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Abstract: The most common forensic entomological application is the estimation of some portion
of the time since death, or postmortem interval (PMI). To our knowledge, a PMI estimate is almost
never accompanied by an associated probability. Statistical methods are now available for calculating
confidence limits for an insect-based prediction of PMI for both succession and development data.
In addition to it now being possible to employ these approaches in validation experiments and
casework, it is also now possible to use the criterion of prediction performance to guide training
experiments, i.e., to modify carrion insect development or succession experiment design in ways
likely to improve the performance of PMI predictions using the resulting data. In this paper,
we provide examples, derived from our research program on calculating PMI estimate probabilities,
of how training data experiment design can influence the performance of a statistical model for
PMI prediction.

Keywords: postmortem interval; inverse prediction; experimental design; statistical methodology;
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1. Introduction

Although “forensic entomology” could refer to many other activities, the phrase almost always
denotes a death investigation, and in particular using insects to estimate when death occurred [1].
The two familiar entomological postmortem clocks are the development of an individual insect and
the succession of species on a corpse [2], and both processes may potentially be influenced by many
factors [3]. Depending on the circumstances, the investigator may interpret a prediction of insect age
or time a corpse was available to insects as the actual postmortem interval (PMI) or a minimum PMI
(PMImin) [4,5].

We think that this prediction should be mathematically explicit, and that in most cases the
prediction should be a range rather than a single value. If estimating the range using statistical analysis,
the typical method is to calculate a confidence set, a step that we think can satisfy the National Research
Council’s recommendation that any forensic science conclusion include an objective statement of the
uncertainty associated with that conclusion [6].

Being able to calculate a probability for a PMI estimate would obviously improve casework, and
we think it would be difficult to validate a PMI-prediction method if the estimate does not include
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confidence limits. It would be an unreasonable validation standard to expect the prediction to be
exactly correct. How close to the correct value is close enough to support validity? Confidence limits
provide the answer to that question. The coverage proportion should be greater than the nominal
value, e.g., if calculating 95% confidence intervals, then at least 95% of predictions should include the
true value.

Furthermore, it appears to us that forensic entomology researchers give almost no consideration
to how choice of experimental design might influence PMI-prediction performance based on the
resulting data.

Some Specialized Terminology

When describing the relationship between development or succession and elapsed time, we refer
to the amount of time that has elapsed (usually the time since oviposition/larviposition, i.e., age,
or the time the corpse has been available to carrion insects, i.e., the succession interval (S.I.) [5]) as
a condition, any other factor that influences development or succession rate (e.g., temperature) as a
covariate, and that aspect(s) of a specimen or insect community that changes with time (e.g., larval
length or species present on a corpse) as a response. Scientists concerned with PMI estimation try to
understand (e.g., model) the condition/response relationship so as to be able to infer condition from
response. To do this, one conducts a training experiment (producing training data, TD), in which one
records the response(s) corresponding to known values of conditions.

Probably the more an investigator understands the correct condition/response relationship to
use for a given death investigation, the more accurate a prediction of PMI will be. This relationship
has been the topic of a great deal of published research into the effect of factors such as temperature
e.g., [7], habitat e.g., [8], drug concentration e.g., [9], or sex of the insect e.g., [10]. However, modeling
that relationship, such as fitting a regression line to the data, does not by itself specify how to predict
condition from response. Exactly how to predict age or S.I. has received relatively little attention in
the literature.

The purpose of this paper, then, is to persuade a forensic entomologist to think carefully about
how experimental data will be used to predict carrion insect age or S.I. before she or he designs an
experiment meant to support casework. To do this, we will describe examples, referred to as lessons,
drawn from our own research program on inverse prediction and related statistical methods for PMI
estimation [11–16].

2. Lesson 1: Employ an Unbiased Sampling Technique for Generating Training Data

This is an elementary aspect of good design for many kinds of experiments [17], and we examined
the implications for a carrion insect age prediction model [18]. We were motivated by the fact that some
authors deliberately collected biased samples by targeting the largest larvae in a single-age cohort, and
by the fact that authors who claimed to take a random sample did not describe any randomization
method [18], without which they could not have sampled even approximately at random [19]. Given
that taking a random sample would require first physically isolating each individual from a rearing
container, we doubt that an author who had done this would fail to mention it in the description of
experimental methods.

It was clear that sampling the largest larvae yielded an inaccurate prediction of age. For example,
in Figure 1B, about 20% of the predictions included the true age. A model built from small random
samples performed relatively well compared to using the much larger full data set, with 100% of
predictions, shown by Figure 1A, including the true age. However, a random sample would require
so much effort and would be so disruptive of development that the insects not selected would, we
believe, not be suitable for inclusion in an older sample. Therefore, in most circumstances, one might
as well sample (e.g., kill and measure) all insects in an age cohort. Perhaps a random sample, removing
all insects in a rearing container without replacement at the chosen age followed by a randomization
procedure to select a subset for data collection, might be worthwhile if the measurements were



Insects 2017, 8, 47 3 of 7

particularly time-consuming and/or expensive [18]. We think it is clear that the most commonly used
sampling scheme in carrion insect development studies, i.e., repeatedly removing a small number of
larvae from a rearing container, is a faulty experimental design and should be discontinued.
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Figure 1. Blow fly growth data illustrating how inverse prediction model performance can depend on
the design of the training data experiment. The histograms show the complete data set (n = 1405) of
larval length as a function of age. The inverse prediction model (red lines defining a growth curve)
reflect published sampling methods and were calculated based on subsamples of 10 from each cohort
that were (A) randomly selected or (B) the largest individuals. Each green peak shows the coverage
proportion for 95% prediction intervals on age from length for each larva in the 60 h cohort. Model
A performed relatively well in that 100% of predictions included the true age and the line falls away
steeply on each side. Model B performed poorly. From [18].

3. Lesson 2: Exceed the Minimum Sample Size for a Categorical Response

We proposed the only statistical method for predicting condition based on a categorical
response [12], see also [20,21]. The original application was to estimate S.I. [5], but the same procedure
can be used to predict insect age from stage of development.

Depending on the number of response categories and preferred level of statistical significance [12],
there is a sample size, e.g., the number of training experiment carcasses observed for a given set of
environmental conditions, below which it is not possible to ever reject a putative S.I. value (Table 1). In
other words, below the smallest sample size, the training data do not provide enough statistical power
for a prediction.

Table 1. Smallest sample size needed to reject a condition value at the 5% level based on a categorical
response, such as when estimating succession interval from insect presence/absence or estimating
insect age from life stage. For example, a succession pattern of a single species would have two
response categories: present or absent on each training data (TD) experimental corpse at a given time
since placement. If the number of TD corpses was 7–17, a time since death is rejected if zero TD corpses
match the mystery specimen (MS, a corpse with a known set of insect species but unknown postmortem
interval (PMI)). With 17–27 TD corpses, a time since death is rejected if zero or one TD corpse matches
the MS, etc. Non-rejected values constitute a 95% confidence set on succession interval [12].

Reject If ≤ No. TD Matching MS

No. Response Categories 0 1 2 3 4 5

2 7 17 28 39 52 64
3 15 34 55 78 102 128
4 22 51 83 117 153 191
8 52 118 192 272 357 444
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For example, the smallest sample size (e.g., the number of experimental pig carcasses or human
corpses decomposed under a given set of circumstances) to possibly reject at the 5% level is 7,
and at that the lowest amount of replication the method works for only two categories, e.g., the
presence/absence of a single species during succession [12]. For two insect species (four response
categories), the minimum sample size is 22, for three insect species it is 52, etc., and the analysis is
likely to be more useful in practice if the sample size of the training data exceeds the smallest sample
size [5].

The same logic applies to confidence limits on an estimate of insect specimen age from
developmental stage [16]. Most published development data also included observations of one
or more continuous responses, such as body length, but instar is a particularly reliable response
because it is not affected by the mystery specimen preservation method. If the training data include six
life stages (e.g., three larval instars, pupa, adult) then the smallest sample size is 37 insects per age [16].

We note that although sample size still plays a role in the performance of an age-prediction model
based on continuous training data, there is no smallest sample size [14].

4. Lesson 3: The Practical Significance of a Covariate, or the Practical Value of a Response,
Should Be Evaluated by Predictive Model Performance

Many authors examine the effect of one or more factors on carrion insect succession or
development rate (see Introduction). For example, the discovery that food tissue type influenced larval
growth rate led [22] to conclude “it is important to know where on a corpse larval material has come
from”. The implication is that a predictive model based on training larvae reared on one substrate
might be unacceptably inaccurate for predicting age of a mystery specimen that fed on a different
substrate. The typical interpretation for an experiment such as this was to infer a practical effect from
the discovery of a statistically significant effect e.g., [9,23,24].

However, while we do not doubt that some covariates (temperature especially comes to mind) are
of practical importance, so there should either be a match between training data and scene conditions,
or some way to extrapolate between the two, a statistically significant effect does not automatically
correspond to a practically important effect on prediction performance (Figure 2).
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Figure 2. Chrysomya megacephala larval mean width as a function of age at 25.8 ◦C and fed either pork
heart or pork liver. The data are from [25]. Red dotted lines show 95% inverse prediction confidence
bands [12]. Although there was a significant effect of food type on size (F = 18.27, df = 8/700, p < 0.0001),
when the liver model was used to predict the age of all heart larvae, more than 95% of inverse prediction
confidence sets on age included the true age.
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In this example, larval food type (pork heart vs. pork liver) had a highly significant effect on
larval growth rate, but the model derived from liver was quite accurate when estimating the age of
larvae grown on heart. Depending on the particular training data set and comparison, the outcome of
these two approaches will not always conflict in this way, but given that a test of significance such as
ANOVA does not answer the practical question of interest, while a measure of prediction performance
such as the coverage rate does, we think that measuring prediction performance should be preferred.

Similarly, the fact that a particular variable changes with time since death does not by itself
guarantee that its inclusion in the model will improve prediction performance. Table 2 shows a simple
example of predicting larval age based on a multivariate response. In this case, a prediction of age
based on length, width, and instar was no better than a prediction based on width and instar. The
number of variables that potentially could be used to predict PMI is huge. One must decide what
data to record and to not record during an experiment, and the effect on prediction performance
may indicate whether or not to include that measurement in future studies. For example, insect sex
influences development rate [26], but is it worthwhile, for example, to measure calliphorid larval sex
when this requires relatively expensive equipment and/or reagents [27–30]? Note that we do not claim
that including individual insect sex in the model is not worthwhile, just that this and other covariates
need to be evaluated in this fashion.

Table 2. 95% confidence limits about the age of a 56-hour-old Chrysomya megacephala larva using the
multivariate method of [16]. Training data larvae were reared on pork heart at 25.8 ◦C and sampled at
ages 17, 36, 40, 56, 60, 85, 90 and 96 h [25]. Age prediction models were based on combinations of the
two continuous responses—body length (L) and body width (W)—and the categorical response, instar
(I). An asterisk indicates rejection of an age (column values), so the prediction interval is shown by the
gap in each row. The narrower the interval, the better the model performance.

MODEL 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

L * * * * * * * * * * *
W * * * * * * * * * *

L, W * * * * * * * * * *
I * * * * * * * * * * * *

L, I * * * * * * * * * * * * *
W, I * * * * * * * * * * * * * *

L, W, I * * * * * * * * * * * * * *

For these reasons, we suggest that the practical importance of a covariate or the practical value of
a response be assessed based on predictive model performance.

5. Conclusions

The most crucial practical application of forensic entomology is the prediction of carrion insect
age or SI, which can then potentially be interpreted to support a forensic investigation such as when
one concludes that the age of an insect equals PMImin. We argue that this prediction should be
mathematically explicit, should yield a range of values rather than a single value, and that defining
this range as a confidence set would conform to mainstream scientific practice.

To the extent that a reader agrees with our views, it follows that a central aim of forensic
entomology research should be to optimize PMI prediction statistical model performance, something
that can only be done if one employs such a statistical model. We hope that the examples presented
here will better convey this message to readers who may have missed it within the mathematical
language of our earlier publications.

Acknowledgments: Much of our research on this topic was supported by National Institute of Justice awards
2002-LT-BX-K001 and 2013-DN-BX-K042. The opinions and recommendations in this publication are not
necessarily those of the U.S. department of Justice.



Insects 2017, 8, 47 6 of 7

Author Contributions: Jeffrey Wells and Lynn LaMotte wrote the paper. Lynn LaMotte performed the statistical
analyses associated with Figure 2 and Table 2.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IP Inverse prediction
PMI Postmortem interval
PMImin Minimum postmortem interval
SI Succession interval
TD Training data
MS Mystery specimen
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