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Abstract: The decline of pollinators in agricultural areas has been observed for some decades,
this being partly due to landscape simplification in intensive agrosystems. Diversifying agricultural
landscapes by sowing flower strips within fields could reduce these adverse effects on biodiversity.
In this context, the study presented here aimed at assessing and comparing the abundance and
diversity of bees (Hymenoptera: Anthophila) and hoverflies (Diptera: Syrphidae) found and visiting
flowers in three types of flower strips in Belgium: (i) a mixture of 11 wild flowers, (ii) a monofloral
strip of Dimorphoteca pluvialis (Asteraceae) and (iii) a monofloral strip of Camelina sativa (Brassicaceae),
where the last two are considered to be intercrops since they are valuable on the market, all sown
within a field of winter wheat (Triticum aestivum L.). Pollinators were captured with pan traps and by
netting in standardised transects from May to July 2017. One-thousand one-hundred and eighty-four
individuals belonging to 43 bee species and 18 hoverfly species were collected. Significant differences
in hoverfly diversity were found between the different flower strips. The multifloral treatment
supported a greater diversity of syrphid species. Various pollinator species visited the different
flowers composing the mixture and also D. pluvialis. The pollinator community proved to be
predominantly generalist, with the exception of an oligolectic species in Belgium, Andrena nitidiuscula.
Moreover, the three tested flower strips were effective in attracting hoverflies, among them natural
enemies of insect pests. This study opens new perspectives in the design of intercropping systems with
flower strips towards the design of sustainable agro-ecosystems. Improving economic profitability
of sowing flower strips could encourage farmers to diversify their agricultural systems and foster
conservation biology strategies.

Keywords: sustainable agriculture; ecosystem services; Apoideae; Syrphidae; Dimorphoteca pluvialis;
Camelina sativa; Coriandrum sativum; Fagopyrum esculentum; Andrena nitidiuscula

1. Introduction

With approximately 20,000 species worldwide and more than 2000 species in Europe, bees
(Hymenoptera: Anthophila) are among the most speciose pollinator groups in temperate agriculture
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landscapes [1]. Their long-time coevolution with flowering plants has provided them with both
morphological (e.g., scopa, pollen baskets) and behavioural (e.g., lectism, sociality) traits, suitable for
plant pollination [2,3]. Non-bee insects, among other hoverflies (Diptera: Syrphidae), are also important
for pollinating plants because they are responsible for 25-50% of the total number of visits to flowers [4,5]
and contribute significantly to pollination [6,7]. Pollination is an essential ecosystem service because
70% of the diversity of plants cultivated globally and up to 84% of plants cultivated in Europe depend
on it [8]. Its economic value has been estimated at 153-285 billion Euros a year [9]. In Belgium,
the contribution of insect pollinators to plant production for human food (i.e., mainly fruits and
vegetables) was estimated at about 250 million Euros in 2010 [10].

For some 50 years now, pollinator diversity and abundance have been declining at a large
scale [11,12]. Important drivers responsible for this decline are the simplification of landscapes
and fragmentation of habitats caused by urbanisation processes and agricultural intensification [13].
Indeed, along with the modernisation of agriculture, parcel size has dramatically increased on 40% of the
European landscape [14] due to the suppression of semi-natural habitats (i.e., hedges, groves, fallows).

The loss of pollinators from agricultural landscapes threatens the service of pollination [15].
In fact, pollinator decline could negatively impact pollinator-dependent crop yields (e.g., orchards,
cultivation of vegetables), creating a negative economic impact [16]. This depletion could have severe
implications for producers and consumer welfare [16]. Current pollinator decline may also lead to
deficiency of essential minerals and vitamins for the human diet provided by pollinator-mediated
crops [17]. Moreover, wild plants could suffer from a dearth of pollination and such effects may cascade
further through the food web [18]. These threats could have detrimental effects on agro-ecosystems,
human food supply and well-being [16].

In this context, Agri-Environmental and Climate Measures (AECM) have been proposed to
farmers in Europe to ‘reduce environmental risks associated with modern farming on the one hand
and preserve nature and cultivated landscapes on the other hand’ [19]. Farmers can adopt AECM on a
voluntary basis and receive monetary compensation in return for potential losses of income. In Wallonia
(Belgium), 11 measures are available to farmers who commit themselves for at least five years [20].
Some of these measures aim at supporting pollinators, such as wildflower strips. Flowering strips are
recognised to support insect populations in general [21] and pollinators particularly [22,23], yet their
effect depends strongly on the floral composition of the sown mixtures [24]. Previous studies explored
how pollinator communities are affected by the species diversity of flower mixtures [25], by the
functional diversity of flower mixtures [26] and by specific plant species that are known to be attractive
to pollinators [27]. Additionally, spatial diversification of agroecosystems is increasingly considered
to improve the sustainability of agriculture [28]. Within fields, intercropping (i.e., the cultivation
of at least two crops simultaneously) can reduce the requirement for fertilisers [29] and the risks of
infestations by insect pests [30] and diseases [31]. Considering flowering crops in intercropping could
moreover benefit pollinators.

The first objective of this study is to estimate the biodiversity of pollinator communities (Hymenoptera:
Anthophila and Diptera: Syrphidae) on several flower strips sown in wheat (Triticum aestivum (L., 1753))
crops. The second objective is to compare three modalities of flower strips regarding their effect
on pollinator abundance and diversity: a multifloral mixture of wildflower species and two
oilseed monofloral strips of Camelina sativa (Crantz, 1753) (Brassicaceae) and Dimorphoteca pluvialis
(Moench, 1794) (Asteraceae) are considered intercrops since they are valuable on the market [32,33].
Whereas sowing mixtures of wildflowers can be subsidised through the AECM, the latter two options
would offer opportunities of income diversification to farmers [34,35]. By focusing on bees and
hoverflies more particularly, the third objective of the present study is to explore how these two groups
of pollinators interact with the different floral species within the flower strips.
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2. Materials and Methods

2.1. Experimental Setup

Three flower strip treatments were established by sowing a multifloral, and two distinct monofloral,
strips (i.e., one with C. sativa and one with D. pluvialis) in a 12-ha field of the AgriculturelsLife
experimental farm of Gembloux Agro-Bio Tech (University of Liege, Belgium) (50°30'52.403" N;
4°43'51.153" E). The surrounding landscape was mostly composed of large urbanised areas (52%)
and agricultural fields (39%) within a 3 km radius from the field (Figure S1). The multifloral
treatment contained 11 floral species that were selected for their melliferous potential: Daucus carota
(L., 1753) (Apiaceae), Oenothera biennis (Linnaeus, 1753) (Onagraceae), Echium vulgare (L., 1753)
(Boraginaceae), Coriandrum sativum (L., 1753) (Apiaceae), Fagopyrum esculentum (Moench, 1794)
(Polygonaceae), Glebionis segetum ((L.) Fourr., 1869) (Asteraceae), Silene latifolia alba (Poiret, 1789)
(Caryophyllaceae), Malva moschata (L., 1753) (Malvaceae), Geranium pyrenaicum (Burman, 1753)
(Geraniaceae), Trifolium incarnatum (L., 1753) (Fabaceae), Trifolium repens (L., 1753) (Fabaceae). T. repens
and T. incarnatum were especially chosen for their soil cover properties. To ensure high floral diversity
and evenness, the seed mixture was assembled using an equal number of seeds for each floral species
(Table S1). Eighteen flower strips (4 m x 25 m) were sown in the field on 27 April 2017, each strip being
separated by 27 m of winter wheat, finally constituting an intercropping system. Each floral treatment
was repeated three times in a Latin square design and each repetition consisted of two similar adjacent
strips (Figure 1). All sampled flower strips were assumed as independent replicates. Winter wheat
was sown in November 2016 and no insecticides were used during the experiment.
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Figure 1. Experimental setup.

2.2. Pollinator Trapping and Identification

All sampling and identification were limited to bees and hoverflies. These families are the ones
participating mainly in the pollination process in an effective and substantial way [5].

Sampling was conducted during a period of three months, from May (early blooms) to July 2017.
A standard protocol for pollinator surveys [36] was used: a combination of white, blue and yellow
coloured pan traps (Flora®, 27 cm diameter and 10 cm depth) were installed every 5 m in the centre of the
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western strip in each block (Figure 1) every 15 days from 9:00 a.m. to 5:00 p.m. in good weather conditions
(i.e., temperature above 15 °C, wind speed below 15 km/h and a clear sky) [37]. To be able to offset the
effect of flower strips from the background pollinator community, three lots of pan traps were placed in
the wheat field, 40 m away from the flower strips. Pan traps were filled with water and some drops of
colourless and odourless detergent (wash liquid ‘Rainett—Ecologique®’) to decrease the surface tension
of the water. Insects were collected and kept in 70% ethanol. Additionally, floral visitations were
assessed through standardised transects conducted from 11:00 a.m. to 12:00 a.m. and from 2:00 p.m.
to 3:00 p.m. (i.e., within the range of the wild bee daily peak of activity) [38,39]. Transects were run
in each eastern strip of each block (Figure 1). Two walks were undertaken for each floral species
with a waiting time of two seconds on every floral unit to observe the visits of pollinators (Figure 1).
A floral unit corresponded to one or a set of flowers where the insect can move by walking without
needing to fly. When a pollinator landed on a floral unit, it was collected by using a net and kept in a
box containing crushed ice. In the laboratory, all collected individuals were preserved in a freezer at
—20 °C. The transects were repeated twice, spaced a week apart for each flower species during their
flowering time. A total of six days of collection with coloured pan trap traps were made and two net
traps for each flower species during flowering, for a total of eight transects (on C. sativa, D. pluvalis,
C. coriander and F. esculentum). The collected data were encoded separately, depending on the type of
flower strip and sampling technique.

The insects were pinned using a pre-established protocol [40]. Insect identification was performed
with identification keys [40—44] and with the help of specialists for species checking and specific taxon
groups (Halictidae: Alain Pauly; Syrphidae: Frank Van de Meutter; Andrenidae: David Genoud).

2.3. Vegetation Surveys

To survey the vegetation development, three quadrats of 1 m x 1 m were placed in each of the
western strip of each block (Figure 1) [45]. The number of plants and floral units were counted in each
quadrat for every species on 11 July 2017 (i.e., when most of the plants were blooming).

2.4. Statistical Analyses

Data analyses were performed with Microsoft Excel 2010 and R software v.3.0.1 [46].

First, the structure of the sampled communities was evaluated with a combination of pan trap
and sweep net, and also separately, by considering the abundance of individuals, their species
richness and by calculating the following three alpha diversity indexes: Simpson, Shannon and Pielou
("Vegan’ package [47,48]). The Simpson index calculates the proportion to which two individuals have
accumulated in a community of the same species (Simpson, 1949). It takes into account the abundance
of each species in a sample and their proportion in the population. The Shannon index (H) is associated
with the Simpson index [49]. The proportion of each species is multiplied by its own logarithm.
The Shannon index takes better account of important variations of the rarest species [49]. The Pielou (R)
index, often complementary to the Shannon index, calculates the distribution of individuals between
species or the evenness, regardless of species richness [49]. Because our sample size (N = 3 per floral
treatment) is too small and normality of our data was not met, a non-parametric test (Kruskal-Wallis;
p-value < 0.05) was used to assess abundance, species richness and the effects of the alpha diversity
indices (i.e., Simpson, Shannon, Pielou) between each treatment (i.e., multifloral, C. sativa, D. pluvialis)
on (i) bees + hoverflies trapped and netted, (ii) bees + hoverflies trapped (iii) bees + hoverflies netted,
(iv) bees trapped and netted and (v) hoverflies trapped and netted. These non-parametric tests
were followed by post hoc comparisons (Dunn’s test) if necessary, to check for pairwise significant
differences. Post-hoc comparisons were computed via the ‘dunn.test’ package [50].

Each local community is supposed to be limited in size with defined species number [51].
Observed species richness from sampling effort (net + coloured pan traps) is dependent on the
sample size. Indeed, new species detection expands with the increase of sample size or sampling effort.
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To check whether the sampling was conducted in a complete manner, sample coverage curves were
plotted for: (i) hoverflies and bees together; (ii) bees alone; and (iii) hoverflies alone (‘iINEXT” package).

Second, the structure of the same sampled communities was evaluated by considering the
abundance of individuals and sequence of Hill number [52,53] to compare alpha diversity estimations
of the floral treatments (‘iNEXT” and “Vegan’ packages) [47,48]. Indeed, studies proposed a unified
framework regarding Hill numbers extended [53] from works based on rarefaction and extrapolation
(R/E) sampling curve for species richness and sample completeness [54,55]. Each Hill number
corresponds to a diversity order q, which defines species diversity measures as a particular feature:
species richness (N = 0), the exponential of the Shannon entropy (N = 1) and the inverse Simpson
concentration index (N = 2) [52]. R/E curves were built specifying 100 bootstrap replications on
individual-based abundance data to compare the pollinator communities between the floral treatments:
(i) hoverflies and bees together, (ii) bees alone and (iii) hoverflies alone.

Third, the structure of the pollinator community in the three treatments was examined through
ordination methods using Principal Coordinate Analysis (PCoA) based on Bray-Curtis distance
(functions ‘cmdscale,” ‘ordiplot’ and ‘ordiellipse” from the ‘Vegan’ package [47,48]). Data of the
pan traps and those from the sweep net were analysed separately. The same analysis was realised
for the structure of the pollinator community by floral species using data of the sweep net. The two
main components most adequately explaining the variance of the community structures were used to
build the PCoA biplots. The community dataframe was standardised using the ‘Hellinger” method
for a one-way analysis of similarities (ANOSIM) also based on Bray-Curtis distance. For every PCoA,
ANOSIM was conducted with 9999 permutations to analyse dissimilarity patterns between treatments
and flowers.

3. Results

3.1. Pollinator Diversity in Flower Strips

In total, 1184 pollinator individuals belonging to 61 species were collected with pan traps
and the net, of which 18 species were hoverflies (583 individuals) and 43 species were bees
(601 individuals). The species accumulation curves, reaching a plateau of saturation, show that
the sampling effort was sufficient to collect most of the pollinator diversity of the environment
(Figure S2). Sphaerophoria scripta (Linnaeus, 1758) (Diptera: Syrphidae) was the most abundant species,
followed by Eristalis tenax (Linnaeus, 1758) (Diptera: Syrphidae), Lasioglossum pauxillum (Schenck,
1853) (Hymenoptera: Halictidae), Lasioglosssum morio (Fabricius, 1793) (Hymenoptera: Halictidae) and
Andprena flavipes (Panzer, 1799) (Hymenoptera: Andrenidae) (Table 1). No rare species were present,
except for Andrena nitidiuscula (Schenck, 1853) (Hymenoptera: Andrenidae) ranked as minor concern
(LC) on the European Red List [56]. Concerning hoverflies, the conservation statuses could not be
indicated because no red list at the moment exists for this family.

Simpson, Shannon and Pielou indexes describing alpha diversity showed high diversity for each
floral treatment (Table 2) against total species composition of the experimental field. These indexes
also exposed that individuals are distributed with several dominant species (Table 1) which reduced
community evenness.

The Kruskal-Wallis tests carried out to compare abundance, species richness, Simpson, Shannon
and Pielou indexes in the three flower strip treatments showed no significant evidence of a difference
between the mean ranks of at least one pair of groups (Table 2). However, the abundance of
specimens and Pielou’s evenness index showed a non-significant trend (p-value < 0.08) to be distinct,
suggesting that it would be different pollinator communities among the floral treatments.

The diversity indexes were also analysed with pan trap and sweep net data separately. No significant
difference was found. When bees and hoverflies were analysed separately, there was significant evidence
of differences for Simpson and Shannon indexes with hoverfly data (Table 2).
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Table 1. Abundance of all bee and hoverfly species collected with pan traps and during transects in

each treatment. The endangered status from the European red list of bees [56] for each bee species

is indicated (LC: Minor concern; DD: insufficient data). To our knowledge, no endangered status

information is available for hoverflies. Foraging traits are also pointed out (P: Polylectic; O: oligolectic

with the family of flower; C: cuckoo bees or kleptoparasites).

Species Status Foraging Multifloral ~ C. sativa D. pluvialis Control Total % Total
Anthophila
Andrenidae
Andrena carantonica D.D P 0 0 0 1 1 0.08
Andrena chrysosceles D.D P 1 0 0 0 1 0.08
Andrena cineraria L.C P 0 1 1 0 2 0.17
Andrena dorsata D.D P 5 1 3 0 9 0.76
Andrena flavipes LC P 23 47 14 2 86 7.29
Andrena gravida D.D P 0 2 0 0 2 0.17
Andrena haemorrhoa L.C P 0 0 1 0 1 0.08
Andrena humilis D.D O Asteraceae 0 0 0 1 1 0.08
Andrena minutula D.D P 10 1 0 1 12 1.02
Andrena minutuloides D.D P 4 0 0 0 4 0.34
Andrena nigroaenea LC P 0 2 1 0 3 0.25
Andrena nitida LC P 0 1 2 0 3 0.25
Andrena nitidiuscula LC O Apiaceae 1 0 0 0 1 0.08
Apidae
Apis mellifera LC P 6 5 3 5 19 161
Bombus hypnorum LC P 0 0 0 1 1 0.08
Bombus lapidarius LC P 7 5 14 2 28 2.37
Bombus lucorum LC P 0 0 4 0 4 0.34
Bombus pascuorum L.C P 0 1 0 0 1 0.08
Bombus pratorum LC P 0 0 0 1 1 0.08
Bombus sylvestris LC P 0 0 1 0 1 0.08
Bombus terrestris LC P 16 9 12 3 40 3.39
Bombus vestalis LC C 0 1 0 0 1 0.08
Nomada fabriciana C 0 0 0 1 1 0.08
Colletidae
Hylaeus sp. LC - 1 1 0 0 2 0.17
Crabronidae
Lindenius sp. LC - 2 0 0 0 2 0.17
Oxybelus sp. LC - 0 0 0 1 1 0.08
Halictidae
Halictus maculatus LC P 0 1 0 0 1 0.08
Halictus rubicundus L.C P 0 2 0 0 2 0.17
Halictus scabiosae L.C O Asteraceae 0 0 0 1 1 0.08
Lasioglossum calceatum LC P 4 7 25 1 37 3.14
Lasioglossum fulvicorne LC P 2 2 0 3 7 0.59
Lasioglossum laticeps LC P 6 5 0 3 14 1.19
Lasioglossum leucozonium LC P 0 0 0 1 1 0.08
Lasioglossum malachurum LC P 10 12 13 4 39 3.31
Lasioglossum minutissimum LC P 0 3 0 0 3 0.25
Lasioglossum morio LC P 19 36 18 41 114 9.66
Lasioglossum nitidulum LC P 0 0 1 0 1 0.08
Lasioglossum nitidiusculum LC P 0 1 1 0 2 0.17
Lasioglossum pauxillum L.C P 37 45 32 24 138 11.69
Lasioglossum villosulum LC P 0 2 1 0 3 0.25
Seladonia tumulorum LC P 1 2 1 0 4 0.34
Sphecodes ephippius LC C 1 0 0 0 1 0.08
Sphecodes monilicornis LC C 2 0 0 0 2 0.17
Syrphidae
Episyrphus balteatus - P 16 4 6 0 26 2.20
Eristalis arbustorum - P 11 0 0 0 11 0.93
Eristalis similis - P 0 0 0 1 1 0.08
Eristalis tenax - P 70 12 56 3 141 11.95
Eumerus strigatus - P 7 4 0 2 13 1.10
Eupeodes corolla - P 7 3 2 0 12 1.02
Eupeodes latifasciatus - P 0 0 1 0 1 0.08
Eupeodes luniger - P 7 0 0 0 7 0.59
Melanostoma mellinum - P 3 6 7 0 16 1.36
Platycheirus clypeatus - P 2 1 4 0 7 0.59
Scaeva pyrastri - P 9 0 3 0 12 1.02
Scaeva selenitica - P 0 0 1 0 1 0.08
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Table 1. Cont.

Species Status  Foraging Multifloral ~ C. sativa D. pluvialis ~ Control Total % Total
Sphaerophoria rueppelli - P 1 3 1 0 5 0.42
Sphaerophoria scripta - P 176 98 8 289 24.49
Sphaerophoria taeniata - P 3 3 0 0 6 0.51
Syritta pipiens - P 25 3 0 0 28 2.37
Syrphus ribesii - P 3 0 1 0 4 0.34
Syrphus vitripennis - P 1 1 1 0 3 0.25

Table 2. Mean abundance and species richness of pollinator community, diversity (Simpson, Shannon and
Pielou) depending on the type of collection and pollinator family in each treatment (+-standard deviation),
the degree of freedom (df), Kruskal-Wallis, x2-value and significant differences (*: p-value < 0.05).

Data C. sativa D. pluvialis Multifloral df X2 p-Value

Abundance 111.00 + 3143 79.30 +23.46 16567 £5499 2 507 0.08

o Species richness 267+379  1933+£208 2667 +1.16 2 447 0.12

Pan traps *net Simpson’s Diversity ~ 0.82 £ 0.06 0.88 +0.03 0.83 + 0.04 2 329 0.19
hoverflies*bees g on's Diversity .31 +0.23 247 £0.15 241+0.16 2 116 0.67
Pielou’s evenness 0.74 + 0.04 0.84 + 0.04 0.74 + 0.06 2 542 0.07

Abundance 3442475 18.3 +5.85 17 + 1.00 2 097 0.61

Pan trans* Species richness 9334288 9.66 + 1.52 8.66 + 1.52 2 08 0.65

. 1: Simpson’s Diversity 0.76 4 0.08 0.81 +0.08 0.81 4 0.08 2 115 0.56
hoverflies*bees g1 on's Diversity  1.75 + 0.35 1.98 + 0.37 1.94 + 031 2 062 0.73
Pielou’s evenness 0.8 +£0.10 0.87 +0.10 0.9 £ 0.07 2 222 0.32

Abundance 59 +10.58 45334+2764 13833+5980 2  5.60 0.06

Species richness 14 +2.00 11.6 + 3.78 21.66 + 1.52 2 580 0.06

*hoverzie;*bees Simpson’s Diversity 071 + 0.03 0.78 + 0.02 0.78 + 0.02 2 542 0.06
Shannon’s Diversity 1.81 £0.10 1.93 £ 0.11 2.18 +0.18 2 5.06 0.07

Pielou’s evenness 0.68 + 0.02 0.80 + 0.06 0.70 + 0.05 2 462 0.09

Abundance 4830 +£33.60  44.00 & 7.00 42 +1.00 2 298 0.22

Species richness 1200 +£3.00  10.00 + 0.00 13 4 1.00 2 308 021

Pan taps*net *bees  Simpson’s Diversity 0.78 +0.01 0.83 +0.01 0.84 4 0.01 2 5.95 0.06
Shannon’s Diversity ~ 1.88 + 0.16 2.00 + 0.03 2.18 + 0.08 2 560 0.06

Pielou’s evenness 0.76 £ 0.08 0.86 + 0.01 0.84 + 0.02 2 3.20 0.20

Abundance 4426 +11.67  29.66 +2136  113.33 +6.18 2 5% 0.05

Pan trans*net Species richness 7.00 + 1.73 6.66 + 2.88 12.33 + 1.52 2 565 0.05
fl‘l‘ rapg, ne Simpson’s Diversity ~ 0.44 =+ 0.03 057 + 0.05 1.24 +0.03 2720 0.02*
overtiies Shannon’s Diversity ~ 1.01 + 0.14 1.24 +0.20 1.58 + 0.04 2 648  0.03*
Pielou’s evenness 0.53 + 0.02 0.68 + 0.06 0.63 + 0.03 2 59 0.05

Finally, the post-hoc Dunn’s test reveals significant differences between the multifloral treatment
and the C. sativa treatment for both Simpson (p-value = 0.003) and Shannon indexes (p-value = 0.005)

(Figure 2).
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Figure 2. Bar plots of mean values of both Simpson and Shannon indexes for the different treatments.
The different letters represent a significant difference calculated from the post-hoc Dunn’s test
comparison (p-value < 0.05).
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Rarefaction/extrapolation curves for Hill numbers show that treatments have similar species
richness (N = 0) (Table 3, Figure 3). In contrast, there is a significant difference for N = 2 between
Dimorphoteca and the other two treatments for hoverflies and bees combined, as suggested by an
overlap in the confidence intervals [57]. For both Shannon (N = 1) and Simpson diversities (N = 2),
there is a significant difference between multifloral treatment and the other two treatments (Table 3,

Figure 3).

Species diversity Species diversity

Species diversity

Figure 3. Comparison between pollinator communities from the three floral treatments (denoted by
colours and solid dots) by sample-size-based rarefaction (solid lines) and extrapolation (dashed curves)
curves based on abundance data of hoverflies and bees together (A), bees alone (B) and hoverflies
alone (C). Each panel displays Hill numbers of order N = 0 (left panel), N = 1 (middle panel) and N =2
(right panel). The 95% confidence intervals (coloured-shaded regions) were obtained by a bootstrap
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Table 3. Hill diversity indices of each treatment based on abundance data of hoverflies and bees
together, bees alone and hoverflies alone where NO = species richness; N1 = evenness; N2 = diversity
weighted by relative abundance.

Bees + Hoverflies Bees  Hoverflies

NO 914 713 832
Camelina N1 1261 339 981
N2 839 225 76
NO 2307 1006 1306
Dimorphoteca N1 1477 188 1049
N2 1193 351 992
NO 646 527 371
Multifloral N1 1242 563 1067
N2 727 375 1033

ANOSIM show no significant dissimilarities in the pollinator communities in the pan traps
(global R=—0.037; p-value = 0.606) (Figure 4a). As for the communities captured with the net
during transects, the species distribution differed between the three treatments (global R = 0.794;
p-value = 0.003) (Figure 4b).
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Figure 4. Principal coordinate analysis (PCoA) ordination of the three treatments (red circle: D. pluvialis;

green circle: Multifloral; blue circle: C. sativa) based on the data collected with (a) pan traps and (b) a

net through transects. Ellipses show the 80% confidence interval of the locations grouped by flower

strip. Species scores are represented with numbers (Table S2).
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3.2. The Flower Identity Effect on Pollinator Visitations

During the transect samplings, coriander C. sativum and buckwheat F. esculentum were the most
abundant species blooming in the multifloral strips (Figure S3). Species richness of netted specimens
during transects was composed of ten hoverfly species and 16 bee species. ANOSIM showed differences
between the pollinator diversity and abundance of flowers studied (global R = 0.713; p-value < 0.001)
(Figure 5). Flowers of D. pluvialis differed from other flowers. The same is true for C. sativum and
F. esculentum flowers. Only C. sativa showed a tendency to attract the same pollinator community as
F. esculentum.
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Figure 5. Principal coordinate analysis (PCoA) ordination of the four flower species with data collected
with a net (red circle: D. pluvialis; yellow circle: C. sativum; green circle: F. esculentum; blue circle:
C. sativa). Ellipses show the 80% confidence interval of the locations grouped by flower species.
Species scores are represented with numbers (Table S2).

4. Discussion

4.1. The Biodiversity of Pollinators

1184 individuals belonging to 43 bee species and 18 hoverfly species were collected,
representing 11.75% and 5.13% of the national richness in Belgium, respectively [56,58]. These figures
are rather low yet considering that land use within a 3 km radius from the field consisted mainly of
urbanised areas (52%) and agricultural fields (39%) (Figure S1), such a poor pollinator community
is not unexpected [59-61]. Indeed, studies have already shown that pollinator species diversity
and abundance generally decrease with landscape simplification, leading to a homogenisation of
the insect communities [62,63]. The presence of small shrubs, hedges and fragments of woodland
on the remaining 8% of the surface area may have provided the necessary resources of nectar and
pollen, nesting sites or larval habitat to support a pollinator community, albeit impoverished to some
extent [64]. This observation may also explain the low presence of oligolectic bees in our study.
Indeed, while polylectic bees are less sensitive to agricultural intensification and the increase of
urbanised zones, oligolectic bees (which are less flexible in their range of food resources) are more
likely to be affected by agricultural and urban stresses, causing a decline in their population [65].

Sphaerophoria scripta, E. tenax, L. pauxillum, L. morio and A. flavipes were the most abundant pollinator
species. They are all polylectic species common in agricultural landscapes and are recognised as efficient
pollinators [43,66]. The composition of the surrounding landscape (i.e., urban areas and agricultural
fields) can explain their presence in the field. For example, L. morio does not present any particular
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requirements and nests in anthropogenic areas such as town parks and gardens [43,67]. With regard
to hoverfly species, the high abundance of S. scripta is consistent with its ecology: it colonises open
landscapes with a short turf and patches of bare ground and often frequents pioneer vegetation
which makes it a typical species of agricultural environments [68]. The larvae of S. scripta are aphid
predators amongst others on cereals [69,70]. As for the second most abundant hoverfly species, E. tenax,
its abundance follows from large-scale long-distance migration in summer [71].

As for less common species, A. nitidiuscula were collected on coriander in the floral mixture. So far,
some 15 observations of A. nitidiuscula are known from Belgium. The only previous observation in
the area of Gembloux dates from 1989 (Waarnemingen.be, BDFGM_GX and BDFGM_Mons database)
(Figure S4). This species is oligolectic on Apiaceae flowers [72] and inhabits a variety of open
habitats [73]. Flower strips sown in agricultural fields seems to be such a habitat that can support
fragile (meta)populations of relatively rare pollinator species.

4.2. Attractiveness of the Floral Mixtures to Pollinators

We were able to detect significant differences among floral treatments with pan trap and sweep
net data aggregated with Hill number analyses. A difference between the multifloral treatment and
Dimorphoteca with the N = 2 index has been observed, indicating that the pollinator diversity was
higher in the multifloral than in the Dimorphoteca strips. Parallel to the analysis of Hill indices,
the indices of Simpson, Shannon and Pielou indicated that the floral strips have housed a fairly
large number of species dominated by particular taxa, suggesting that floral strips were attractive to
pollinators. Finally, according to the Pielou index, the treatments brought together communities of
species whose dominance is equitable, with hypothetically the dominance of certain species.

Moreover, PCoA and ANOSIM show that the floral strips revealed different pollinator
communities with net capture while pan trapping did not. This result suggests that both field collection
methods are complementary to conduct exhaustive pollinator sampling [74].

Metric analyses using only hoverfly data, however, showed significant differences between the
treatments of both Shannon and Simpson indexes and Hill numbers N =1 and N = 2. These results
reveal that multifloral strips make it possible to obtain a greater variety of Syrphidae than when
using monofloral strips. Moreover, this result indicates that the pollinator community in monofloral
strips tends to be more diverse when dominant pollinator species become more relevant and rare or
common species are not favoured. These results can be explained by the various blooms occurring in
the flower strips.

The counting of floral units in the quadrats indicates that only two species of the multifloral
mixture (i.e., buckwheat and coriander) bloomed in abundance (Figure S3). A first reason for the low
germination rate could be the drought wave that occurred in Wallonia in spring 2017 [75] which dried
up the soil preventing the germination of many species. A second explanation could be the density of
weeds, particularly the Lamb’s quarters Chenopodium sp. (Amaranthaceae), which is a nitrophilous
species common in conventionally cultivated fields (Figure S3). Nevertheless, some pollinators are
attracted by Lamb’s quarters, particularly some hoverflies [24]. This phenomenon recalls that weeds in
agricultural landscapes can support ecosystem processes and maintaining their diversity is a crucial
issue [76]. These results therefore highlight that the correct establishment of sown wildflower strips
and their expected effects on insect biodiversity and the related ecosystem processes is not systematic
and depends on environmental (abiotic and biotic) parameters.

4.3. The Role of Floral Traits

The pollinator communities on the four flower species that bloomed in abundance were different
(Figure 3). Previous studies have demonstrated the importance of floral traits in the attraction of
pollinators [77-80], among them the flower colour and the type of the corolla that determines the
nectar and pollen accessibility.
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The present flower species were white or yellow. These colours are effective in attracting hoverflies
and some bees of the genus Bombus (Bray. 1957) [80]. Conversely, the blue flowers, absent in our study,
would be more conducive to attracting bees [81]. Floral colours could explain the greater presence of
hoverflies, especially on buckwheat and coriander. The positive effect of colour on hoverflies may
have been supported by the corolla type of these flower species, qualified as ‘flower with open nectar’
and ‘flower with partly hidden nectar” after the classification of Miiller (1881) [82] in the BIOLFLOR
database [83]. Indeed, the corolla type determines the availability of nectar for visitors and species
with short corolla depth such as umbel flowers (Apiaceae) (e.g., coriander and some Asteraceae
like D. pluvialis) or with wide corollas such as buckwheat, are attractive to hoverflies and increase
their survivorship [78]. Conversely, nectar in narrow corollas such as that of C. sativa is accessible
to bees, which could explain the increased abundance of these pollinators in this treatment [84].
These observations can explain the significant differences observed with the ANOSIM results for the
PCoA representing the pollinator communities for each flower.

5. Conclusions and Perspectives

First, the present study provides an additional list of bees and hoverflies found in a typical
agricultural landscape dominated by field crops and urban areas in Wallonia, Belgium. It shows
that most of the species collected are generalists in terms of habitats. Moreover, the presence of
A. nitidiuscula enhances the interest of the flower strips by favouring less frequent pollinator species.
The study also highlights the abundance of aphidophagous hoverflies, which may benefit farmers
by naturally controlling aphids (Hemiptera: Aphididae) that are common agricultural pests in the
region [85]. This result supports the need for broadening the scope in order that spatial diversification
of agro-ecosystems addresses multiple issues simultaneously [28].

Second, the study did not generally reveal significant differences in terms of abundance
and diversity of pollinators in the different treatments (i.e., monospecific vs. multifloral strips).
Only hoverflies were more diversified (Shannon’s and Simpson’s diversity) in the multifloral mixture.
A reason may be that few species in the multifloral mixture actually bloomed. In addition, this study
was conducted on a single experimental site, which makes it impossible to compare the results between
different experimental fields that could have shown significant differences in terms of pollinators and
species blooms. Further studies are thus required to draw a clearer conclusion on whether multispecies
wildflower mixtures or monofloral crops benefit pollinators the best. In particular, flower phenology
remains a key element of the effectiveness of flowering strips. Hence, further research should assess the
effect of blooming time on pollinator species emerging early in the season as well as on those requiring
food resources late in the season. Moreover, it would be useful to evaluate whether an earlier or later
sowing of C. sativa and D. pluvialis would allow their flowering to be spread out over a longer period.

Third, the significant difference of pollinator communities observed on each flower species
reinforces the interest of identifying the floral traits benefiting visiting insects to improve floral blends.

Being conducted in a single year, this work could be completed in the future by exploring the
evolution of the obtained results on a longer term. Finally, the economic benefits provided by the
cultivation of C. sativa and D. pluvialis could be compared with the monetary compensation provided
to farmers by the AECM for multifloral mixtures. Proving the economic profitability of sowing flower
strips could encourage farmers to diversify their agricultural systems as well as their incomes.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2075-4450/9/3/114/s1,
Table S1: Floral mixtures of the three treatments, Table S2: Species scores of the PCOA, Figure S1: Mapping of the
landscape around the experimental field on a radius of 3 km, Figure S2: Species accumulation curves based on
abundance data of hoverflies and bees together (A), bees alone (B) and hoverflies alone (C), Figure S3: Number of
floral units per floral species in the quadrats of multifloral flower strips, Figure S4: Mapping of the Andrena
nitidiuscula distribution in Belgium since 1929 (Source: Rasmont (2017); Atlas Hymenoptera).

Author Contributions: C.A., G.N., S.H. and EF. conceived and designed the experiments. C.A. and G.N.
conducted the experiments. D.G. identified the Andrenidae and F.V.d.M. the Syrphidae. C.A. and G.N. analysed
the data assisted by R.U. C.A. wrote the paper, assisted by G.N., S.H., R.U. and EV.d. M.


http://www.mdpi.com/2075-4450/9/3/114/s1

Insects 2018, 9, 114 13 of 16

Funding: This research was funded by CARE AgriculturelsLife (University of Liége) and the grant Be(Igium)
International PostDoc (BeIPD-COFUND European Commission-University of Liege).

Acknowledgments: The authors are grateful for the technical support provided by the experimental Farm of
Gembloux Agro-Bio Tech (University of Liége). We thank Alain Pauly (Royal Belgian Institute of Natural Sciences,
Brussels, Belgium) for the identification of Halictidae. We also thank Pierre Rasmont and Alain Pauly for providing
Andrena nitidiuscula distribution data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Rasmont, P; Devalez, J.; Pauly, A.; Michez, D.; Radchenko, V.G. Addition to the checklist of [IUCN European
wild bees (Hymenoptera: Apoidea). Ann. Soc. Entomol. Fr. 2017, 53, 17-32. [CrossRef]

2. Michener, C.D. The Bees of the World, 2nd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2007;
p- 972, ISBN 978-0-8018-6133-8.

3.  Pfiffner, L.; Miller, A. Abeilles Sauvages et Pollinisation; FIBL, Faits et Chiffres: Frick, Suisse, 2007; p. 8.

4. Frind, J.; Linsenmair, K.E.; Bluethgen, N. Pollinator diversity and specialization in relation to flower diversity.
Oikos 2010, 119, 1581-1590. [CrossRef]

5. Rader, R.; Bartomeus, I.; Garibaldi, L.A.G.; Michael, PD.H.; Brad, G.W.; Rachael, C; Saul, A M.; Margaret, M.A;
Anthony, D.A.; Georg, K.S.B.; et al. Non-bee insects are important contributors to global crop pollination.
Proc. Natl. Acad. Sci. USA 2015, 11, 146-151. [CrossRef] [PubMed]

6.  Jauker, F; Bondarenko, B.; Becker, H.C.; Steffan-Dewenter, I. Pollination efficiency of wild bees and hoverflies
provided to oilseed rape. Agric. For. Entomol. 2012, 14, 81-87. [CrossRef]

7.  Orford, K,; Vaughan, I; Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as
pollinators. Proc. Biol. Sci. 2015, 282, 20142934. [CrossRef] [PubMed]

8.  Breeze, T.D.; Gallai, N.; Garibaldi, L.A.; Li, X.S. Economic measures of pollination services: Shortcomings
and future directions. Trends Ecol. Evol. 2016, 13, 927-939. [CrossRef] [PubMed]

9. Klein, AM,; Vaissiere, B.E.; Cane, ].H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T.
Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303-313. [CrossRef]
[PubMed]

10. Jacquemin, F; Violle, C.; Rasmont, P.; Dufréne, M. Mapping the dependency of crops on pollinators in
Belgium. One Ecosyst. 2017, 2, 9. [CrossRef]

11. Cameron, S.A,; Loziera, ].D.; Strange, J.P.; Kochb, J.B.; Cordesa, N.; Solterd, L.F.; Griswold, T.L. Patterns of
widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662-667.
[CrossRef] [PubMed]

12.  Carvalheiro, L.G.; Kunin, W.E,; Keil, P.; Aguirre-Gutiérrez, J.; Ellis, W.E; Fox, R.; Groom, Q.; Hennekens, S.;
Van Landuyt, W.; Maes, D.; et al. Species richness declines and biotic homogenisation have slowed down for
NW-European pollinators and plants. Ecol. Lett. 2013, 16, 870-878. [CrossRef] [PubMed]

13. Potts, S.; Biesmeijer, W.; Bommarco, R.; Felicioli, A.; Fischer, M. Developing European conservation and
mitigation tools for pollination services: Approaches of the STEP (Status and Trends of European Pollinators)
project. J. Appl. Biol. 2011, 50, 154-162. [CrossRef]

14. Carrié, R. Hétérogénéité des Paysages et des Pratiques Agricoles: Effets Sur la Diversité des Abeilles Sauvages
et la Pollinisation. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2016.

15. Deguines, N.; Jono, C.; Baude, M.; Henry, M.; Julliard, R.; Fontaine, C. Large-scale trade-off between
agricultural intensification and crop pollination services. Front. Ecol. Environ. 2014, 12, 212-217. [CrossRef]

16. Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.;
Garibaldi, L.A; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being.
Nature 2016, 540, 220-229. [CrossRef] [PubMed]

17.  Eilers, EJ.; Kremen, C.; Smith Greenleaf, S.; Garber, A K.; Klein, A.M. Contribution of pollinator-mediated
crops to nutrients in the human food supply. PLoS ONE 2011, 6, e21363. [CrossRef] [PubMed]

18.  Suttle, K.B. Pollinators as mediators of top-down effects on plants. Ecol. Lett. 2003, 6, 688-694. [CrossRef]


http://dx.doi.org/10.1080/00379271.2017.1307696
http://dx.doi.org/10.1111/j.1600-0706.2010.18450.x
http://dx.doi.org/10.1073/pnas.1517092112
http://www.ncbi.nlm.nih.gov/pubmed/26621730
http://dx.doi.org/10.1111/j.1461-9563.2011.00541.x
http://dx.doi.org/10.1098/rspb.2014.2934
http://www.ncbi.nlm.nih.gov/pubmed/25808886
http://dx.doi.org/10.1016/j.tree.2016.09.002
http://www.ncbi.nlm.nih.gov/pubmed/27743610
http://dx.doi.org/10.1098/rspb.2006.3721
http://www.ncbi.nlm.nih.gov/pubmed/17164193
http://dx.doi.org/10.3897/oneeco.2.e13738
http://dx.doi.org/10.1073/pnas.1014743108
http://www.ncbi.nlm.nih.gov/pubmed/21199943
http://dx.doi.org/10.1111/ele.12121
http://www.ncbi.nlm.nih.gov/pubmed/23692632
http://dx.doi.org/10.3896/IBRA.1.50.2.07
http://dx.doi.org/10.1890/130054
http://dx.doi.org/10.1038/nature20588
http://www.ncbi.nlm.nih.gov/pubmed/27894123
http://dx.doi.org/10.1371/journal.pone.0021363
http://www.ncbi.nlm.nih.gov/pubmed/21731717
http://dx.doi.org/10.1046/j.1461-0248.2003.00490.x

Insects 2018, 9, 114 14 of 16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.
35.

36.

37.

38.

39.

40.

41.
42.

European Commission. Agri-Environment Measures. Overview on General Principles, Types of Measures
and Application 2015, European Commission, Directorate General for Agriculture and Rural Development.
Available online: https://ec.europa.eu/agriculture/sites/agriculture/files /publi/reports /agrienv/rep_
en.pdf (accessed on 24 June 2018).

NaTagriWal. 1995-2015: 20 Années de Mesures Agro-Environnementales (MAE) en Wallonie; Dossier de Presse;
NaTagriWal: Belgium, 2015; p. 4.

Haaland, C.; Naisbit, R.E.; Bersier, L.F. Sown wildflower strips for insect conservation: A review. Insect Conserv.
Divers. 2011, 4, 60-80. [CrossRef]

Uyttenbroeck, R.; Hatt, S.; Paul, A.; Boeraeve, F; Piqueray, J.; Francis, F; Danthine, S.; Frédérich, M.; Dufréne, M.;
Bodson, B.; et al. Pros and cons of flowers strips for farmers. A review. Biotechnol. Agron. Soc. Environ. 2016, 20,
225-235.

Le Féon, V. Insectes Pollinisateurs Dans les Paysages agricoles: Approche Pluri-Echelle du Réle des Habitats
Semi-Naturels, des Pratiques Agricoles et des Cultures Entomophiles. Ph.D. Thesis, Université Rennes,
Rennes, France, 2010.

Warzercha, D.; Diekotter, T.; Wolters, V.; Jauker, E. Attractiveness of wildflower mixtures for wild bees and
hoverflies depends on some key plant species. Insect Conserv. Divers. 2018, 11, 32-41. [CrossRef]

Potts, S.G.; Vulliamy, B.; Dafni, A.; Neeman, G.; Willmer, P. Linking bees and flowers: How do floral
communities structure pollinator communities? Ecology 2003, 84, 2628-2642. [CrossRef]

Uyttenbroeck, R.; Piqueray, J.; Hatt, S.; Mahy, G.; Monty, A. Increasing plant functional diversity is not the
key for supporting pollinators in wildflower strips. Agric. Ecosyst. Environ. 2017, 249, 144-155. [CrossRef]
Barbir, J.; Badenes-Pérez, ER.; Fernandez-Quintanilla, C.; Dorado, J. The attractiveness of flowering
herbaceous plants to bees (Hymenoptera: Apoidea) and hoverflies (Diptera: Syrphidae) in agro-ecosystems
of Central Spain. Agric. For. Entomol. 2015, 17, 20-28. [CrossRef]

Hatt, S.; Boeraeve, F,; Artru, S.; Dufréne, M.; Francis, F. Spatial diversification of agroecosystems to enhance
biological control and other regulating services: An agroecological perspective. Sci. Total Environ. 2018, 621,
600-611. [CrossRef] [PubMed]

Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.;
Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume
intercrops in organic farming: A review. Agron. Sustain. Dev. 2015, 35, 911-935. [CrossRef]

Lopes, T.; Hatt, S.; Xu, Q.; Chen, J.; Liu, Y.; Francis, F. Wheat (Triticum aestivum L.)-based intercropping
systems for biological pest control. Pest Manag. Sci. 2016, 72, 2193-2202. [CrossRef] [PubMed]

Boudreau, M.A. Diseases in intercropping systems. Annu. Rev. Phytopathol. 2013, 51, 499-519. [CrossRef]
[PubMed]

Campbelle, M. Camelina—An Alternative Oil Crop. Biokerosene 2018, 12, 259-275.

Singer, S.D.; Weselake, R.J. Production of other Bioproducts from Plant Oils. Plant Bioprod. 2018, 59-85.
[CrossRef]

Pinochet, X. La marche vers les hybrides: Premiers bilans. La Filiére Aujourd hui Demain 1994, 1, 166-172.
Gugel, RK.; Falk, K.C. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J.
Plant Sci. 2006, 86, 1047-1058. [CrossRef]

Westphal, C.; Bommarco, R.; Carré, G.; Lamborn, E.; Petanidou, T.; Potts, S.G.; Settele, ]. Measuring bee diversity
in different European habitats and biogeographical regions. Ecol. Monogr. 2008, 78, 653—671. [CrossRef]
Fontaine, B. Suivi des Papillons Communs sur les Parcelles de Mais BT en Régions Aquitaine et Midi-Pyrénées en
2007; MNHN: Paris, France, 2008; 9p.

Geroff, RK.; Gibbs, J.; McCravy, KW. Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois
restored tallgrass prairie: Methodology and conservation considerations. J. Insect Conserv. 2014, 18, 951-964.
[CrossRef]

Gezon, Z.J.; Wyman, E.S.; Ascher, ].S.; Inouye, D.W.; Irwin, R.E. The effect of repeated, lethal sampling on
wild bee abundance and diversity. Methods Ecol. Evol. 2015, 6, 1044-1054. [CrossRef]

Mouret, PH.; Carre, G.; Roberts, S.P.M.; Morison, N.; Vaissiere, B.E. Mise en place d"une collection d’abeilles
(Hymenoptera, Apoidae) dans le cadre d'une étude de la biodiversité. Osmia 2007, 1, 8-15.

Scheuchl, E. CIé des Genres de la Super-Famille des Apoidae; Apollo Books: Royaume-Uni, 2000; 11p.

Patiny, S.; Terzo, M. Catalogue et Clé des Sous-Genres et Espéces du Genre Andrena de Belgique et du Nord de Ia
France (Hymenoptera, Apoidae); Université de Mons: Mons, Belgium, 2010; 39p.


https://ec.europa.eu/agriculture/sites/agriculture/files/publi/reports/agrienv/rep_en.pdf
https://ec.europa.eu/agriculture/sites/agriculture/files/publi/reports/agrienv/rep_en.pdf
http://dx.doi.org/10.1111/j.1752-4598.2010.00098.x
http://dx.doi.org/10.1111/icad.12264
http://dx.doi.org/10.1890/02-0136
http://dx.doi.org/10.1016/j.agee.2017.08.014
http://dx.doi.org/10.1111/afe.12076
http://dx.doi.org/10.1016/j.scitotenv.2017.11.296
http://www.ncbi.nlm.nih.gov/pubmed/29195207
http://dx.doi.org/10.1007/s13593-014-0277-7
http://dx.doi.org/10.1002/ps.4332
http://www.ncbi.nlm.nih.gov/pubmed/27271821
http://dx.doi.org/10.1146/annurev-phyto-082712-102246
http://www.ncbi.nlm.nih.gov/pubmed/23725470
http://dx.doi.org/10.1007/978-1-4939-8616-3_5
http://dx.doi.org/10.4141/P04-081
http://dx.doi.org/10.1890/07-1292.1
http://dx.doi.org/10.1007/s10841-014-9703-z
http://dx.doi.org/10.1111/2041-210X.12375

Insects 2018, 9, 114 15 of 16

43.

44.

45.

46.

47.

48.

49.
50.

51.
52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Falk, S.; Lewington, R. Field Guide to the Bees of Great Britain and Ireland (Field Guides); British Wildlife
Publishing Ltd.: Oxford, UK, 2015; 432p, ISBN 191038903X.

Pauly, A. Clés Illustrées Pour L’identification des Abeilles de Belgique et des Régions Limitrophes (Hymenoptera:
Apoidae) 1. Halictidae; Document de Travail du Projet BELBEES; Institut Royal des Sciences Naturelles de
Belgique: Bruxelles, Belgium, 2015; 18p.

Uyttenbroeck, R.; Hatt, S.; Piqueray, J.; Paul, A.; Bodson, B.; Francis, F; Monty, A. Creating perennial flower
strips: Think functional! Agric. Agric. Sci. Procedia 2015, 6, 95-101. [CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2018. Available online: https:/ /www.R-project.org/ (accessed on 10 July 2018).

Wickham, H. Ggplot2 Elegant graphics for data analysis. Biometrics 2016, 67, 678-679.

Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.B.; Simpson, G.L.; Solymos, P.;
Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package; R Package Version 2; R Core Team: Vienna,
Austria, 2015; Volume 2-1, p. 280.

Marcon, E. Mesures de la Biodiversité. Ph.D. Thesis, AgroParisTech, Kourou, France, 2015.

Dinno, A. Dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums; R Package Version 1.3.5; R Core
Team: Vienna, Austria, 2017. Available online: https://CRAN.R-project.org/package=dunn.test (accessed on
22 July 2018).

Magurran, A.E. Measuring Biological Diversity; Blackwell Publishing: Oxford, UK, 2004; 132p.

Hill, N.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427—-432.
[CrossRef]

Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, KM.; Colwell, R.K.; Ellison, A.M. Rarefaction and
extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies.
ESA 2014, 84, 45-67. [CrossRef]

Colwell, R.K,; Chao, A ; Gotelli, N.J.; Lin, S.-Y.; Mao, C.X.; Chazdon, R.L.; Longino, ].T. Models and estimators
linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages.
J. Plant Ecol. 2012, 5, 3-21. [CrossRef]

Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness
rather than size. Ecology 2012, 93, 2533-2547. [CrossRef] [PubMed]

Nieto, A.; Roberts, SSPM.; Kemp, J.; Rasmont, P.; Kuhlmann, M.; Garcia Criado, M.; Biesmeijer, J.C.;
Bogusch, P; Dathe, H.-H.; De la Rua, P; et al. European Red List of Bees; Publication Office of the European
Union: Luxembourg, 2014; 96p.

Colwell, RK.; Mao, C.X.; Chang, ]. Interpolating, extrapolating, and comparing incidence-based species
accumulation curves. Ecology 2004, 85, 2717-2727. [CrossRef]

Syrph the Net Database. Available online: http:/ /www.biodiversityireland.ie/projects/irish-pollinator-
initiative/hoverflies/syrph-the-net/ (accessed on 27 February 2018).

Lindgren, J.; Lindborg, R.; Cousins, S. Local conditions in small habitats and surrounding landscape are
important for pollination services, biological pest control and seed predation. Agric. Ecosyst. Environ. 2018, 251,
107-113. [CrossRef]

Williams, N.M.; Crone, E.E.; Roulston, H.; Minckley, R.; Packer, L.; Potts, S. Ecological and life-history traits
predict bee species responses to environmental disturbances. Biol. Conserv. 2010, 143, 2280-2291. [CrossRef]
Potts, S.; Biesmeijer, K.; Bommarco, R.; Breeze, T.; Carvalheiro, L.; Franzén, M.; Gonzalez-Varo, J.P;
Holz-Schuh, A.; Kleijn, D.; Klein, A.M.; et al. Status and Trends of European Pollinators. Status and Trends
of European Pollinators. Key Findings of the STEP Project; Pensoft Publishers: Sofia, Bulgaria, 2015; 72p,
ISBN 978-954-642-762-5.

Senapathi, D.; Goddard, M.A.; Kunin, W.E.; Baldock, C.R. Landscape impacts on pollinator communities in
temperate systems: Evidence and knowledge gaps. Funct. Ecol. 2017, 31, 26-37. [CrossRef]

Andersson, G.K.S,; Birkhofer, K.; Rundlof, M.; Smith, H.G. Landscape heterogeneity and farming practice
alter the species composition and taxonomic breadth of pollinator communities. Basic Appl. Ecol. 2013, 7,
540-546. [CrossRef]

Taki, H.; Kevan, P.G.; Ascher, S. Landscape effects of forest loss in a pollination system. Landsc. Ecol. 2007, 22,
1575-1587. [CrossRef]

Wood, T.].; Holland, .M. Goulson, Diet characterisation of solitary bees on farmland: Dietary specialisation
predicts rarity. Biodivers. Conserv. 2016, 13, 2655-2671. [CrossRef]


http://dx.doi.org/10.1016/j.aaspro.2015.08.044
https://www.R-project.org/
https://CRAN.R-project.org/package=dunn.test
http://dx.doi.org/10.2307/1934352
http://dx.doi.org/10.1890/13-0133.1
http://dx.doi.org/10.1093/jpe/rtr044
http://dx.doi.org/10.1890/11-1952.1
http://www.ncbi.nlm.nih.gov/pubmed/23431585
http://dx.doi.org/10.1890/03-0557
http://www.biodiversityireland.ie/projects/irish-pollinator-initiative/hoverflies/syrph-the-net/
http://www.biodiversityireland.ie/projects/irish-pollinator-initiative/hoverflies/syrph-the-net/
http://dx.doi.org/10.1016/j.agee.2017.09.025
http://dx.doi.org/10.1016/j.biocon.2010.03.024
http://dx.doi.org/10.1111/1365-2435.12809
http://dx.doi.org/10.1016/j.baae.2013.08.003
http://dx.doi.org/10.1007/s10980-007-9153-z
http://dx.doi.org/10.1007/s10531-016-1191-x

Insects 2018, 9, 114 16 of 16

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Kleijn, D.; Langeveldeb, EV. Interacting effects of landscape context and habitat quality on flower visiting
insects in agricultural landscapes. Basic Appl. Ecol. 2006, 7, 201-214. [CrossRef]

The IUCN Red List of Threatened Species, Lasioglossum Morio. Available online: http:/ /www.iucnredlist.
org/details /19199775/1 (accessed on 15 March 2018).

Branquart, E.; Hemptinne, J.L. Selectivity in the exploitation of floral resources by hoverflies (Diptera:
Syrphinae). Ecography 2000, 23, 732-742. [CrossRef]

Morales, I.; Diaz, B.M.; Nebreda, M.; Lépez-Lastra, C.; Goldarazena, A.; Sanchez, J.A.; Pineda, A,
Marcos-Garcia, M.A.; Fereres, A. Principales agentes de biocontrol en cultivos de lechuga en la zona
centro de Espafia. Rev. Hortic. 2007, 49, 46—49.

Chabert, A.; Sarthou, ].P. Practices of conservation agriculture prevail over cropping systems and landscape
heterogeneity in understanding the ecosystem service of aphid biocontrol. Agric. Ecosyst. Environ. 2017, 249,
70-79. [CrossRef]

Mueller, A.L.; Dauber, J. Hoverflies (Diptera: Syrphidae) benefit from a cultivation of the bioenergy crop
Silphium perfoliatum L. (Asteraceae) depending onlarval feeding type, landscape composition and crop
management. Agric. For. Entomol. 2016, 18, 419-431. [CrossRef]

Raemakers, I. De schermbloemzandbij Andrena nitidiuscula terug in Nederland (Hymenoptera: Apidae).
Nederlandse Faunistische Mededelingen 2005, 23, 13-16.

BWARS Bees, Wasps & Ants Recording Society. Available online: http:/ /www.bwars.com/bee/andrenidae/
andrena-nitidiuscula (accessed on 27 February 2018).

Popic, T.].; Davila, Y.C.; Wardle, G.M. Evaluation of common methods for sampling invertebrate pollinator
assemblages: Net sampling out-perform pan traps. PLoS ONE 2013, 8, e66665. [CrossRef] [PubMed]

Bilan Climatologique Saisonnier, Printemps. 2017. Available online: http://www.meteo.be/resources/
climateReportWeb /bilan_climatologique_saisonnier_2017_S2.pdf (accessed on 27 February 2018).

Rollin, O.; Benelli, G.; Benvenuti, S.; Decourtye, A.; Wratten, S.D.; Canale, A.; Desneux, N. Weed-insect pollinator
networks as bio-indicators of ecological sustainability in agriculture: A review. Agron. Sustain. Dev. 2015, 36, 8.
[CrossRef]

Fornoff, F.; Klein, A.M.; Hartig, F.; Benadi, G.; Venjakob, C.; Schaefer, H.M.; Ebeling, A. Functional flower
traits and their diversity drive pollinator visitation. Oikos 2017, 126, 1020-1030. [CrossRef]

Van Rijn, P.C.; Wickers, FL. Nectar accessibility determines fitness, flower choice and abundance of hoverflies
that provide natural pest control. J. Appl. Ecol. 2016, 53, 925-933. [CrossRef]

Bauer, A.; Clayton, M.; Brunnet, J. Floral traits influencing plant attractiveness to three bee species:
Consequences for plant reproductive success. Am. J. Bot. 2017, 104, 772-781. [CrossRef] [PubMed]

Colley, M.R,; Luna, ].M. Relative attractiveness of potential beneficial insectary plants to aphidophagous
hoverflies (Diptera: Syrphidae). Environ. Entomol. 2000, 29, 1054-1059. [CrossRef]

McCravy, KW.; Ruholl, ].D. Bee (Hymenoptera: Apoidae) diversity and sampling methodology in a
Midwestern USA deciduous forest. Insects 2017, 8, 81. [CrossRef] [PubMed]

Miiller, H. Alpenblumen, Ihre Befruchtung Durch Insekten und Ihre Anpassungen an Dieselben; Arkose Press:
Leipzig, Germany, 1881.

Kolz, S.; Kiihn, I; Durka, W. BIOLFLOR—Eine Datenbank zu Biologisch-Okologischen Merkmalen der Gefiifipflanzen
in Deutschland; Bundesamt fiir Naturschutz: Bonn, Germnay, 2002. Available online: http://www?2.ufz.de/
biolflor/index.jsp (accessed on 12 May 2018).

Gomez, ].M.; Bosch, J.; Perfectti, F.; Fernandez, ].D.; Abdelaziz, M.; Camacho, J.P.M. Association between
floral traits and rewards in Erysimum mediohispanicum (Brassicaceae). Ann. Bot. 2008, 101, 1413-1420.
[CrossRef] [PubMed]

Hatt, S.; Lopes, T.; Boeraeve, E; Chen, ].; Francis, F. Pest regulation and support of natural enemies in
agriculture: Experimental evidence of within field wildflower strips. Ecol. Eng. 2017, 98, 240-245. [CrossRef]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.baae.2005.07.011
http://www.iucnredlist.org/details/19199775/1
http://www.iucnredlist.org/details/19199775/1
http://dx.doi.org/10.1111/j.1600-0587.2000.tb00316.x
http://dx.doi.org/10.1016/j.agee.2017.08.005
http://dx.doi.org/10.1111/afe.12175
http://www.bwars.com/bee/andrenidae/andrena-nitidiuscula
http://www.bwars.com/bee/andrenidae/andrena-nitidiuscula
http://dx.doi.org/10.1371/journal.pone.0066665
http://www.ncbi.nlm.nih.gov/pubmed/23799127
http://www.meteo.be/resources/climateReportWeb/bilan_climatologique_saisonnier_2017_S2.pdf
http://www.meteo.be/resources/climateReportWeb/bilan_climatologique_saisonnier_2017_S2.pdf
http://dx.doi.org/10.1007/s13593-015-0342-x
http://dx.doi.org/10.1111/oik.03869
http://dx.doi.org/10.1111/1365-2664.12605
http://dx.doi.org/10.3732/ajb.1600405
http://www.ncbi.nlm.nih.gov/pubmed/28533203
http://dx.doi.org/10.1603/0046-225X-29.5.1054
http://dx.doi.org/10.3390/insects8030081
http://www.ncbi.nlm.nih.gov/pubmed/28777302
http://www2.ufz.de/biolflor/index.jsp
http://www2.ufz.de/biolflor/index.jsp
http://dx.doi.org/10.1093/aob/mcn053
http://www.ncbi.nlm.nih.gov/pubmed/18424472
http://dx.doi.org/10.1016/j.ecoleng.2016.10.080
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Pollinator Trapping and Identification 
	Vegetation Surveys 
	Statistical Analyses 

	Results 
	Pollinator Diversity in Flower Strips 
	The Flower Identity Effect on Pollinator Visitations 

	Discussion 
	The Biodiversity of Pollinators 
	Attractiveness of the Floral Mixtures to Pollinators 
	The Role of Floral Traits 

	Conclusions and Perspectives 
	References

