Supplementary Materials

Table	S 1	Primers	used	in	this	study
Table	91.	Fillers	useu	ш	uns	study.

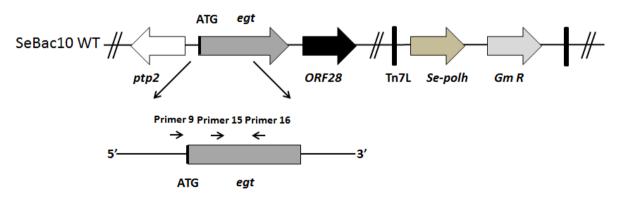
Number	Primer Name	Sequence (5'-3')	Function			
1	∆egt-ORF-Fw	CATCGGTCACCATGAACGGTTGCGCTGTCCTAATTTTATTTTTGCACT	Primer with 50 bp overhang (italics) to amplify a product for			
1		GGCTCGGATCCACTAGTAACGG	homologous recombination to remove part of the egt ORF			
2		$\label{eq:attrace} ATTTAGGGTTAAATTACATGGTTCATACATACACACACATCCTGTTTTTT$	Primer with 50 bp overhang (italics) to amplify a product for			
2	Δegt -ORF-Rv	CCTCTAGATGCATGCTCGAG	homologous recombination to remove part of the egt ORF			
3	∆ <i>egt</i> -ATG-Fw	TTTAGGTCACCCATTTACTGTATCGAATCATCGGTCACCGCTCGGATC	Primer with 50 bp overhang (italics) to amplify a product for			
3		CACTAGTAACG	homologous recombination to remove the egt start codon			
4	∆egt-ATG-Rv	GCCGAACCCGTGGTCAGTGCAAAAAAATAAAATTAGGACAGCGCAACC	Primer with 50 bp overhang (italics) to amplify a product for			
4		<i>GTT</i> CCTCTAGATGCATGCTCG	homologous recombination to remove the egt start codon			
5	Δegt -ORF-check Fw	ATGTGTGCTCTTCGTCAGATG	To check the Δegt -ORF deletion mutant			
6	Δegt -ORF-check Rv	TATTGCCTACGCGCGC	To check the Δegt -ORF deletion mutant			
7	∆egt-ATG-check Fw	GGCTAAACCGATGTTGTAGTG	To check the Δegt -ATG deletion mutant			
8	∆egt-ATG-check Rv	CCCGGTACCTCACACTAAATTAATTCTCAGTAATTGAC	To check the Δegt -ATG deletion mutant			
			To amplify a product for homologous recombination to generate			
9	egt-repair-Fw	ATTTACTGTATCGAATCATCGG	the egt-repair virus, for RT-PCR on SeMNPV egt and to check			
			egt-ATG deletion			
10	egt-repair-Rv		To amplify a product for homologous recombination to			
10		GGGTTAAATTACATGGTTCATACA	generate the egt-repair virus			
11	Se- <i>eIF5A</i> -Fw	GCCATGGCTGACATCGAGGATAC	RT-PCR on S. exigua eIF5A			
12	Se- <i>eIF5A</i> -Rv	GCGGTACCGGTTTATTTGTCGAGAGC	RT-PCR on S. exigua eIF5A			
13	Se-iel Fw	GACAAGAATGACGATGATATCGG	RT-PCR on SeMNPV iel			
14	Se-iel Rv	GGACAATTGCTTTTCCGAAAAC	RT-PCR on SeMNPV iel			
15	Se-egt-ORF-Fw	CAAGAGGTTGATTGACGAACAA	RT-PCR on SeMNPV egt and to check egt-ORF deletion			
1.6			RT-PCR on SeMNPV egt and to check egt-ORF and			
16	Se-egt-ORF-Rv	AGCGATTTGGGATGTTTGTC	egt-ATG deletion			

Replicate	Viruses	Odds Ratio	95% Co	P value	
			Low	High	
1	G25 WT	1.000	-	-	-
	SeBac10 WT	1.634	0.988	2.715	0.057
	∆egt-ORF	2.654	1.601	4.440	<0.001 ***
	Δegt -ATG	5.989	3.542	10.292	<0.001 ***
	egt-repair	3.845	2.300	6.509	<0.001 ***
2	G25 WT	1.000	-	-	-
	SeBac10 WT	1.291	0.774	2.158	0.329
	∆egt-ORF	0.680	0.407	1.132	0.139
	Δegt -ATG	1.135	0.679	1.902	0.629
	egt-repair	1.759	1.046	2.974	0.034 *
3	G25 WT	1.000	-	-	-
	SeBac10 WT	1.330	0.786	2.256	0.288
	∆egt-ORF	0.597	0.349	1.016	0.058
	Δegt -ATG	1.607	0.946	2.745	0.080

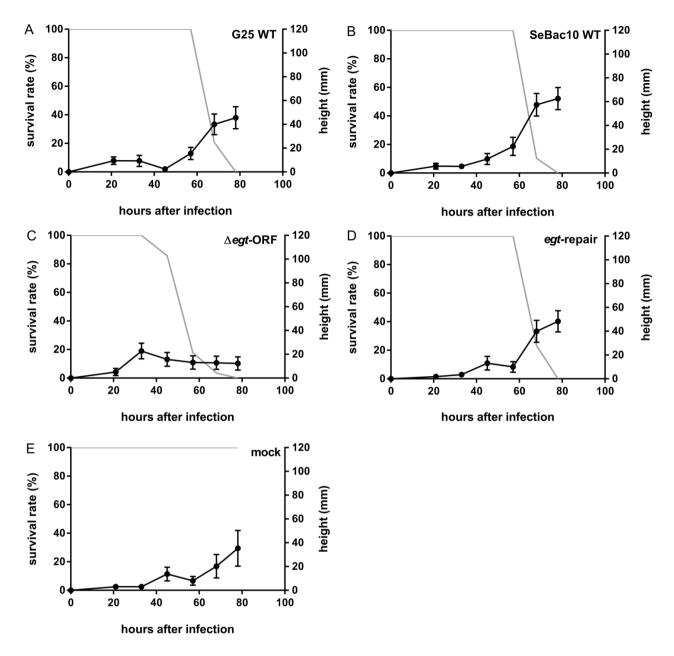
Table S2. (A) Outcome of the logistic regression analysis of the infectivity assays. Per replicate, an odds ratio (relative potency) was determined for each virus: the ratio of the infectivity of the respective virus relative to the infectivity of the G25 WT virus. The upper and lower limits of the 95% confidence interval are also given, as well as the P value.

Table S2. (B) Dose-mortality response (log LC₅₀) and mean time to death (MTD) of 3rd instar *S. exigua* larvae infected with G25 WT, SeBac10 WT, Δegt -ORF, Δegt -ATG or *egt*-repair virus. MTD was determined for a virus concentration of 10⁶ OBs/mL (approximately 90%–95% mortality).

0.531


1.521

0.691


0.899

egt-repair

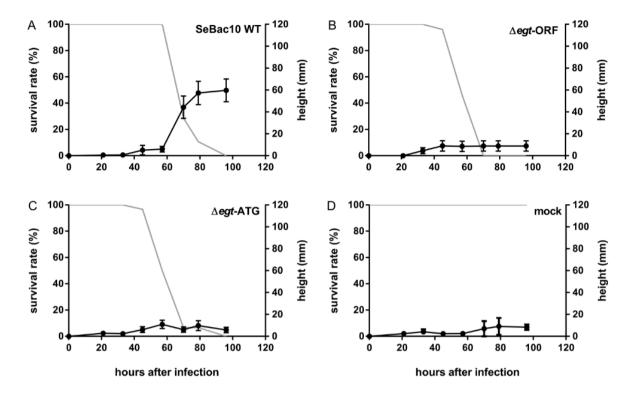

Virus	Log LC ₅₀	Log 95% (Confidence	MTD	95% Confidence	
virus	(OBs/mL)	Interval (OBs/mL)		(h)	Interval (h)	
		low	high		low	high
G25 WT	4.70	4.44	4.97	73.84	71.87	75.81
SeBac10 WT	4.42	4.16	4.67	73.51	71.75	75.28
Δegt -ORF	4.64	4.40	4.88	64.56	62.43	66.68
Δegt -ATG	4.08	3.84	4.30	68.95	66.74	71.16
<i>egt</i> -repair	4.26	3.98	4.53	76.48	74.66	78.29

Figure S1. Position of the primers (horizontal arrows) that were used to check the deletion of the *egt* ORF or ATG start codon. Primers 15 and 16 anneal within the *egt* ORF and were used to check the deletion of the *egt* ORF. Primer 9 (anneals 27 bp upstream of the *egt* start codon) and primer 16 (anneals within the *egt* ORF) were used to check the deletion of the *egt* start codon.

Figure S2. Repetition of the experiment presented in Figure 2. The effect of the deletion of the *egt* ORF on SeMNPV-induced tree-top disease in *S. exigua* larvae. Percentage surviving larvae (grey line) and height (mm) of larvae or cadavers (black line) were recorded at different time points after infection for 3rd instar *S. exigua* larvae infected with G25 WT (\mathbf{A} , n = 29), SeBac10 WT (\mathbf{B} , n = 29), Δegt -ORF (\mathbf{C} , n = 28), egt-repair (\mathbf{D} , n = 30) or mock (\mathbf{E} , n = 10). Error bars represent the standard error of the mean (SEM).

Figure S3. Repetition of the experiment presented in Figure 3. The effect of the deletion of the *egt* start codon on SeMNPV-induced tree-top disease in *S. exigua* larvae. Percentage surviving larvae (grey line) and height (mm) of larvae or cadavers (black line) were recorded at different time points after infection for 3rd instar *S. exigua* larvae infected with SeBac10 WT (\mathbf{A} , n = 28), Δegt -ORF (\mathbf{B} , n = 26), Δegt -ATG (\mathbf{C} , n = 30) or mock (\mathbf{D} , n = 10). Error bars represent the standard error of the mean (SEM).

Figure S4. Experimental set-up for measuring pre-death climbing behaviour. Larvae were placed individually in glass jars (120 mm high and 71 mm in diameter). Sterile mesh wire was placed in the jars to facilitate climbing and a piece of artificial food was placed at the bottom of the jar [11].

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).