly soil-dwelling larval stages [35]. 

In the comparison of the amphibian orders, frogs and toads appear to most frequently include 
ladybirds in their diet. It seems likely that this is a reflection of the habitats they live in and possibly 
their jumping ability. Ladybirds are active in vegetation off the ground, although they may hibernate or 
aestivate at ground level. It is when they are active that they are moving and most vulnerable to anuran 
attack (see Section 4.1). Frogs and toads often live in open vegetated areas, even actually in the 
vegetation (for example treefrogs), while newts and salamanders tend to live on the ground, in damper 
areas, such as forest floors, caves and ponds, and those caecilians that are not aquatic live underground. 

2.1. Anuran Predation of Ladybirds  

The conclusion above, that of the amphibian orders anurans most frequently include ladybirds in 
their diets, appears to be borne out by the very abundant records of anuran predation of coccinellids, 
including by members [36] of the Bombinatoridae [37], Scaphiopodidae [38,39], Pelobatidae [40], 
Hylidae [41 47], Leptodactylidae [48] and Hyperoliidae [49], as well as very abundant records from 
the Bufonidae [25,30,50 57] and Ranidae [26,40,51,58 70]. The particular preponderance of records 
for ranids (true frogs), bufonids (true toads) and to a letter extent hylids (treefrogs) probably reflects 
the rather more abundant work on species in these groups, due to their common and widespread 
occurrence in Europe and North America.  

In some cases records are of one or a few isolated ladybirds in a diverse diet (e.g., [39,48,51,63]). 
From three related studies of the yellow bellied toad, Bombina variegata (L.), including 13 separate 
samplings of stomachs [37,71,72], there is only one example of ladybird predation [37]. It has been 
suggested that such low numbers are a consequence of avoidance or rejection of unpalatable or 
warningly colored prey [42,43,49]. However such low levels of predation are by no means universal. 
In the toad Anaxyrus fowleri (Hinckley) (=Bufo woodhousei fowleri Hinckley), 93 out of 497 stomachs 
(18.7%) collected over a season were found to contain the remains of coccinellids [54]. Similarly  
127 coccinellid adults and 532 larvae were recovered from 296 stomachs of American spadefoot toads, 
Spea hammondii (Baird) (=Scaphiopus hammondi Baird): in total ladybirds comprised 12.5% of the 
dietary items recorded [38]. A number of gut analyses have recently been carried out on the frog 
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Pelophylax ridibundus (Pallas) (=Rana ridibunda Pallas) in Romania, Bulgaria, Russia and  
Turkey, [66 68,70,73]: of 10 separately tabulated samplings of stomachs in these papers, only three do 
not include coccinellids. The proportion of coccinellids in the diet of P. ridibundus can reach almost 
7% [68]. Other members of the Pelophylax esculentus species complex may also prey on ladybirds [40]; in 
general beetle predation by members of this group seems to be high, with beetles comprising about a 
fifth of dietary items [74].  

There is some reason to believe that many species take coccinellids in proportion to their 
occurrence in the habitat. Two different studies of phylogenetically separated anuran species, the 
spring peeper, Pseudacris (=Hyla) crucifer (Wied-Neuwied), (Hylidae) and the northern leopard frog, 
Lithobates pipiens (Schreber) (=Rana pipiens pipiens Schreber), (Ranidae), both in Ithaca, New York, 
recorded high numbers of coccinellids in their diets in 1962 [44,62]. Coccinellids reached 15% of 
items in the diet of juvenile P. crucifer in June [44] and 11% of the diet of juvenile L. pipiens [62]. 
Proportions in the diets of adults were much lower. An explanation consistent with these simultaneous 
and co-occurring high dietary ladybird abundances would be a population explosion of ladybirds 
occurring in this year: this is not an uncommon phenomenon in aphid-eating Coccinellidae in summer 
after breeding [75]. A ladybird population explosion would also explain the higher ladybird 
abundances in the diets of juveniles than adult frogs. The adults were apparently collected over a 
longer period than the juveniles: the latter would have been largely collected after metamorphosis in 
summer, at the time when a ladybird population explosion would be occurring. Thus the diet of 
juveniles would more strongly reflect a sudden summer increase in ladybird numbers.  

Unfortunately, I have been unable to find any data relating to the abundance of ladybirds in the 
Ithaca area, New York State or the surrounding states in 1962, in spite of an extensive literature search, 
thus the hypothesis of a ladybird population explosion in that area and year must remain speculative. 
However, the temporal abundance of ladybirds in the juvenile diet of P. crucifer [44] also closely 
matches expectations of aphidophagous ladybird population changes and behavior. Peak dietary 
abundances occur in early summer directly after ladybird (and frog) breeding. This is followed by a 
decline (due to ladybird mortality (see [75]) and a slight increase in late summer when ladybirds are 
very mobile, moving to overwintering sites (e.g., see [76]); more general changes in prey abundances 
in the diet of L. pipiens were also thought to be related to prey life cycles and habits [62]. If 
coccinellids are taken as prey by frogs and toads in proportion to their occurrence (and apparency) in 
the habitat, low ladybird numbers in anuran diets probably only indicate their relatively minor faunistic 
contribution to the potential prey in the habitats of the predators, rather than avoidance related to their 
chemical defense.  

In most cases, records of ladybird predation probably involve adult beetles (e.g., see [31,50,67]), 
which have tougher and less easily degraded cuticle that is more easily recognized in stomach 
samplings. Where predation of larvae is recorded, it can be higher than that of ladybird adults [38], 
suggesting that much predation of ladybirds (i.e., the soft-bodied larvae) may be missed in dietary 
inventories. When the species or genera of ladybirds are recorded, they are usually the large and 
brightly colored members of the aphid-eating tribe Coccinellini (subfamily Coccinellinae). It  
seems likely that this is because the color patterns make the beetle remains in the guts easier to  
identify. Thus, from ten years (1915 1924) of analyzing the stomach contents of various  
North American frogs, Frost [31], records the Coccinellini Hippodamia parenthesis (Say), 



Insects 2012, 3 657 

 

 

Hippodamia tredecimpunctata (L.), Coccinella transversoguttata Faldermann, Adalia bipunctata (L.), 
Coleomegilla maculata lengi Timberlake (=Ceratomegilla maculata (De Geer) and probably 
Ceratomegilla fuscilabris (Mulsant)), as well as from other coccinellid subfamilies Chilocorus stigma 
(Say) (=C. bivulnerus Mulsant) and Hyperaspis undulata (Say). All of these species exhibit bright  
coloration [77], presumably warning coloration, and alkaloid defenses have been identified either from 
these or related species [11,78 80]. Other coccinellid prey named in studies include Cheilomenes 
lunata (F.), Coccinella novemnotata Herbst, Coccinella septempunctata L., Cycloneda sanguinea (L.), 
Hippodamia convergens (Guérin-Méneville), Propylea quatuordecimpunctata (L.), Anatis sp., 
Psyllobora sp., Scymnus canariensis Wollaston, Scymnus cercyonides Wollaston and Scymnus 
trepidulus Weise [30,38,42,43,49,50,58,66,67], all except the last two of which are apparently warningly 
colored [43,49,77,81] and known or likely to have alkaloid chemical defenses (see [9,11,12,78,79]).  

2.2. Predation by Caudata and Gymnophiona 

The low level of predation of ladybirds by newts and salamanders in the comparison (see Section 2, 
above) was borne out by a wider literature search, which produced only three papers (including the 
original one) which documented Caudata preying on ladybirds. Two papers relate to the same 
populations (Jiului National Park, Romania) of same species, the polyphagous European fire 
salamander, Salamandra salamandra (L.) (Salamandridae): five individuals of a total of 177 (2.8%) 
each ate a single ladybird [82,83]. The third paper recorded two species, both plethodontids, eating 
ladybirds in a study of five different North American newts and salamanders from the same forest 
habitat: one of 200 (0.5%) red-backed salamanders, Plethodon cinereus (Green), ate a single ladybird 
adult, and two of 74 (2.7%) adult northern dusky salamanders, Desmognathus fuscus fuscus (Green), 
also ate single adult ladybirds [84]. 

As already pointed out, it is probably the habitats of salamanders and newts that are responsible for 
their limited consumption of ladybirds. Many salamanders seem to readily eat other beetles, including 
members of other chemically defended families, such the soil and litter dwelling Staphylinidae [85,86], 
as part of a generalist diet (e.g., [84,87,88]). Avoidance of ladybird prey on grounds of their chemical 
defenses therefore seems unlikely, although it cannot be ruled out.  

The same considerations also apply to the third amphibian order, the caecilians (Gymnophiona), for 
which no records of ladybird predation have been found. Caecilians generally lead either aquatic or 
subterranean lives, neither of which is likely to bring them into contact with ladybirds, although it 
should be noted that ladybirds sometimes spend periods of dormancy underground [76]. At present the 
very limited data on caecilian diets makes it difficult to rule out caecilian predation of ladybirds, 
although it seems probable that it is unlikely, or at best very unusual. 

3. The Acceptability of Ladybird Prey to Amphibians in Captivity 

It is clear from gut analyses that coccinellids are regular natural prey for anurans at least. This might 
be considered surprising given the powerful chemical defenses of ladybirds, which might be assumed 
to deter amphibians from eating them. Unfortunately, we have very little information on how 
amphibians react to ladybirds on encountering them. The only published trial of which this author is 
aware is that of Frazer and Rothschild [89], who tested the common toad (Bufo bufo (L.): Bufonidae) 
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with ladybirds as part of more broadly targeted feeding experiments on insect chemical defense. 
However, they do not comment specifically on these feeding tests, only summarizing ladybirds as 
overall highly unacceptable for the wide diversity of predators tested.  

Nonetheless, in the course of keeping pet amphibians I have myself observed three cases of 
predation of ladybirds when these insects were accidentally mixed in with other sweep-netted insects 
collected as food for anurans. They all involved North American species, from Kentucky (USA). The 

Hyla chrysoscelis Cope) eating an adult Cycloneda munda 
(Say). In the other two cases, metamorph American toads (Anaxyrus americanus (Holbrook)) ate, in 
one case an adult Coleomegilla maculata lengi and in the other an adult Hippodamia parenthesis. All 
three ladybird species possess alkaloid chemical defenses [12,80,90]. In none of the three cases did the 
amphibians suffer any obvious subsequent detrimental effects. 

It should be emphasized that these were not experiments, but casual observations. However they are 
striking for a number of reasons. First, because it was thought that they might be harmful, ladybird 
were typically removed from sweep-netted food: these three cases constituted rare occasions when 

amphibian predation drawn from a much wider set of encounters where no such predation occurred 
(although I cannot exclude the possibility that this might occasionally have happened). Second, 
because the ladybirds were provided among sweep-netted insects, a large number of more palatable 
prey were simultaneously available to the amphibians, yet the ladybirds were still eaten. Third, the 
examples involving metamorph A. americanus are particularly noteworthy, because the insects were a 
considerable proportion of the size of the tiny toads. This means that the dose of alkaloid received by 
these metamorphs was very high.  

4. Why Do Amphibians Eat Ladybirds and Why Do They Suffer So Few Ill Effects? 

From the evidence given in the previous sections we can make certain generalizations about 
ladybird-eating in amphibians. It appears that generally the habit is much more frequent in anurans 
than in the other two groups. This is unsurprising: as already noted the behavior and habitats occupied 
by anurans mean that they are more likely to come into contact with ladybirds in the first place. As 
most observations relate to anurans, the discussion that follows is therefore largely framed in terms of 
the Anura, although it can probably be extended to other amphibian groups. It can also be similarly 
framed for non-ladybird chemically defended prey: perusal of many of the papers cited here quickly 
reveals that ladybirds are not the only chemically defended prey occurring in amphibian diets. 

Within the Anura there are certainly taxonomic differences in diet some anurans will live in 
habitats that mean that they rarely come into contact with ladybirds; there may also be species that 
genuinely do avoid eating ladybirds or reject them when they do encounter them. But the overall 
impression is that ladybirds are usually consumed when encountered, as part of a relatively unspecific 
invertebrate diet. This is supported by the observations for Ithaca in 1962, discussed in Section 2.1. 
Furthermore, the overall impression is that ladybirds are rarely, if ever, harmful to amphibians when 
eaten, in contrast to their effects on some other putative ladybird predators (e.g., [91,92]). This poses 
two questions: first, why are ladybirds taken as prey and not selected out and second, why are they not 
(more) harmful to the amphibian predators that eat them?  
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4.1. Why Do Amphibians Not Select Out Ladybirds When Feeding?  

Anurans use primarily prey movement to detect their food (e.g., [42,93 96]). This would tend to 
indicate that moving ladybirds would be unselectively attacked and eaten. However, frogs can also see 
and distinguish colors [97], use smell to distinguish between prey [98] and learn on the basis of such 
cues [99]. All these observations suggest that the visual and olfactory warning signals of ladybirds 
might act as deterrents to anuran predators. However, experiments on aposematic and olfactory 
interactions with movement clearly demonstrate that movement remains the primary cue. While frogs 
attacked grouped moving aposematic prey with a slight delay compared to moving non-aposematic 
prey, non-moving prey were never attacked; furthermore solitary moving aposematic prey were not 
attacked significantly less than moving, non-aposematic prey [100]. Odor only acted as a deterrent in 
slow moving prey, not fast moving [101].  

The results suggest that ladybirds would gain little protection from anurans/amphibians with the 
warning signals they possess, because of their behavior. During their active season they typically walk 
quickly over plants looking for food and mates and this rapid movement would outweigh any deterrent 
signals. Indeed, because of the strong contrast they present relative to the plants on which they forage, 
detection of ladybird movement compared to movement of cryptic prey might be easier for anuran and 
other amphibian predators. Ladybirds might benefit from warning signals against amphibians when 
overwintering or aestivating, but at these times, which are generally cold or very hot and dry, 
amphibians are less likely to be active.  

4.2. Why Are Ladybirds Not (More) Harmful to the Amphibian Predators That Eat Them? Amphibian 
Resistance to Ladybird Prey Chemical Defenses 

There are three overlapping possible explanations to explain the apparent immunity of amphibians 
to the toxic effects of ladybird alkaloids. First chemically defended prey can be distasteful, but not 
toxic. This has been documented for ladybirds in relation to bird predators, but is unlikely to be true in 
all cases: for example, although the ladybird Adalia bipunctata is distasteful but not toxic to nesting 
blue tits (Cyanistes (=Parus) caeruleus (L.)), Coccinella septempunctata is toxic [91]. Certainly a 
degree of toxicity seems to be a widespread characteristic of ladybird defensive alkaloids [102].  

A second possibility is that although the alkaloids of the ladybirds consumed are toxic, amphibians 
generally do not consume a sufficient amount that they are harmful. In some cases this is probably 
true, although even on the basis of 1 or 2% regularly occurring in gut analyses of a particular 
amphibian species, this would over time add up to a substantial lifetime alkaloid intake per individual 
predator, with possible longer term effects. Furthermore, consumption of large numbers of ladybirds is 
documented in some anurans, but still no harmful effects have been recorded. The consumption of 
whole adult ladybirds by the juvenile Anaxyrus americanus described above (see Section 3) also 
exposed the amphibians to a substantial alkaloid dose, yet in spite of this, the small toads exhibited no 
adverse effects. The evidence relating to ladybirds, as well as from other chemically defended prey 
taxa, suggests that Anura, and probably other amphibians, are at least to some extent resistant to any 
toxic effects of chemically defended prey that they consume. This is the third and most probable 
explanation for the lack of harm to amphibians from ladybird alkaloids. Because amphibians are 
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relatively non-specific in the prey they eat as a consequence of their movement-focused mode of 
hunting, they consume a large number of potentially toxic prey. They have therefore likely evolved 
physiological means of neutralizing a broad range of potentially harmful defensive chemicals 
including ladybird alkaloids. This resistance to toxic chemicals ultimately can explain the success of 
amphibians in preying on ladybirds. 

Resistance to the effects of ladybird alkaloids is apparent in other non-selective predators.  
Majerus [18,81] has pointed out that birds that feed on the wing must be resistant to the toxic effects of 
ladybirds, because their mode of hunting precludes them selecting their prey. Similarly the web 
spinning spider Araneus diadematus Clerck readily feeds on ladybirds and suffers no obvious ill 

ut chemically defended prey arises 
due to its sit-and- mphibians appear to constitute another 
example where the way prey are caught leads to limited selectivity and thus the evolution of  
chemical resistance. 

Alkaloid resistance is also already well known for some groups of Anura. A number of lineages of 
anurans are known to sequester alkaloids from prey for use in their own chemical defenses [103,104]. 
The known total number of alkaloids used by anurans in this way currently numbers in excess of  
800 [105]. Alkaloids shared by ladybirds, and possibly derived from eating them, have been reported 
from three anuran groups including the Bufonidae [105], a family here recorded frequently preying on 
ladybirds. Clearly anurans that sequester alkaloids are resistant to their effects, and the sheer number of 
alkaloids involved suggests a broad range alkaloid resistance, evidently including ladybird alkaloids. 
Perhaps the sequestration of alkaloids evolved because of the non-specific, motion-orientated feeding 
of amphibians and a consequent phylogenetically widespread anuran resistance to defensive chemicals.  

5. Conclusions  

It is tempting to suggest that because of their non-selective predation and the high abundances that 
they can sometimes reach, anuran populations might in some habitats consume larger numbers of 
ladybirds than much better-studied predators, such as birds. Certainly there is no reason to ignore the 
presence of amphibians in the ever increasing list of generalist predators that can and do consume 
ladybirds. Nonetheless even the effect of anuran predation on populations of ladybirds is probably 
rather small, because of the high abundances that ladybirds reach. Most studies aimed at examining the 
effect of amphibians in agricultural settings have generally concluded that their effect on pest species 
outweighs any effect on beneficial insects, including ladybirds (e.g., [50,106,107]). Indeed in Japanese 
soybean fields, aphids made up 67.25% of the diet of the Japanese treefrog Hyla japonica Günther [107] 
suggesting that this species and possibly others might be more important as competitors of ladybirds 
than as predators. It is perhaps worth noting that generally the capacity of natural enemies to regulate 
ladybird populations is considered to be poor [108].  

Nonetheless, further studies of the relationship between amphibians and ladybirds would be 
worthwhile. Studies of the role of warning coloration and odor in deterring amphibian predation are 
surprisingly limited. In particular, the issue of whether in natural settings warning coloration would 
serve to emphasize movement and thus increase predation is worthy of consideration and something 
well suited to study using ladybirds. Similarly ladybird chemical defenses, which are well-characterized 
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chemically, would provide a good way of testing how amphibians respond to naturally occurring 
defensive allelochemicals. This work might provide an interesting and contrasting counterpoint to 
work on the responses of amphibians to anthropogenic xenobiotics, which are considered to play a 
significant role in amphibian declines [109 111].  

This study suggests that in the literature there is a lot of data available on the potential predators of 
a variety of insect and other invertebrate groups that is being overlooked. Entomologists inevitably 
concentrate on the literature directly focused on insects, but an exploration of the literature relating to 
other groups is likely to be of value, perhaps especially in considering vertebrate predation of insects, 
which, as for ladybirds, is often poorly characterized. The survey of the herpetological literature 
described here has produced a considerable amount of information on a trophic relationship with 
amphibians that has rarely warranted any consideration before. Other similar surveys may draw equally 
surprising results about putative predator groups that have undeservedly received limited attention.  

Acknowledgments 

I would like to thank Ilja Zeilstra for her interest and help in keeping a diversity of amphibians 
around-about, which inadvertently provided the first seed of interest in their apparent indifference to 
ladybird prey. I thank Eric Riddick for inviting me to contribute an amphibian/insect crossover paper 
to this special issue of Insects, and Andrew Davis for his help in obtaining some of the more  
obscure references listed here. I particularly thank Ted Cottrell
charmingly-written 1901 paper on toads [30], from a region where I knew both the ladybirds and the 
toads very well, provided the immediate impetus for this study.  

References  

1. Hurst, G.D.D.; Majerus, M.E.N. Why do maternally inherited microorganisms kill males? 
Heredity 1993, 71, 81 95.  

2. Webberley, K.M.; Hurst, G.D.D.; Husband, R.W.; Schulenburg, J.H.G.; Sloggett, J.J.; Isham, V.; 
Buszko, J.; Majerus, M.E.N. Host reproduction and a sexually transmitted disease: Causes and 
consequences of Coccipolipus hippodamiae distribution on coccinellid beetles. J. Anim. Ecol. 
2004, 73, 1 10. 

3. Riddick, E.W.; Cottrell, T.E.; Kidd, K.A. Natural enemies of the Coccinellidae: Parasites, 
pathogens, and parasitoids. Biol. Control 2009, 51, 306 312. 

4. Roy, H.E.; Rhule, E.; Harding, S.; Lawson Handley, L.-J.; Poland, R.L.; Riddick, E.W.; 
Steenberg, T. Living with the enemy: Parasites and pathogens of the ladybird Harmonia axyridis. 
BioControl 2011, 56, 663 679.  

5. Agarwala, B.K.; Dixon, A.F.G. Laboratory study of cannibalism and interspecific predation in 
ladybirds. Ecol. Entomol. 1992, 17, 303 309. 

6. Phoofolo, M.W.; Obrycki, J.J. Potential for intraguild predation and competition among 
predatory Coccinellidae and Chrysopidae. Entomol. Exp. Appl. 1998, 89, 47 55. 

7. Pell, J.K.; Baverstock, J.; Roy, H.E.; Ware, R.L.; Majerus, M.E.N. Intraguild predation involving 
Harmonia axyridis: A review of current knowledge and future perspectives. BioControl 2008, 
53, 147 168. 



Insects 2012, 3 662 

 

 

8. Weber, D.C.; Lundgren, J. Assessing the trophic ecology of the Coccinellidae: Their roles as 
predators and as prey. Biol. Control 2009, 51, 199 214. 

9. Pasteels, J.M.; Deroe, C.; Tursch, B.; Braekman, J.C.; Daloze, D.; Hootele, C. Distribution et 
activités des alcaloïdes défensifs des Coccinellidae. J. Insect Physiol. 1973, 19, 1771 1784. 

10. Tursch, B.; Daloze, D.; Braekman, J.C.; Hootele, C.; Pasteels, J.M. Chemical ecology of 
Arthropods-X. The structure of myrrhine and the biosynthesis of coccinelline. Tetrahedron 1975, 
31, 1541 1543. 

11. Daloze, D.; Braekman, J.-C.; Pasteels, J.M. Ladybird defence alkaloids: Structural, chemotaxonomic 
and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 1995, 5/6, 173 183.  

12. Sloggett, J.J.; Obrycki, J.J.; Haynes, K.F. Identification and quantification of predation: Novel 
use of gas chromatography-mass spectrometric analysis of prey alkaloid markers. Funct. Ecol. 
2009, 23, 416 426. 

13. Moore, B.P.; Brown, W.V.; Rothschild, M. Methylalkylpyrazines in aposematic insects, their 
hostplants and mimics. Chemoecology 1990, 1, 43 51. 

14. Happ, G.M.; Eisner, T. Hemorrhage in a coccinellid beetle and its repellent effect on ants. 
Science 1961, 134, 329 331. 

15. Brakefield, P.M. Polymorphic Müllerian mimicry and interactions with thermal melanism in 
ladybirds and a soldier beetle: A hypothesis. Biol. J. Linn. Soc. 1985, 26, 243 267. 

16. Marples, N.M. Is the alkaloid in 2spot ladybirds (Adalia bipunctata) a defence against ant 
predation? Chemoecology 1993, 4, 29 32.  

17. Marples, N.M. Toxicity assays of ladybirds using natural predators. Chemoecology 1993, 4, 33 38. 
18. Majerus, M.E.N.; Majerus, T.M.O. Predation of ladybirds by birds in the wild. Entomol. Mon. 

Mag. 1997, 133, 55 61. 
19. De Clercq, P.; Peeters, I.; Vergauwe, G.; Thas, O. Interaction between Podisus maculiventris and 

Harmonia axyridis, two predators used in augmentative biological control in greenhouse crops. 
BioControl 2003, 48, 39 55. 

20. Sloggett, J.J. Predation of ladybird beetles by the orb-web spider Araneus diadematus. 
BioControl 2010, 55, 631 638. 

21. Sloggett, J.J.; Manica, A.; Day, M.J.; Majerus, M.E.N. Predation of ladybirds (Coleoptera: 
Coccinellidae) by wood ants, Formica rufa L. (Hymenoptera: Formicidae). Entomol. Gaz. 1999, 
50, 217 221. 

22. Majerus, M.E.N.; Sloggett, J.J.; Godeau, J.-F.; Hemptinne, J.-L. Interactions between ants and 
aphidophagous and coccidophagous ladybirds. Popul. Ecol. 2007, 49, 15 27. 

23. Ceryngier, P.; Roy, H.E.; Poland, R.L. Natural Enemies of Ladybird Beetles. In Ecology and 
Behaviour of the Ladybird Beetles (Coccinellidae); Hodek, I., van Emden, H.F., A., Eds.; 
Wiley-Blackwell: Chichester, UK, 2012; pp. 375 443. 

24. Garman, H. A synopsis of the reptiles and amphibians of Illinois. Bull. Ill. State Lab. Nat. 
History 1892, 3, 215 390. 

25. Smith, C.C.; Bragg, A.N. Observations on the ecology and natural history of Anura, VII. Food 
and feeding habits of the common species of toads in Oklahoma. Ecology 1949, 30, 333 349. 

26. Licht, L.E. Food and feeding behavior of sympatric red-legged frogs, Rana aurora, and spotted 
frogs, Rana pretiosa, in southwestern British Columbia. Can. Field-Nat. 1986, 100, 22 31. 



Insects 2012, 3 663 

 

 

27. Maragno, F.P.; Souza, F.L. Diet of Rhinella scitula (Anura, Bufonidae) in the Cerrado, Brazil: 
The importance of seasons and body size. Rev. Mex. Biodivers. 2011, 82, 879 886. 

28. Fraser, D.F. Coexistence of salamanders in the genus Plethodon, a variation of the Santa Rosalia 
theme. Ecology 1976, 57, 238 251. 

29. Solé, M.; Beckmann, O.; Pelz, B.; Kwet, A.; Engels, W. Stomach-flushing for diet analysis in 
anurans: An improved protocol evaluated in a case study in Araucaria forests, southern Brazil. 
Stud. Neotrop. Fauna Environ. 2005, 40, 23 28. 

30. Garman, H. The food of the toad. Bull. Ky. Agric. Exp. Stn. 1901, 91, 60 68. 
31. Frost, S.W. Frogs as insect collectors. J. N. Y. Entomol. Soc. 1924, 32, 174 185. 
32. Berazategui, M.; Camargo, A.; Maneyro, R. Environmental and seasonal variation in the diet of 

Elachistocleis bicolor (Guérin-Méneville 1838) (Anura: Microhylidae) from northern Uruguay. 
Zool. Sci. 2007, 24, 225 231. 

33. Measey, G.J.; Royero, R. An examination of Pipa parva (Anura: Pipidae) from native and 
invasive populations in Venezuela. Herpetol. J. 2005, 15, 291 294. 

34. Jones, D.T.; Loader, S.P.; Gower, D.J. Trophic ecology of East African caecilians (Amphibia: 
Gymnophiona), and their impact on forest soil invertebrates. J. Zool. 2006, 269, 117 126. 

35. Kupfer, A.; Nabhitabhata, J.; Himstedt, W. From water into soil: Trophic ecology of a caecilian 
amphibian (Genus Ichthyophis). Acta Oecol. 2005, 28, 95 105. 

36. Amphibian taxonomy in this paper follows that of Frost, D.R.; Grant, T.; Faivovich, J.; Bain, R.H.; 
Haas, A.; Haddad, C.F.B.; de Sá, R.O.; Channing, A.; Wilkinson, M.; Donnellan, S.C.; et al. The 
amphibian tree of life. Bull. Am. Mus. Nat. Hist. 2006, 297, 1 370. 

37. -Marcov, S.-D. Comparative data on the trophic spectrum of syntopic 
Bombina variegata and Rana temporaria (Amphibia: Anura) populations from the Iezer 
Mountains, Romania. Ecol. Balk. 2011, 3, 25 31. 

38. Whitaker, J.O., Jr.; Rubin, D.; Munsee, J.R. Observations on food habits of four species of 
spadefoot toads, genus Scaphiopus. Herpetologica 1977, 33, 468 475. 

39. Jamieson, D.H.; Trauth, S.E. Dietary diversity and overlap between two subspecies of spadefoot 
toads (Scaphiopus holbrookii holbrookii and S. h. hurterii) in Arkansas. Proc. Ark. Acad. Sci. 
1996, 50, 75 78. 

40. 
Danube floodplain. Amphibia-Reptilia 2001, 22, 1 19. 

41. Hartman, F.A. Food habits of Kansas lizards and batrachians. Trans. Kans. Acad. Sci. 1906, 20, 
225 229. 

42. Haber, V.R. The food of the Carolina treefrog, Hyla cinerea Schneider. J. Comp. Psychol. 1926, 
6, 189 220. 

43. Cott, H.B. On the ecology of Hyla arborea var. meridionalis in Gran Canaria with special 
reference to predatory habits considered in relation to the protective adaptations of insects.  
Proc. Zool. Soc. Lond. 1934, 1934, 311 331. 

44. Oplinger, C.S. Food habits and feeding activity of recently transformed and adult Hyla crucifer 
crucifer Wied. Herpetologica 1967, 23, 209 217. 

45. Johnson, B.K. Rate of Food Consumption of Acris crepitans blanchardi Harper in South-Central 
Iowa. M.A. thesis, Drake University, Des Moines, IA, USA, August 1973. 



Insects 2012, 3 664 

 

 

46. Hirai, T.; Matsui, M. Feeding habits of the Japanese tree frog, Hyla japonica, in the reproductive 
season. Zool. Sci. 2000, 17, 977 982. 

47. Mahan, R.D.; Johnson, J.R. Diet of the gray treefrog (Hyla versicolor) in relation to foraging site 
location. J. Herpetol. 2007, 41, 16 23. 

48. Sanabria, E.A.; Quiroga, L.B.; Acosta, J.C. Dieta de Leptodactylus ocellatus (Linnaeus, 1758) 
(Anura: Leptodactylidae) en un humedal del oeste de Argentina. Rev. Peru. Biol. 2005, 12, 472 477. 

49. ambesi, 1927: No. 4. On the ecology of 
tree-frogs of the Lower Zambesi Valley, with special reference to predatory habits considered in 
relation to the theory of warning colours and mimicry. Proc. Zool. Soc. Lond. 1932, 1932, 471 541. 

50. Kirkland, A.H. The habits, food and economic value of the American toad. Bull. Hatch Exp. Stn. 
Mass. Agric. Coll. 1897, 46, 1 30. 

51. Force, E.R. Notes on reptiles and amphibians of Okmulgee County, Oklahoma. Copeia 1925, 
141, 25 27. 

52. Hamilton, W.J., Jr. Notes on the ecology of the oak toad in Florida. Herpetologica 1955, 11, 
205 210. 

53. Bush, F.M.; Menhinck, E.F. The Food of Bufo woodhousei fowleri Hinckley. Herpetologica 
1962, 18, 110 114. 

54. Klimstra, W.D.; Myers, C.W. Foods of the toad, Bufo woodhousei fowleri Hinckley. Trans. Ill. 
State Acad. Sci. 1965, 58, 11 26. 

55. Campbell, J.B. Food habits of the boreal toad, Bufo boreas boreas, in the Colorado Front Range. 
J. Herpetol. 1970, 4, 83 85. 

56. Fernando, P.; Dayawansa, N.; Siriwardhane, M. Bufo kotagami, a new toad (Bufonidae) from Sri 
Lanka. J. South Asian Nat. History 1994, 1, 119 124. 

57. Mollov, I.; Boyadzhiev, P. A contribution to the knowledge of the trophic spectrum of the 
common toad (Bufo bufo L., 1758) (Amphibia: Anura) from Bulgaria. ZooNotes 2009, 4, 1 4. 

58. Drake, C.J. The food of Rana pipiens Shreber. Ohio Nat. 1914, 14, 257 269. 
59. Munz, P.A. A study of the food habits of the Ithacan species of Anura during transformation. 

Pomona Coll. J. Entomol. Zool. 1920, 12, 33 56. 
60. Turner, F.B. An analysis of the feeding habits of Rana p. pretiosa in Yellowstone Park, 

Wyoming. Am. Midl. Nat. 1959, 61, 403 413. 
61. Whitaker, J.O., Jr. Habitat and food of mousetrapped young Rana pipiens and Rana clamitans. 

Herpetologica 1961, 17, 173 179. 
62. Linzey, D.W. Food of the leopard frog, Rana p. pipiens, in central New York. Herpetologica 

1967, 23, 11 17. 
63. Stewart, M.M.; Sandison, P. Food habits of sympatric mink frogs, bullfrogs, and green frogs.  

J. Herpetol. 1972, 6, 241 244. 
64. Collier, A.; Keiper, J.B.; Orr, L.P. The invertebrate prey of the northern leopard frog, Rana 

pipiens, in a northeastern Ohio population. Ohio J. Sci. 1998, 98, 39 41. 
65. Krupa, J.J. Temporal shift in diet in a population of American bullfrog (Rana catesbeiana) in 

Carlsbad Caverns National Park. Southwest. Nat. 2002, 47, 461 467. 
66. Ruchin, A.B.; Ryzhov, M.K. On the diet of the marsh frog (Rana ridibunda) in the Sura and 

Moksha watershed, Mordovia. Adv. Amphib. Res. Former Soviet Union 2002, 7, 197 205. 



Insects 2012, 3 665 

 

 

67. Çiçek, K.; Mermer, A. Food composition of the marsh frog, Rana ridibunda Pallas, 1771, in 
Thrace. Turk. J. Zool. 2007, 31, 83 90. 

68. Balint, N.; Indrei, C.; Ianc, R.; Ursu , A. On the diet of the Pelophylax ridibundus (Anura, 
Ranidae) in icleni, Romania. South West. J. Hortic. Biol. Environ. 2010, 1, 57 66. 

69. Burghelea, C.I.; Zaharescu, D.G.; Palanca-Soler, A. Dietary overview of Pelophylax perezi from 
Monegros rice fields (northeast Spain). Herpetol. J. 2010, 20, 219 224. 

70. Mollov, I.; Boyadzhiev, P.; Donev, A. Trophic role of the marsh frog Pelophylax ridibundus 
(Pallas, 1771) (Amphibia, Anura) in the aquatic ecosystems. Bulg. J. Agric. Sci. 2010, 16, 298 306. 

71. Ferenti, Habitat induced differences in the 
feeding of Bombina variegata from Vodita Valley (Mehedinti County, Romania). North-West. J. 
Zool. 2010, 6, 245 254. 

72. Covaciu-Marcov, S.-D.; Feren i, S.; Citrea, L.; Cup a, D.; Condure, N. Food composition of 
three Bombina variegata populations from Vâlsan River Protected Natural Area (Romania). 
Biharean Biol. 2011, 5, 11 16.  

73. Mollov, I.A. Sex based differences in the trophic niche of Pelophylax ridibundus (Pallas, 1771) 
(Amphibia: Anura) from Bulgaria. Acta Zool. Bulg. 2008, 60, 277 284. 

74. Paunovi , A.; Bjeli - abrilo, O.; imi , S. The diet of water frogs (Pelophylax esculentus 
complex ) from the Petrovarardinski Rit marsh (Serbia). Arch. Biol. Sci. Belgrad. 2010, 62, 

799 806. 
75. Majerus, M.E.N.; Majerus, T.M.O. Ladybird population explosions. Br. J. Entomol. Nat. History 

1996, 9, 65 76. 
76. Hodek, I. Dormancy. In Ecology of Coccinellidae; Hodek, I., A., Eds.; Kluwer Academic 

Publishers: Dordrecht, The Netherlands, 1996; pp. 239 315. 
77. Gordon, R.D. The Coccinellidae (Coleoptera) of America north of Mexico. J. N. Y. Entomol. Soc. 

1985, 93, 1 912. 
78. King, A.G.; Meinwald, J. Review of the defensive chemistry of coccinellids. Chem. Rev. 1996, 

96, 1105 1122. 
79. Laurent, P.; Braekman, J.-C.; Daloze, D. Insect chemical defense. Top. Curr. Chem. 2005, 240, 

167 229. 
80. Sloggett, J.J. University of Kentucky: Lexington, KY, USA, 2007. Unpublished Work.  
81. Majerus, M.E.N. Ladybirds (New Naturalist Series); HarperCollins: London, UK, 1994. 
82. , S.; Cicort-Lucaciu, A.- , F.; Paina, C.; Covaci, R. The food of four Salamandra 

salamandra populations from Defileul Jiului National Park (Gorj County). Olten. Stud. Comun. 
Nat.2008, 14, 154 160. 

83. Lezau, O.; Sas, I.; David, A.; Sucea, F.; Szatmari, P.; Condure, N. The feeding of two 
Salamandra salamandra (Linnaeus, 1758) populations from Jiului Gorge National Park 
(Romania). South West. J. Hortic. Biol. Environ. 2010, 1, 143 152. 

84. Burton, T.M. An analysis of the feeding ecology of the salamanders (Amphibia, Urodela) of the 
Hubbard Brook Experimental Forest, New Hampshire. J. Herpetol. 1976, 10, 187 204. 

85. Huth, A.; Dettner, K. Defense chemicals from abdominal glands of 13 rove beetle species  
of subtribe Staphylinina (Coleoptera: Staphylinidae, Staphylininae). J. Chem. Ecol. 1990, 16, 
2691 2710. 



Insects 2012, 3 666 

 

 

86. Dettner, K. Defensive secretions and exocrine glands in free-living staphylinid beetles-their 
bearing on phylogeny (Coleoptera: Staphylinidae). Biochem. Syst. Ecol. 1993, 21, 143 162. 

87. Anderson, J.D. A Comparison of the food habits of Ambystoma macrodactylum sigillatum, 
Ambystoma macrodactylum croceum, and Ambystoma tigrinum californiense. Herpetologica 
1968, 24, 273 284. 

88. Joly, P.; Giacoma, C. Limitation of similarity and feeding habits in three syntopic species of 
newts (Triturus, Amphibia). Ecography 1992, 15, 401 411. 

89. Frazer, J.F.D.; Rothschild, M. Defence mechanisms in warningly coloured moths and other 
insects. Proc. 11th Int. Congr. Entomol. Wien Verh. 1960, 3, 249 256. 

90. Ayer, W.A.; Browne, L.M. The ladybug alkaloids including synthesis and biosynthesis. 
Heterocycles 1977, 7, 685 707. 

91. Marples, N.M.; Brakefield, P.M.; Cowie, R.J. Differences between the 7-spot and 2-spot ladybird 
beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol. Entomol. 1989, 14, 79 84. 

92. Sloggett, J.J.; Haynes, K.F.; Obrycki, J.J. Hidden costs to an invasive intraguild predator from 
chemically defended native prey. Oikos 2009, 118, 1396 1404. 

93. Roth, G. Neural Mechanisms of Prey Recognition: An Example in Amphibians. In Predator-Prey 
Relationships: Perspectives and Approaches from the Study of Lower Vertebrates; Feder, M.E., 
Lauder, G.V., Eds.; University of Chicago Press: Chicago, IL, USA, 1986; pp. 42 68. 

94. Ewert, J.-P. Neuroethology of releasing mechanisms: Prey catching in toads. Behav. Brain Sci. 
1987, 10, 337 405.  

95. Stebbins, R.C.; Cohen, N.W. A Natural History of Amphibians; Princetown University Press: 
Princetown, NY, USA, 1995.  

96. Sloggett, J.J.; Zeilstra, I. Waving or tapping? Vibrational stimuli and the general function of toe 
twitching in frogs and toads (Amphibia: Anura). Anim. Behav. 2008, 76, e1 e4. 

97. Bowmaker, J.K. Evolution of vertebrate visual pigments. Vis. Res. 2008, 48, 2022 2041. 
98. Sternthal, D.E. Olfactory and visual cues in the feeding behavior of the leopard frog (Rana 

pipiens). Z. Tierpsychol. 1974, 34, 239 246. 
99. Rice, T.M.; Taylor, D.H. A simple test of prey discrimination that demonstrates learning in 

postlarval ranid frogs. J. Herpetol. 1995, 29, 320 332. 
100. Hatle, J.D.; Salazar, B.A. Aposematic coloration of gregarious insects can delay predation by an 

ambush predator. Environ. Entomol. 2001, 30, 51 54. 
101. Hatle, J.D.; Salazar, B.A.; Whitman, D.W. Sluggish movement and repugnant odor are positively 

interacting insect defensive traits in encounters with frogs. J. Insect Behav. 2001, 14, 479 496.  
102. , O.; Kalushkov, P.; Fois, X.; Ungerová, D.; Rozsypalová, A. Harmonia axyridis:  

Six-legged alligator or lethal fugu? IOBC-WPRS Bull. 2010, 58, 65 68. 
103. Saporito, R.A.; Spande, T.F.; Garraffo, H.M.; Donnelly, M.A. Arthropod alkaloids in poison 

frogs: A Heterocycles 2009, 79, 277 297. 
104. Rodríguez, A.; Poth, D.; Schulz, S.; Vences, M. Discovery of skin alkaloids in a miniaturized 

eleutherodactylid frog from Cuba. Biol. Lett. 2011, 7, 414 418. 
105. Daly, J.W.; Spande, T.F.; Garraffo, H.M. Alkaloids from amphibian skin: A tabulation of over 

eight-hundred compounds. J. Nat. Prod. 2005, 68, 1556 1575. 



Insects 2012, 3 667 

 

 

106. Attademo, A.M.; Peltzer, P.M.; Lajmanovich, R.C. Amphibians occurring in soybean and 
implications for biological control in Argentina. Agric. Ecosyst. Environ. 2005, 106, 389 394. 

107. Hirai, T. Diet Composition of Hyla japonica in soybean fields: Is a euryphagous predator useful 
for pest management? Jpn. J. Appl. Entomol. Zool. 2007, 51, 103 106. 

108. Ceryngier, P.; Hodek, I. Enemies of Coccinellidae. In Ecology of Coccinellidae; Hodek, I., 
A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 319 350. 

109. Venturino, A.; Rosenbaum, E.; de Castro, A.C.; Anguiano, O.L.; Gauna, L.; de Schroeder, T.F.; 
d Angelo, A.M.P. Biomarkers of effect in toads and frogs. Biomarkers 2003, 8, 167 186. 

110. Bommarito, T.; Sparling, D.W.; Halbrook, R.S. Toxicity of coal-tar and asphalt sealants to 
eastern newts, Notophthalmus viridescens. Chemosphere 2010, 81, 187 193. 

111. Kerby, J.L.; Hart, A.J.; Storfer, A. Combined effects of virus, pesticide, and predator cue on the 
larval tiger salamander (Ambystoma tigrinum). EcoHealth 2011, 8, 46 54. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


