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Abstract: Rosalia batesi Harold (Cerambycidae) is a hardwood boring species endemic to Japan.
We investigated the adult mating behavior of this species in the field and laboratory. Most males
appeared on mating sites before noon, significantly earlier than females did, in field observations.
The female approached and contacted the male; the male responded and started the successive
mating sequence, comprising mounting, copulation, and appeasement behavior. Before the encounter,
the male raised its fore and mid legs and bent the abdominal tip ventrally. Next, a peculiarly structured
bifurcate tip was exposed with opening and closing motion, which can be observed in the entire family
Cerambycidae and is thought to be associated with the emission of volatile male sex pheromones.
Male and female orientation toward conspecifics was examined using T-shaped olfactometers in four
combinations (male-male, female-male, female—female, male-female). Males exclusively attracted
females, indicating the existence of male-produced sex pheromones. A laboratory bioassay with
three temperature regimes revealed the temperature dependence of this calling behavior. The calling
behavior occurred only when the air temperature and male body surface temperature, which are
associated with light intensity, were within the range of 26-33 °C and 26-28 °C, respectively.

Keywords: Cerambycidae; Rosaliini; longhorned beetle; male sex pheromone; calling behavior;
push-up stance

1. Introduction

The chemical ecology and reproductive behavior of Cerambycidae have been studied mainly in
pest species after the 1980s [1-6]. However, the reproductive behavior of non-pest cerambycid species
that live in dead wood during their larval phase has not been well studied, except for a few Xylotrechus
species [7].

The genus Rosalia (Cerambycidae: Rosaliini) is distributed world-wide (Holarctic and Oriental),
and most species are large and have a spectacular appearance. The well-studied European species,
R. alpina (Linnaeus), is a protected species in several countries [8,9]. The Japanese endemic longicorn
beetle, R. batesi, is distributed over most of Mainland Japan and has an important function of
decomposing dead hardwood in the Japanese forest ecosystem. This species is very popular in
Japanese culture, owing to its spectacular appearance and color. It often appears on postage stamps
and on the covers of books and magazines. Iwata et al. [10] reported the ecological function of R. batesi;
however, the mating behavior and the communication between males and females have not yet been
investigated in detail. The mating behaviors of cerambycid species vary with the lifecycle and host
characteristics [11,12]. This species is known to exhibit a very peculiar biology: larvae bore deep
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into heartwood of hardwood [10] and possess only a much reduced larval bacterial gut flora when
compared with other cerambycid species (H. Ueda et al., unpublished). Moreover, despite global
warming, R. batesi was reported to have expanded its distribution area toward the lowlands in central
Japan [13]. Taken together, this species shows peculiar physiological and ecological characteristics.
Investigating the reproductive behavior of R. batesi may provide new insights into the chemical ecology
of the family Cerambycidae.

Hanks [11] initially suggested that the presence or absence of long-range pheromones in
Cerambycidae depends on the chance of encountering a member of the opposite sex. Species that
live in living trees need long-range pheromones, because their host plants are amply distributed,
and thus the chance of encounter may be small. In contrast, species that live in dead wood do not
need long-range pheromones, because dead wood is a limited resource in the forest, and therefore
the chance of encounter is high. However, this hypothesis was amended. To date, whether or not
Cerambycidae use pheromones is thought to depend on the phylogeny, rather than on the host resource
availability [14]. In the subfamily Prioninae, females emit volatile sex pheromones [15], whereas in
the subfamilies Cerambycinae, Spondylinae, and in Monochamus spp. and Anoplophora glabripennis
of the subfamily Lamiinae, males express aliphatic volatile sex (or aggregation) pheromones [16].
Therefore, we would expect R. batesi males to use male pheromones.

Recent studies have shown that the composition and structure of pheromones in congeneric
species of Cerambycidae are similar, especially in Monochamus and Xylotrechus [6,17,18]. Male
and female adults of Rosalia funebris have been observed to be attracted to a synthetic chemical
ingredient in paint [19]. Ray et al. [20] suggested that the reason for this attraction is that the paint
component is an analog of R. funebris’ aggregation pheromone. The R. funebris aggregation pheromone
has now been identified as (Z)-3-decenyl (E)-2-hexenoate [21]. However, the anatomical source of
the aggregation pheromone has not yet been identified. In Cerambycidae adults, male pheromones are
often emitted from gland pores on the pronotum, which also emit sex (or aggregation) pheromones [20].
However, this anatomical structure has not been found in R. funebris [20]. In the European congeneric
species R. alpina, males exhibit a peculiar behavioral pattern, which is suggestive of a territoriality
system [22], suggesting the presence of male pheromones. The main component of the volatile
male “aggregation—sex pheromones” (term after Cardé [23]) of R. alpina has been identified as
3,5-dimethyl-6-(1-methybutyl)-pyran-2-one, an alkylated pyrone [24]. In this species, the host
(Fagus sylvatica) volatile component, alone or in combination with the pheromone, exhibited little
attractive activity [24].

Since the end of the last century, R. batesi has been expanding in central Japan [13,25].
This expansion supplies us with a large number of individuals to study in field observations and
laboratory experiments. In our preliminary observation of R. batesi, we noticed that females approached
males without direct contact. This may indicate that the male releases volatile sex pheromones to
attract the female.

Males of the R. batesi species show a rather broad variation of body length [10]. In some cerambycid
species, male adult beetles exhibit different mating strategies with different body length: smaller males
are more sensitive than larger males to cues emitted by the female [5,26]. Therefore, we considered
male body length as a parameter in our mating experiments.

In this work, we aimed at confirming which sex releases and which sex responds to pheromones,
identifying the time of day at which adults appeared, describing the calling posture putatively
associated with sex pheromone emission, and clarifying the mating sequence of R. batesi. Moreover,
we tried to identify the anatomical location of the pheromone releasing organ. To verify the existence
and determine the effect of the male sex pheromones, we conducted a bioassay using a T-shaped tube
with live females or males as lures. We also showed the importance of ambient and body surface
temperatures, which influence and trigger the conspicuous calling posture of males.
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2. Materials and Methods

2.1. Animals

Adult R. batesi were collected from rotten logs and dead wood in (1) Onojimachi, Machida,
Tokyo Prefecture (from 27 June to 14 July 2009, from 25 June to 15 July 2010, and on 29 July 2012);
(2) Ryokamisusuki and Nagaru, Ogano, Saitama Prefecture (on 7 July 2010); (3) Nagatsuta, Midori-ku,
Yokohama, Kanagawa Prefecture (on 23 June 2010 and 7 July 2010); (4) Kanosawa, Oana, and
Fujiwara-Takaragawa, Minakami, Gunma Prefecture (from 6 August to 10 August 2010, and on
21 August 2012); and (5) Hanasaki and Tokura, Katashina, Gunma Prefecture (on 9 August 2010
and 21 August 2012), all of which are in Central Japan. In Machida, the beetles aggregated on piled
large rotten logs of various hardwood species. Ailanthus altissima (Mill.) Swingle was the main tree
host. Starting from 2008, we also kept A. altissima logs in an outdoor cage near the laboratory and
harvested newly emerged adult beetles on 24 June 2009, and on 30 June, 1 July, 2 July, and 14 July 2010.
In the laboratory, the beetles were kept in individual plastic cases (ca. 90 x 90 x 90 mm). The plastic
cases contained a cotton ball soaked in sucrose solution to feed the beetles before being subjected to
the bioassay. The sucrose-soaked cotton balls were exchanged every 3 days. For the pheromone assay,
animals served either as an odor-source animal or as an odor-reacting (test) animal.

2.2. Field Observations on the Appearance of Adult Beetles

In Machida (Location (1); 3 July, 16 July, and 19 July 2008), the time that each of the individual
beetles was collected was recorded (mostly between 09:00 and 14:00). The results were sorted in order
to detect the sexual difference of the appearance time zone of the day.

2.3. Laboratory Observations of Sexual Attraction and Subsequent Mating Behavior

The body lengths of all adult beetles subjected to the laboratory bioassay and the dried specimen
were measured using electric calipers (Mitutoyo, Kawasaki) (males: 24.51 & 4.31 mm, #n = 195; females:
24.68 £ 3.18 mm, n = 110). The adults supplied to the laboratory bioassay were then divided into four
groups, separated by sex and body size (large males: larger than the average male length; small males:
smaller than the average male length; large females: larger than the average female length; and small
females: smaller than the average female length). All adult beetles that were subjected to the bioassay
had mated at least once during the preliminary observations. Adult male and female beetles of this
species are known to mate multiple times with different partners. Therefore, subjecting an adult to
multiple trials of the mating bioassay is not expected to bias the results. Thus, some specimens were
subjected to the bioassay more than twice.

We eliminated individuals that did not show any positive response to any individual of
the opposite sex from the bioassay while preliminarily checking each of the beetles. For each
observation, the selected male and female specimens were placed simultaneously in a plastic container
(290 x 190 x 170 mm) and their behavior was observed for 60 min. During this time, the following
parameters were recorded: (a) the time until the first mounting took place, (b) the total duration
of copulations, (c) the total duration of mountings, and (d) the duration of individual copulations.
In addition, details of the behavior of the pair and the sequence of male calling behavior were recorded.
Our terminology follows that of Michelsen [27-29] for the repertoires of sexual behavior of cerambycid
adults—namely, licking, tapping, and biting. In the case of attacks against female antennae, these three
behavioral items were not discriminated, because the attacks were vigorous and swift.

2.4. Laboratory Bioassay Using a T-Shaped Olfactometer

A T-shaped glass olfactometer (Figure 1), which was laid on the table, was used to investigate
the beetles’ olfactory orientation behavior when choosing between two odor sources. Each arm of
the olfactometer had four protrusions that extended from the inner wall, 45 mm from the ends of
the cross cylinder. These protrusions served as anchors for the partially perforated plastic container in
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which the odor-source animal was placed. The diameter of the plastic container was slightly smaller
than that of the horizontal glass cylinder. Thus, the container could be easily inserted into and fixed
inside the horizontal cylinder. To the vertical cylinder of the olfactometer, another glass tube with
a slightly greater diameter than that of the vertical cylinder of the olfactometer was attached. The air
in the cylinder was sucked out by a pump connected to the end of the rubber tube. The airflow
was adjusted to be 0.45 m/s, using an anemometer. The container of the odor-source animal was
opaque, so the test animal would not be influenced by visual cues. While the odor-source animal was
placed at the right or left arm, the control (the empty plastic container) was placed at the opposite
arm. For each of the four possible combinations of odor source (S) and test animal (T) sexes—(1)
S-male vs. T-male, (2) S-female vs. T-male, (3) S-female vs. T-female, and (4) S-male vs. T-female—50
trials were performed. After each trial, the whole olfactometer was submerged into a solution of 75%
ethanol, washed, and dried thoroughly. The position (right or left) of the test animal was alternated
between trials in order to offset the influences of direction and lighting condition. The test animal
was considered inactive if it did not arrive at either end of the arm within 10 min of the beginning of
the trial. All experiments were carried out at room temperature (26.2 °C £ 0.5 °C; mean + S.D.) and at
a luminous intensity of 2000 Lux.

Horizontal cylinder
(36 mm in diameter, 140 mm long)

A \ 4 projections

[

U
Y insert
fa
Plastic container
with odor- source
animal or blank as
the control
—
é r  Vertical cylinder
\ (31 mm in diameter; 85 mm long)
Anemometer Test animal

Rubber tube
connected with a fan

Figure 1. The T-shaped glass olfactometer used in the experiment with Rosalia batesi. Of the two arms,
the one that the test animal selected was recorded.

2.5. Laboratory Observation of Male Calling Behavior with Different Light Intensity and Temperature Regimes

Male calling behavior was observed in the laboratory as depicted in Figure 2. A cardboard box
(ca. 400 x 400 x 400 mm) was prepared as follows: one of the four lateral walls was removed so
that the behavior of the animals inside the box could be observed. A glow lamp (SB416B; 110 V,
40 W; Panasonic, Osaka) was attached to the top of the box. The glow lamp was connected to a slide
transformer with alternating current (RSA-10; Tokyo Rikosha Co., Ltd., Saitama, Japan) to adjust
the luminous intensity. A glass box with a detachable nylon mesh (1.5 mm) at the top was placed
into the cardboard box beneath the lamp (150 x 150 x 150 mm). In the center of the glass chamber,
a Zelkova serrata (Thunb.) Makino bolt (ca. 80 mm high, 40 mm in diameter; with intact bark) was
installed perpendicularly. The incandescent lamp was powered with three different voltages (100,
50, and 30 V) to achieve three different light and temperature regimes (a, b, and c¢): the luminous
intensities and temperatures at the top and bottom of the bolt were measured using the Illuminance UV
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Recorder, TR-74Ui (T and D Corporation, Nagano, Japan), and were (a) 5040 and 2500 Lux, respectively;
(b) 310 and 185 Lux, respectively; and (c) 63 and 45 Lux, respectively. The air temperatures of these
three regimes decrease in this order (see Results, Section 3.6). Under each regime, 20 trials of 30 min
were carried out. The bioassay was conducted as follows: An R. batesi male was released on the bolt.
The animal’s behavior was recorded with a video camera (HDC-TM45; Panasonic, Osaka, Japan).
The times of the beginning and the end of the calling behavior, the air temperature inside the chamber,
and the location of the male were recorded. The locations of the males were classified into one of five
categories: (1) the top of the bolt, (2) the upper half of the bolt (above the midpoint), (3) the bottom
half of the bolt (below the midpoint), (4) the floor of the chamber, or (5) the ceiling of the chamber and
other locations. The first four (14) locations were assumed to have descending luminous intensity;,
based on the measurements conducted at the top and bottom of the bolt. After 30 min, the body
surface temperature of the male beetle was measured with a non-contact Handy Thermometer (IT2-80;
Keyence, Osaka, Japan) and an infrared thermograph (i7; FLIR, Wilsonville, Oregon, USA).

200 mm
S S
N
N
N
\

I

Figure 2. Experimental device for the detection of the influence of temperature and luminous intensity
on the calling behavior of Rosalia batesi males. A corrugated cardboard box (400 x 400 x 400 mm)
was prepared, in which a glass chamber (150 x 150 x 150 mm, with a nylon mesh on top) containing
a perpendicular Zelkova serrata bolt (80 mm long, 40 mm in diameter) was installed. An incandescent
lamp was attached to the ceiling of the cardboard box (200 mm from the bolt top). The incandescent
lamp was powered with three different voltages (100, 50, and 30 V) to achieve three temperature and
luminous intensity regimes (high, medium, and low, respectively). The test animal (Rosalia batesi male)
was released near the bolt.

The durations of the calling behavior were analyzed in relation to the temperature and luminosity.
Calling behavior durations in the three regimes were compared using the Kruskal-Wallis test in
combination with the Steel-Dwass multiple test. Correlations between calling behavior duration,
air temperature of the cage, and beetle body surface were analyzed using the Spearman’s rank
correlation test.

2.6. Statistical Analyses

All statistical analyses were performed with a free version of “R”, except for x? tests, which were
performed using “Excel”.

3. Results

3.1. Field Observations of the Appearance of Adult Beetles

The results of the field observations performed on 3 July, 16 July, and 19 July 2008, at a wood
deposit in Onojimachi, Machida, Tokyo Pref., are shown in Figure 3. For all three days, males abounded
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in the morning (09:00-11:00), whereas females continuously appeared from 09:00 to 14:00. However,
more females appeared after 11:00 than before 11:00, indicating that males appeared significantly
earlier than females (x2 = 4.5773 > x20.05 = 3.84, d.f. =1, p <0.05). The day on which the greatest number
of beetles (29 beetles) was observed was 16 July, for which males’ and females’ appearance times
were further compared with a more accurate test. The result was consistent with that of the three-day
combined x? test (Mann-Whitney U test, |z| =2.10, p < 0.05) (Figure 4).

W 9:00-11:00

h h B ﬂ i:]“ﬂouzoo

3-Jul ‘16—]111 19-Jul 3—]111 16-Jul | 19-Jul

Individial

Male Female

Figure 3. Numbers of Rosalia batesi adult individuals observed in the suburban forested area in
Onojimachi, Machida, Tokyo Pref., Japan. (3 July, 16 July, and 19 July 2008). Males appeared significantly
earlier than females (x2 test, p <0.05).

5
,i; 4 Imale
E 3 I female
Z 2
E 1 ——temperature
Mol
=0

9:00-9:30
9:30-10:00
10:00-10:30
10:30-11:00
11:00-11:30
11:30-12:00
12:00-12:30
12:30-13:00
13:00-13:30
13:30-14:00

Figure 4. Numbers of Rosalia batesi adult individuals observed in the suburban forested area in
Onojimachi, Machida, Tokyo Pref., Japan. (16 July 2008). Males appeared significantly earlier
than females (Mann-Whitney U test, p < 0.05).

3.2. Durations of Mounting and Copulation in Relation to Body Lengths of Males and Females

The results of the laboratory observation of the mating behaviors are summarized in Table 1.
The total mounting durations (copulation duration included) (Figure 5) and the total copulation
durations (Figure 6) of the pairs were recorded and analyzed in terms of the difference between
the body lengths of the pair. Males and females were divided into groups of smaller than average
and larger than average individuals. Figures 5 and 6 indicate that smaller males performed longer
mounting and copulation, irrespective of the body length of their mates. This tendency was significant
(Mann-Whitney U test) in terms of both mounting duration (1z| = 3.71, p < 0.05) and copulation
duration (1z| =3.66, p < 0.05). In addition, only smaller males were observed to embrace females with
their hind legs crossed on the female’s sternum to fix and subdue her.
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Table 1. Results of laboratory mating in Rosalia batesi. Before being subjected to the experiments, adult beetles were divided into groups of males and females, and into

groups of larger and smaller than the average individuals.

Combination of the Male _ Individual No.  Body Length (mm) Body Length Difference Time required until the First Copulation Duration (sec) 6th Copulation
and the Female @ Male Female Male Female (Male—Female) (mm) Mounting Took Place (sec) 1st 2nd 3rd 4th 5th and so Forth
M1 Fl 295 21 74 1129 155 2 189 208 174
M2 P2 293 238 6.4 3600 9% 195 -
Larger male vs. M3 3 33.0 233 9.7 15 -
smaller female M4 F4 302 239 6.3 3019 180 -
M4 5 30.2 2.0 8.1 274 156 162 152 -
M5 F6 19.0 233 —42 1287 249 155 -
Mé F7 180 209 —30 578 214 91 285 33 97 yes
Smaller male vs. M7 F8 218 28 “11 2112 110 242 174 290 220 yes
smaller female M8 F9 209 220 12 733 % 23 172 114 -
M9 FI0 211 2.0 —09 134 2V 74 46 98 148 yes
M7 Fll 2138 2438 —30 671 22 15 91 140 55 ves
Smaller male ve. MI0  FI2 213 27.1 538 5 7 119 111 107 112 yes
lorger fomale MI1  FI3 211 263 _52 1002 91 183 42 114 25 yes
M8  FI3 20.9 263 55 45 21 37 147 125 208
MI0  FI3 213 263 50 1449 121 136 132 -
M4 FI3 302 263 38 1015 57 26 117 213 147
Larger male ve, MI2  Fl4 296 26.8 28 3242 166 26 170 -
rer fomale MI3  FI2 26.6 27.1 —05 840 174 -
MIl4  FI5 30.2 275 27 2867 122 100 18 105 -
MI1  FI3 28.0 263 16 1460 277 112 160 9% 91 yes

3 Larger and smaller males are those with more than, or less than, the average body length (24.5 mm), respectively. Larger and smaller females are those with more than, or less than,
means no more copulation took place thereafter.

the average body length (24.7 mm), respectively.

b) w_n
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? 26 vs. smaller
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= 600 N * A Larger male

e ) 1 . . vs. larger
-10 -5 0 5 10 15 female

Body length difference (male — female) (mm)

Figure 5. Total mounting durations of Rosalia batesi adult pairs with different body lengths (male body
length—female body length).
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Figure 6. Total copulation durations of Rosalia batesi adult pairs with different body lengths (male body
length—female body length).

3.3. Ethogram of Mating Behavior

Encounters generally began with the female approaching the male. Case A summarizes cases in
which the female approached the male from his lateral or frontal side. Case B summarizes cases in
which the female approached the male from behind (Figure 7). In Case A, the female and the male
approached each other simultaneously. Then, either the antennae of both partners touched or the male’s
antenna touched the female’s body. This prompted the male to hold the female and mount her. In Case
B, the female approached the male, and her antenna, leg, or mouth touched the male’s body or legs.
This led to the male’s “antennal whipping response” in which the antennae whipped from the front
to the back. This resulted in the male’s antenna making contact with the female’s body, the male
recognizing the presence of the female, and then mounting her.



Insects 2018, 9, 48 9of 16

Case A: Female approaches Case B: Female approaches
toward male's head or lateral toward male's back
Female runs Male runs Female runs toward male
toward male toward female *
& ¢ Female's antenna or body
Antennae of male and female touch touches male’s body

o \

Male's antenna touches female’s Male extends his antenna

body backward to touch female’ body
¢ (antennal whipping response)

Male enhances his movement Male enhances his

\ movement and turns
Holding /

Figure 7. Ethogram of Rosalia batesi male and female toward mating.

After the holding (firm contact), a behavioral sequence under the male’s leadership took place.
Various behavioral actions of “appeasement” by males toward females were observed in all cases.
The details and frequencies of these appeasement behaviors are presented in Table 2.

Table 2. Appeasement behavior of males toward females in Rosalia batesi: the frequency of each
behavior and its target.

While Mounting but Not Copulating While Mounting and Copulating
Licking Tapping Biting Licking Tapping Biting
Mouth parts 14 0 0 Mouth parts 1 0 0
Head 41 0 1 Head 17 10 0
Pronotum 63 0 1 Pronotum 20 18 0
Elytra 19 0 0 Elytra 27 20 0
Scutellum 3 0 0 Scutellum 8 5 0
L J \ )
Antennae @ 1 55' Antennae 2 2 ;

2 Since the attacks against antennae were vigorous and swift, attack items were not discriminated.

In the non-copulation condition (mounting but not copulating), the male exhibited a slow licking
behavior of the female’s labrum, head vertex, pronotum, scutellum, and elytral bases. In the copulation
condition (mounting and copulating), the male exhibited a back-and-forth movement of the abdominal
tip in addition to the licking behavior, which was synchronized with pulling of the female’s genitalia.
Additionally, this rhythmical abdominal movement was synchronized with tapping of the male’s
mouth against the female’s head vertex, pronotum, and elytra. Furthermore, males often attacked
the basal portion of the female’s antenna using their mandibles, pressing it down or fixing it to
prevent spontaneous movement from the female (antenna-biting). The antenna-biting behavior took
place significantly more frequently in the non-copulation condition than in the copulation condition
(X% = 101.81 > x%0 05 = 3.84, d.f. = 1, p < 0.05), especially directly after the cessation of copulation or
upon the female’s denial of mounting (running away, pressing the sternum on the bolt by stretching
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the legs, bending down the abdomen, or kicking the male). We considered this antenna-biting
behavior to promote mounting and copulation, by tranquilizing the female’s arbitrary movement.
These observations led us to call this series of male behavior appeasement. The so-called antennation
behavior [30,31], a sword-battle-like contact of the antennae of male and female, was not observed in
this species. Scratching behavior against the female pronotum was observed in one very large male of
more than 33 mm body length (Table 1, M3; Table 2).

Based on the above observations, we present ethograms to summarize the behavioral sequences
of adult R. batesi from the encounter of the male and female to holding (Figure 7), and from holding to
the cessation of contact after copulation (Figure 8).

Holding

Mounting
l ----- Licking

_____ Biting of antenna
Half mounting  Abdominal bending

(guarding) —===7 Licking
/

14,7 Biting of antenna

----- Tapping and
Pulling of ovipositor

Male and female set apart

Figure 8. Ethogram of Rosalia batesi male and female in mating after firm contact.

3.4. Male Behavior in the Push-Up Stance (Calling Behavior) and the Structure of the Male Abdominal Tip

While observing adult R. batesi mating behavior in the laboratory, we frequently observed
a push-up stance performed by male beetles. In this stance, the male occasionally extended his fore and
mid legs to raise up his body. This stance consisted of two phases (Figure 9): the motionless phase and
the putative pheromone-emission phase. In the putative pheromone-emission phase, the male exposed
his peculiar bifurcate abdominal tips (Figure 10), which he opened and closed in a rhythmic motion
with 3—4 s intervals. The male switched between these two phases semi-periodically. This posture was
thought to be associated with the emission of volatile pheromones to attract conspecifics, and thus was
termed calling behavior.

(b)

Figure 9. Two phases of Rosalia batesi male’s push-up stance. (a) Motionless phase, in which only the tip
of the eighth tergite is visible; (b) Putative pheromone-emission phase, in which the male exposed
the peculiar bifurcate abdominal tips, which he opened and closed in a rthythmic motion with 34 s
intervals. The male switched between these two phases semi-periodically (photo by Takehiko Sato).
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(@) (b)

Figure 10. (a) The eighth abdominal tergite (T) and sternite (S) of an adult male Rosalia batesi. The tergite
and sternite are membranous rather than chitinized, and are of a peculiar bifurcate shape, with
numerous sensory apertures on the entire surface of the tergite. (b) The eighth abdominal of the adult
female Rosalia batesi has a much simpler appearance.

This behavior partly resembles that observed in Neoclytus acuminatus [32]. However, different
from Neoclytus acuminatus, the R. batesi male’s push-up stance brings its body to an almost parallel
position to the substratum, and his abdominal tip is strongly bent downward (Figure 11). Usually,
the eighth abdominal tergite and sternite (Figure 10a; [33,34]) are retracted within the body cavity,
except for the very tip of the tergite. During the push-up stance, the two bifurcate structures are wholly
exposed from the bent abdominal tip (Figure 11). This behavior and anatomical structure are thought
to be associated with pheromone emission to attract females, similar to the prionine Prionus californicus
female [15,35]. In contrast, the female’s abdominal tip is simple and membranous (Figure 10b), and is
therefore thought to be unassociated with pheromone emission.

Figure 11. “Push-up stance” of Rosalia batesi male adult, with the abdominal tip raised up.

3.5. Male and Female Choices in the T-Shaped Olfactometer

The results of the T-shaped olfactometer bioassay are presented in Table 3. Among the four
combinations of odor source (S) and test animals (T), namely, (1) S-male vs. T-male, (2) S-female
vs. T-male, (3) S-female vs. T-female, and (4) S-male vs. T-female, only the last combination (4)
showed a significant difference. The female was attracted to male in 42 out of 50 trials, and this
bias was significant (x? = 31.39 > x%0.001 = 10.83, d.f. =1, p < 0.001). In the other three combinations,
no significant bias of moving toward the odorsource was observed (p > 0.05). Thus, we concluded
that females were attracted to the volatile odor emitted by males only. We assumed that this putative
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odor is a sex pheromone rather than an aggregation pheromone. Moreover, most of the test females in
experiment (4) became motionless when they reached the odor source (male) in the plastic container.
In contrast, most test females in experiments (3), and the misguided test females in experiment (4)
having arrived at the plastic container without a male (i.e., the control or another female as the odor
source), continued moving restlessly.

Table 3. Responses of male and female Rosalia batesi adults (test animals) to males or females
(odor-source animals) as observed in the T-shaped olfactometer.

Odor-Source Test Responses (%) Total X’ Statistic
Animal Animal  (a) Odor-Source  (b) Control (©) ) X2 df =1
Animal Side Side (Blank) Inactive between (a) and (b)
male male 38 52 10 50 1.0889 < x%0.05 = 3.841
female male 26 40 34 50 1.485 < x20.05 = 3.841
female female 46 32 22 50 0.3141 < x%005 = 3.841
male female 84 8 8 50 31.3913 > %2001 = 10.828

3.6. Effect of Temperature and Light Intensity on Male Calling Behavior

The laboratory bioassay of male calling behavior with three different light and temperature
regimes ((a), (b), and (c)) was carried out with 20 trials for each regime (Figure 12). Body and room
temperature in the different regimes were dependent on the illumination intensity, and the temperature
increased as the time elapsed. Regime (a) started at 26.4 °C =+ 0.6 °C and ended at 33.2 °C £ 0.5 °C,
regime (b) started at 26.0 °C + 0.3 °C and ended at 27.4 °C + 0.3 °C, and regime (c) started at
26.0°C £ 0.5 °C and ended at 26.0 °C &+ 0.3 °C. In the high temperature regime (a), most beetles
exhibited calling behaviors with the push-up stance on the lateral side of the Zelkova bolt (upper or
bottom part) and on the floor (Figure 12). Males seemed to avoid very bright spots, such as the top
of the bolt, where they stayed only very shortly. When the air temperature in the cage rose to 33 °C,
most beetles took refuge in a shady spot and remained motionless. In the mid temperature regime (b),
most beetles were observed to stay in bright spots.

Location of the male while
exhibiting the calling
behavior

O Top of the bolt

B Upper part of the bolt

é% B Bottom part of the bolt
35
g—; @ Cage floor
SE
;;5=3 Cage ceiling
33
£z
Jv
Z5

S

(a) High temperature (b) Middle temperature  (c) Low temperature
regime regime regime

Figure 12. Numbers of trials in which the male Rosalia batesi exhibited calling behaviors. Experiments
were conducted in a laboratory cage (150 x 150 x 150 mm) equipped with a Zelkova serrata bolt (80 mm
in length, 40 mm in diameter) set perpendicularly on the floor, under three light and temperature
regimes (high, middle, and low). The male beetles’ positions while exhibiting calling behaviors and
their frequencies are shown in the pie charts.

The body surface temperatures of the male beetles that exhibited calling behaviors were
30.3 °C £ 0.9 °C in regime (a) (n = 11), 27.6 °C £ 0.6 °C in regime (b) (n = 13), and 25.7 °C in regime (c)
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(n =2). The average durations of the calling behavior in regimes (a) and (b) were long (70 and 133.25 s,
respectively). In the low temperature regime (c), a general recess in activity was noticed and very little
calling behavior was observed (13.9 s). The durations of the calling behavior in the three regimes were
significantly biased (Kruskal-Wallis test, H' = 12.236, p = 0.0022), and the values were significantly
different from each other (p < 0.05), except between (a) and (b) (p > 0.05) (Steel-Dwass test).

The correlation between the duration of the calling behavior and the air temperature in the high
temperature regime (a) was significant at the beginning (rs = 0.818; p < 0.05), but not at the end of
the experiment (rs = 0.216; p > 0.05). In the mid temperature regime (b), the correlation between
the duration of the behavior and the air temperature was significant at the beginning (rs = 0.716;
p < 0.05) and at the end of the experiment (rs = 0.463; p < 0.05). In the low temperature regime (c),
the number of beetles that exhibited the calling behavior was too small (1 = 2) to perform statistical tests.

The above results indicate that in both the high (a) and moderate (b) temperature regimes, the calling
behavior was performed with a significant tendency toward longer durations with higher air temperature.
The duration tended to be longer if the beetle’s body temperature was higher. However, this tendency was
only detected in the moderate temperature regime (b). Thus, male R. batesi appeared to require a certain
temperature range for performing the calling behavior: the air temperature needs to be within the range
of 26-33 °C, and the body surface temperature between 26-28 °C.

4. Discussion

In the present study, we report on the calling behavior of the male Rosalia batesi, and suggest
an association between the peculiar abdominal tip morphology and the calling behavior. To the best
of our knowledge, this is the first report of a putative pheromone secretion spot in the abdomen in
the subfamily Cerambycinae. In this subfamily, the pheromone secretion spots are usually located in
the thorax, as in many Clytini species [16,20,36] and in Hylotrupes bajulus (Callidiini) [37,38]. In line with this
observation, males of the R. batesi species exhibit a very peculiar morphology of the abdominal tip when
compared with other Japanese cerambycid species: the eighth abdominal tergite is less chitinized and is
of a peculiar bifurcate shape, with numerous sensory apertures on the surface of the tergite; additionally,
the chitinous eighth abdominal sternite is bifurcate in shape [33,34]. We observed the movement of
this peculiar abdominal tip and speculated that this structure plays an important role in the calling
behavior. Additionally, in the olfactometer experiments, in which odor-source animals were not visible,
we perceived a peculiar odor when handling the male beetles, suggesting the emission of pheromones.

In an American congeneric species, R. funebris, male prothoracic glands and gland pores—which
are rather common in cerambycine males [20,36]—are lacking, and the male pheromone source of
this species has not yet been identified [20,21]. Considering these morphological and behavioral facts,
namely the peculiar movement and structure of the eighth abdominal segment and the push-up stance,
we assume that the secretion source of the volatile sex pheromone emitted by male R. batesi is on
the eighth abdominal segment, with the pores on the eighth abdominal tergite serving as outlet points.
We speculate that Rosalia funebris and R. alpina males share this morphology and ethology with R. batesi.
Comparisons of the structure of the male abdominal tips of several Rosalia species are currently in
progress to generalize these characteristics across the genus Rosalia, or at least the subgenus Rosalia.

As stated above, in the species studied thus far, the identified secretory sources of sex pheromones
in the subfamily Cerambycinae (tribes Clytini and Callidiini) are the gland pores on the pronotum.
Apart from this subfamily, Prionus californicus (Prioninae: Prionini) females often display lifting
of the abdomen and expose a membranous cylindrical sac from the ovipositor, which is assumed
to be pheromonal calling behavior [35,39]. Tetropium fuscum (Spondylidinae: Asemini) males also
perform a calling behavior by raising their abdomen by 10°, suggesting that the abdominal tip is
the pheromonal source [40]. This abdominal tip-protruding behavior in the pheromone-producing
sex of the genera Prionus and Tetropium may be shared by Rosalia. However, the opening and
closing motion of the abdominal tip is unique not only in the subfamily Cerambycinae but also
in the family Cerambycidae.
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In the T-shaped olfactometer experiments, the test female individuals, after arriving at the odor
source (male), remained there motionless. In contrast, if the test females arrived at the control side or
at another female as the odor source, they continued moving. This strongly suggests that the male’s
presence rendered the female quiet even without physical contact with the male. This also supports
the presence of a volatile sex pheromone in R. batesi that attracts only females.

In contrast, the male volatile pheromone of the American congeneric species, R. funebris,
has been reported to attract both males and females, and has thus been designated “aggregation
pheromone” [21]. Nevertheless, this pheromone lured mostly females (male—female = 1:11), suggesting
that the substance is a sex pheromone rather than an aggregation pheromone. Cardé [23] propose
the term “aggregation—sex pheromone” for pheromones with dual function. Pheromones of another
congeneric species from Europe, R. alpina, have also been classified as aggregation rather than sex
pheromones on the basis of a field attraction study that resulted in a male—female ratio of 45:38 [24].
These two Rosalia species possess rather different pheromones ((Z)-3-decenyl (E)-2-hexenoate in
R. funebris and 3,5-dimethyl-6-(1-methybutyl)-pyran-2-one in R. alpina); thus, their functions may
differ. In the case of the genus Xylotrechus (Clytini), some species use the same chemical substance as
an aggregation pheromone that another species uses as a sex pheromone, despite the fact that they
share the prothoracic pheromone glands and chemical structure of the component(s) [32,41]. Another
possible explanation for the different results on the function of pheromones in the different Rosalia
species is the difference between laboratory and field experimental conditions. These conditions might
have differed in terms of the age of the beetles and the pheromone concentration. Further research is
needed to address this point. We are currently in the process of identifying the chemical structure of
the male sex pheromone of R. batesi.

The results of the field observation of adult R. batesi are consistent with data published by
Iwata et al. [10], which, to our knowledge, is the only previous study of the biology of R. batesi.
Consistent with our observations, activity data from this previous study showed that R. batesi is
typically diurnal, but this study did not differentiate behavior by sex. Therefore, the present study
is the first to report the diurnal activity of both sexes. In the field observations, we found that adult
male R. batesi were mostly active in the morning. Additionally, male beetles were often found in easily
detectable spots, such as on the sunny, top surface of a log, suggesting that the males were sun-bathing.
We speculate that males were heating up their bodies in the sun to be ready to emit sex pheromones
to attract females during the appropriately warm hours of the day, when female beetles were also
active. Our data on the temperature conditions necessary for males to perform the calling behavior
(air temperature and body surface temperature between 26-33 °C and 26-28 °C, respectively) are
consistent with this assumption. Thus, we suggest that temperature, in addition to the time of day;,
is an important factor for pheromone emission in R. batesi, in which male pheromone emission is
assumed to take place around the noon. The other species, Xylotrechus pyrrhoderus (Cerambycinae:
Clytini) have similarly been reported to show a peak in pheromone emission at 14:00 in laboratory
experiments [42].

Among the male appeasement behaviors, we observed in R. batesi, the male’s biting of the female’s
antenna (antenna-biting), followed by their pressing it down or fixing it to prevent spontaneous
movement of the female—namely pressing down of the female antennae—appears to be unique
among all known behaviors of Cerambycidae. In Lepturinae, the male bites the female’s antenna and
presses it up, rather than down [27]. This behavior may be related to the difference in body size
between males and females: Male R. batesi are, on average, larger than females. In contrast, in most
other cerambycid species, the female is usually larger than the male.
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