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Abstract: Climate change is predicted to alter the geographic distribution of a wide variety of taxa,
including butterfly species. Research has focused primarily on high latitude species in North America,
with no known studies examining responses of taxa in the southeastern United States. The Diana
fritillary (Speyeria diana) has experienced a recent range retraction in that region, disappearing
from lowland sites and now persisting in two phylogenetically distinct high elevation populations.
These findings are consistent with the predicted effects of a warming climate on numerous taxa,
including other butterfly species in North America and Europe. We used ecological niche modeling
to predict future changes to the distribution of S. diana under several climate models. To evaluate how
climate change might influence the geographic distribution of this butterfly, we developed ecological
niche models using Maxent. We used two global circulation models, the community climate system
model (CCSM) and the model for interdisciplinary research on climate (MIROC), under low and high
emissions scenarios to predict the future distribution of S. diana. Models were evaluated using the
receiver operating characteristics area under curve (AUC) test and the true skill statistics (TSS) (mean
AUC = 0.91 ± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for representative concentration pathway (RCP) = 4.5;
and mean AUC = 0.87 ± 0.0031 SE, TSS = 0.84 ± 0.0032 SE for RCP = 8.5), which both indicate that
the models we produced were significantly better than random (0.5). The four modeled climate
scenarios resulted in an average loss of 91% of suitable habitat for S. diana by 2050. Populations in
the southern Appalachian Mountains were predicted to suffer the most severe fragmentation and
reduction in suitable habitat, threatening an important source of genetic diversity for the species.
The geographic and genetic isolation of populations in the west suggest that those populations are
equally as vulnerable to decline in the future, warranting ongoing conservation of those populations
as well. Our results suggest that the Diana fritillary is under threat of decline by 2050 across its entire
distribution from climate change, and is likely to be negatively affected by other human-induced
factors as well.
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1. Introduction

Understanding how species distributions might shift with the changing climate is a critical
component of managing and protecting future biodiversity. Hundreds of species in the United States
and elsewhere have responded to the warming climate by shifting to higher latitudes or elevations [1–4].
Such range shifts have been documented in a number of taxa [5–7], including alpine plants [8], marine
invertebrates [9], marine fish [10], mosquitoes [11], birds [12,13], and butterflies [1,14–18]. A number
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of species distribution models have been developed to predict the impacts of climate change on
species distributions, including bioclimate envelope models, which are useful first estimates of the
potential effects of climate change on altering species’ ranges [19]. Bioclimate envelope models work
by identifying the climatic bounds within which a species currently occurs, and then delineating how
those climatic bounds will shift under various future climate projections [20–23].

Most often, researchers are limited to presence-only occurrence data, requiring the use of indirect
methods to infer a species’ climatic requirements [8,24,25]. One of the best performing models using
presence-only data is maximum entropy modeling, or Maxent [26], which performs well even with
low sample sizes typical of rare species [19,27,28]. Maxent works by comparing climate data from
occurrence sites with those from a random sample of sites from the larger landscape to minimize the
relative entropy of statistical models’ fit to each data set. Species distribution models such as Maxent
have been criticized for being overly simplistic, because they do not incorporate external biotic factors
such as species interactions [20,27,29]. However, such bioclimate envelope models have been used to
project with reasonable accuracy whether species ranges will increase or decrease under a changing
climate [19,30–32], which was the primary objective of this study.

Speyeria diana (Nymphalidae) (Cramer 1777) is a butterfly species endemic to the southeastern
United States and is currently threatened across portions of its range. This species is of particular
conservation interest because it has experienced a range collapse in recent decades resulting in an
800-km geographic and genetic disjunction between western populations in the Ouachita and Ozark
Mountains and populations in the southern Appalachian Mountains, and has shifted to a higher
elevation at an estimated rate of 18 m per decade [33]. This range contraction is consistent with the
predicted effects of a warming climate, and might represent the first such documented case in the
southeastern United States, though the region has experienced other environmental changes in recent
decades as well [33]. Previous research using coalescent-based population divergence models dated
the earliest splitting of the western population from the east at least 20,000 years ago, during the
last glacial maximum [34]. In addition, recent geometric morphometric evidence from the wings of
S. diana further support this long-term spatial and genetic isolation [35]. In light of these pieces of
evidence, we used Maxent to model the future distribution of S. diana under several future climatic
scenarios, in order to forecast how the range of the butterfly might shift under predicted conditions.
Forecasts of large range reductions (over 50%), or small overlaps between current and future ranges
(less than 50%), would suggest high vulnerability to climate change. Range reductions of any size
in the western distribution would likely threaten those populations that are genetically isolated and
adapted to relatively low dispersal, with the negative effects of genetic drift [34,35].

2. Methods

2.1. Study Species

The Diana fritillary, Speyeria diana, is a large and sexually dimorphic nymphalid butterfly, endemic
to the southeastern United States. Adult males emerge in late May to early June, with females flying
several weeks to a month later [36]. Once mated, each female can lay thousands of eggs singly on
ground litter during the months of August and September in the vicinity of Viola spp., the larval host
plant for all Speyeria [37]. After hatching, first instar larvae immediately burrow deep into the leaf litter
layer of the forest floor, where they overwinter [38]. In spring, larvae feed on the foliage of freshly
emerging violets. Adult Diana butterflies are often found along forest edges or dirt roads containing
tall, conspicuous nectar sources such as milkweeds, butterfly bushes, or other large summer and fall
composites [39–42]. While males begin to die off in late July, females may persist in large numbers,
although somewhat cryptically, through October [42].
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2.2. Distributional Dataset

We searched for all known records of S. diana, from publications, catalogued and uncatalogued
specimens in public and private collections in the United States and Europe, online databases,
contemporary field surveys by scientists and amateurs, and our own field surveys. We obtained
distributional data from 1323 pinned S. diana specimens from 33 natural history museum collections in
the United States and Europe (Table 1). Four hundred thirty-five additional records (1938–2012) were
provided by the Butterfly and Moth Information Network and the participants who contribute to its
BAMONA project. Our literature survey produced 153 records (1818–2011) across 54 U.S. counties
(Table 2). We also collected 469 S. diana butterflies in our own field surveys (Table 3). Our dataset
essentially represents a complete dataset of all publicly available records for the species, and is as
comprehensive as for any taxon in the region [33]. For this reason, our dataset should be especially
informative in creating an accurate bioclimate envelope for the species, as collection bias is a major
consideration with ecological niche modeling [43,44].

2.3. Species Distributional Modeling

We developed species distribution models using the popular machine-learning algorithm for
ecological modeling, Maxent [26]. Maxent estimates a species’ probability distribution that has
maximum entropy (closest to uniform), subject to a set of constraints based on the sampling of
presence-only data [45]. Because of the difficulty and impracticality of obtaining accurate absence
data, presence-only data are most often used in species distribution modeling. In order to offset the
lack of absence data, Maxent uses a background sample to compare the distribution of presence data
along environmental gradients with the distribution of background points randomly drawn from
the study area [46–48]. Locality data and the randomly sampled background points are combined
with climatic data to predict the probability of the species’ occurrence within each raster grid cell.
We used environmental climate data from WorldClim [49] at 30 arc-second resolution or approximately
1 km2 grid cells. Bioclimate variables and elevation layers were each clipped to the extent of North
America using ESRI (Environmental Systems Research Institute) ArcMap 10.0, and data extracted to
S. diana sample localities. Additionally, we collected the same types of locality data for three other
species of North American butterflies (Speyeria cybele, Speyeria idalia, Battus philenor), which served as
5628 random background points for our models. We utilized these background data to minimize spatial
bias in our modeling, as data represented by similar butterfly species can be used as pseudo-absence
data with the same collection bias as our occurrence data, improving the accuracy of the model [50,51].

Climatic variables included 19 derived bioclimatic variables that describe annual and seasonal
variation in temperature and precipitation, as well as elevation, averaged for 1950–2000 (Table 4).
One concern when modeling species distributions is the strong correlation that occurs between multiple
climate variables, which can significantly influence model predictions of species distributions [52].
To test for co-linearity, we performed spatial autocorrelation statistics between all pairs of the
19 bioclimate variables using ESRI ArcMap 10.0. We then selected the most biologically meaningful
variable for each group of two or more variables with Pearson correlation coefficients higher than
0.7 (Table 4). This allowed us to reduce the number of bioclimate variables to the nine potentially
most important ones, which were: Minimum Temperature of Coldest Month, Mean Temperature of
Driest Quarter, Precipitation of Wettest Month, Precipitation of Driest Month, Precipitation of Driest
Quarter, Isothermality, Mean Diurnal Range (Mean of monthly (maximum temperature—minimum
temperature)), Temperature Annual Range, and Annual Precipitation, along with elevation (Table 4).
These variables are typically considered to be important determinants of butterfly distributions,
as they relate to life history traits. Butterflies are highly sensitive to weather and climate, particularly
changes in temperature and rainfall [53]. For example, mean temperature of the coldest month
is related to the overwintering survival of first instar larvae, growing degree days above 5 ◦C are
regarded as a surrogate for the developmental threshold of the larvae, water balance corresponds to
the moisture availability for the larval host and adult nectar plants, and the mean temperature of late
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summer ensures proper adult emergence and mating [54–59]. Temperature changes affect all aspects of
butterfly life history, from their distribution and abundance [14,54], to their realized fecundity [60,61].
Changes in rainfall levels can influence butterfly larvae indirectly through changes in host plant quality,
and generally rainfall is considered to be beneficial because it enhances host plant growth [62].

One concern when modeling species distributions is whether the occurrence records are spatially
biased with respect to site accessibility (e.g., towns, roads, trails) [63]. To address this concern,
we applied a spatial filter to remove all sampling points that were within 5 km of each other using ESRI
ArcMap 10.0. The spatial filter resulted in 254 unique presence points for S. diana that were used in the
final model. We first modeled the distribution of these 254 occurrences in present-day climate, and then
projected the fitted species distribution under two future climate scenarios for the period 2040–2069
(hereafter referred to as 2050). Future climate scenarios were taken from two global circulation models
(GCMs) obtained from www.worldclim.org; the community climate system model (CCSM) [64] and
the model for interdisciplinary research on climate (MIROC) [65,66]. These GCMs differ in the
reconstruction of several climatic variables and are well known to produce different outcomes for
butterfly species [67,68]. For example, in hind-casting Mediterranean butterflies, the CCSM model
projects narrower distributions at the last glacial maximum than does MIROC [65,66]. For each of
these two GCMs, we considered two different representative concentration pathways (RCPs) [69–73],
which are cumulative measures of human emissions of greenhouse gases from all sources expressed
in Watts per square meter. These pathways were developed for the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change [67] and correspond to a total anthropogenic radiative
forcing of RCP = 4.5 W/m2 (low) and RCP = 8.5 W/m2 (high) [72,73].

We used Maxent’s default parameters [26,50] and a ten-fold cross-validation approach to further
reduce bias with respect to locality data. This method divides presence data into ten equal partitions,
with nine used to train the model, and the tenth used to test it. These partitions generate ten maps
(one map per run), with each raster grid cell containing a value representing the probability of
occurrence. These values were used to designate habitat suitability ranging from 0 (unsuitable habitat)
to 1 (highly suitable habitat) (Figure 1). We averaged the resulting maps for the current climate,
and for the two GCMs under RCP = 4.5 and RCP = 8.5. This method resulted in the production of
a “low” and “high” average prediction for S. diana species distribution in 2050, represented with
habitat suitability maps. We measured the goodness of fit for the models using the area under the
curve (AUC) of a receiver-operating characteristic (ROC) plot [74]. We used criteria of Swets [75] and
considered AUC values higher than 0.7 representative of model predictions significantly better than
random values of 0.5 or less [26,27,74]. Because AUC has been recognized as a somewhat questionable
measure of accuracy, especially when used with background data instead of true absences [74,76],
we also calculated the TSS (true skill statistics), a threshold-dependent evaluation metric [76,77].
The relative importance of each variable’s contribution was assessed by sequential variable removal by
Jackknife [26].

www.worldclim.org
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Table 1. Summary of Speyeria diana distributional data sources (adapted from Wells and Tonkyn 2014).

National Museums (N. American) Location No. of S. diana Range of Specimen Dates No. of Counties

Carnegie Museum of Natural History Pittsburgh, Pennsylvania 142 1889–2000 26

National Museum of Natural History Washington, DC 129 1907–2002 26

American Museum of Natural History New York, NY 104 1921–1985 28

The Field Museum Chicago, IL 98 1889–1995 23

California Academy of Sciences San Francisco, CA 88 1886–2000 12

Georgia Museum of Natural History Athens, GA 15 1935–1987 8

Cleveland Museum of Natural History Cleveland, Ohio 6 1921–1965 6

Denver Museum of Nature and Science Denver, Colorado 4 1939–1973 3

Mount Magazine State Park Paris, Arkansas 4 1997 1

National History Museums (European)

British Natural History Museum London, UK 31 1777–1989 17

Paris Muséum national d’Histoire naturelle Paris, France 8 1890 1

Oxford Museum of Natural History Oxford, UK 4 1937–1971 4

Zoölogisch Museum Amsterdam Amsterdam, The Netherlands 4 1884–1921 3

Naturalis Biodiversity Center Leiden, Netherlands 4

Royal Ontario Museum Ontario, Canada 3 1933–1968 3

University Collections

University of Florida Gainesville, Florida 409 1900–2007 43

University of Michigan East Lansing, Michigan 66 1909–1985 13

Clemson University Clemson, South Carolina 43 1926–1978 5

Peabody, Yale University New Haven, Connecticut 29 1904–1961 8

University of Missouri Columbia, Missouri 29 1886–1980 8

University of Wyoming Laramie, Wyoming 13 1955–1979 4

University of Arkansas, Little Rock Little Rock, Arkansas 12 2005–2007 5

University of California, Berkley Berkley, California 12 1926–1981 6

University of Nebraska Lincoln, Nebraska 14 1954–2003 7

North Carolina State University Raleigh, North Carolina 10 1904–1964 9
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Table 1. Cont.

National Museums (N. American) Location No. of S. diana Range of Specimen Dates No. of Counties

University Collections

University of Arkansas, Fayetteville Fayetteville, Arkansas 10 1977–1994 5

Virginia Polytechnic Inst Blacksburg, Virginia 8 1911–1977 1

Louisiana State University Baton Rouge, Louisiana 7 1984–1988 1

University of Wisconsin Madison, WI 5 1926–1951 2

College of Charleston Charleston, South Carolina 4 2008 2

West Virginia University Morgontown, West Virginia 3 1977–1995 2

Furman University Greenville, South Carolina 3 1929–1990 3

Dalton State College Dalton, Georgia 2 2001 1

State Agencies, online databases, listserves, individuals, and organizations

Field Surveys 469 1995–2012 46

Butterflies and Moths of America (BAMONA) 435 1938–2012 39

North Carolina 19th Approximation (http://149.168.1.196/nbnc/) 276 1938–2011 31

West Virginia Divisions of Natural Resources (wvdnr.gov) 204 1978–1999 11

Literature survey 153 1818–2011 54

Kentucky Dept. of Fish and Wildlife Resources (fw.ky.gov) 146 1936–2006 21

NABA annual count data (naba.org) 103 1999–2010 27

Georgia Dept. of Natural Resources (gadnr.org) 77 1994–2001 15

Global Biodiversity Information Facility (GBIF) 75 1974–2004 49

North Carolina Natural Heritage Program (nchp.org) 69 1989–2003 21

The Lepidopterists’ Society (lepsoc.org) 50 1973–2008 25

All Taxa Biodiversity Inventory (ATBI) (dlia.org/atbi) 46 1936–2007 4

Carolina Butterfly Society (CBS) 44 2001–2009 5

Carolinaleps 41 2007–2009 9

Washington Area Butterfly Club 29 2007 1

Oklahoma Leps 21 2005–2009 5

Insect.net 21 2007–2009 9

http://149.168.1.196/nbnc/
wvdnr.gov
fw.ky.gov
naba.org
gadnr.org
lepsoc.org
dlia.org/atbi
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Table 2. Summary of literature referencing the distribution of Speyeria diana (adapted from Wells and Tonkyn 2014).

Reference Location Date of Record(s) Description

Cramer & Stoll 1775 Jamestown, Virginia 1775 holotype; male described by Pieter Cramer

Blatchley 1859 Vanderburgh County, Indiana 1850s first record from Indiana, most northern record

Edwards 1864 Kanawha, West Virginia 20–31 August 1864 first description of female, took over 30 specimens

Edwards 1874 Coalburgh, West Virginia August, September 1873 description of rearing Argynnis larvae

Aaron 1877 Tennessee/North Carolina 1877 populations are ample along Blue Ridge

Kentucky 1877 locally abundant populations

Strecker 1878 1878 West Virginia, Georgia, Kentucky, Tennessee, Arkansas

Thomas 1878 Kentucky, Arkansas, southern Illinois 1878 common in Kentucky & Arkansas

Fisher 1881 Illinois 1880 present in southern Illinois

Holland 1883 Salem, North Carolina 1858–1861 described as “first pinned female specimen”

Edwards 1884 southern Ohio 1880s first description in Ohio

Hulst 1885 Waynesville, North Carolina 1882 locally abundant populations

Warren Springs, North Carolina 1882 very common along the French Broad River

Blatchley 1886 Evansville, Indiana early 1900s locally abundant populations

French 1886 eastern United States 1886 W. Virginia to Georgia, Southern Ohio to Illinois, Kentucky,
Tennessee, Arkansas

Hine 1887a, b Medina County, Ohio 9 August 1887 single worn male, northernmost record in OH

Kingsley 1888 Virginia 1887 Argynnis diana is described as the handsomest insect found in the
United States

Scudder 1889 southeast United States 1880s Semnopsyche diana; an inhabitant of hilly country of the south, 38th parallel
of latitude, taken as far west as Missouri and “Arkansaw”

Skinner & Aaron 1889 Pennsylvania 1880s stray individual found in Pennsylvania

Dixey 1890 eastern United States 1889 description of Argynnis diana wing spot pattern

Blatchley 1891 Illinois 1890s female specimen from northern Danville, IL

Skinner 1896 southern Illinois 1890s Diana specimens from southern Illinois are larger than those further east
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Table 2. Cont.

Reference Location Date of Record(s) Description

Holland 1898 southern United States 1890s
in two Virginias and Carolinas, northern Georgia, Tennessee, Kentucky,

occasionally in southern Ohio and Indiana, and in Missouri and Arkansas;
the most magnificent and splendid species of the genus

Snyder 1900 Clay County, Illinois 1900 northern limit of S. diana in Illinois

Strecker 1900 Missouri 1853 pair captured in copula, very early female

Maynard 1901 habitat is West Virginia to Georgia, southern Ohio to Illinois, Tennessee,
and Arkansas

Sell 1916 Greene County, Missouri 22 August 1900 southeast of Springfield

Smyth 1916 southeast United States 1880–1916 Asheville, Brevard, North Carolina, Caesar’s Head, South Carolina,
Montgomery, Washington and Giles Counties, Virginia

Wood 1916 Camp Craig, Virginia August 1914 describes female color variation

Murrill 1919 Virginia 1919 Poverty Valley

Holland 1931 1930s The Virginias and Carolinas, northern GA Tennessee, Kentucky, occasionally
in southern OH, Indiana, and in Missouri and Arkansas

Knobel 1931 Hope, Arkansas 1930 from Mrs. Louise Knobel

Kite 1934 Taney County, Missouri 31 July 1925 male and female reported

Clark 1937 Virginia 1930s ranges from Bath County, Virginia to FL east almost to tidewater, and west
to Illinois and Arkansas

Clark & Williams 1937 Virginia late 1800s–1935 Bath, Alleghany, Giles, Bland, Dickenson, Smyth, Patrick, Montgomery &
Washington Counties

Allen 1941 West Virginia 1940
Pocahontas County, west to Kanawha and Lincoln Counties; abundant in

Jefferson NF (Monroe County), Babcock State Park (Fayette County),
and Fork Creek Wildlife Management Area (Boone County)

Chermock 1942 Conestee Falls, North Carolina summer 1941
southern. Ohio and West Virginia, through the Appalachian mountains into
Georgia and South Carolina, most abundant in mountains south of Great

Smoky Mountains National Park
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Table 2. Cont.

Reference Location Date of Record(s) Description

Bock 1949 Cincinnati, Ohio 1947 author collects hundreds of specimens from North Carolina mountains;
gone from Indiana and Ohio

Clark & Clark 1951 Southern Illinois early 1900s

Chesterfield County, Virginia 1930 last known county record

Northampton County, Virginia 1930 last known county record

Klots 1951 Brevard, North Carolina 1950
in large numbers along roadsides; Chiefly in mountains and piedmont, W.

Virginia s. to Georgia, w. to southern Ohio, Indiana, Missouri,
and Arkansas

Mather & Mather 1958 Madison Parish, Louisiana 1958 record is a stray individual

Evans 1959 Smoky Mountains of Tennessee September 1957 identification of an unknown S. diana larva

Curtis & Boscoe 1962 Buncombe County, North Carolina 27 June 1962 collecting record near Asheville

Hovanitz 1963 Salem, Roanoke County, Virginia 13 June 1937 comprehensive distribution data

Ross & Lambremont 1963 Louisiana 1950s stray record from Mather & Mather 1958

Masters 1968 Newton County, Missouri 1960s locally very common

Masters & Masters 1969 Perry County, Indiana 15 July 1962 last record known from Indiana

Shull & Badger 1971 Indiana 1971 no longer resident in Indiana

Harris 1972 Georgia 1972 summarizes historic reports from White, Union, Fannin, Habersham,
Rabun Counties

Irwin & Downey 1973 Vermilion County, Illinois 20 August 1960 female, last known Illinois record

Southern Illinois 1880 Illinois natural history survey

Howe 1975 1950s extirpated from type locality, Jamestown

Kentucky, West Virginia 1970s species is scarce in Kentucky and West

Virginia

Georgia 1970s not uncommon in northern Georgia

Ceasar’s Head, South Carolina 1970s stable populations, not uncommon

Nelson 1979 Ozark plateau of Oklahoma 1969 only found in eastern counties
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Table 2. Cont.

Reference Location Date of Record(s) Description

Schowalter & Drees 1980 Poverty Hollow, Virginia 1973, 1978 field-captured and lab-reared S. diana gynandromorphs described in detail

Pyle 1981 eastern United States 1980s has decreased its range because of forest loss, common in the Great Smoky
Mountains

Hammond & McCorkle 1983 Virginia & Tennessee 1975–1978 Appalachian populations are expanding

Opler 1983 eastern United States 1980s some populations under decline

Opler & Krizek 1984 1950s extirpated from Virginia Piedmont and coast

1800s extirpated from Ohio River valley

Shuey et al. 1987 Cincinnati, Ohio 1900s–1930 eliminated by deforestation by early 1900s

Shull 1987 Indiana late 1800s occurs in mountains and piedmont of West Virginia south to Georgia, west
to southern Ohio, Indiana, Missouri, and Arkansas

Watson & Hyatt 1988 Tennessee 1980s resident species of northeastern Tennessee

Kohen 1989 Cumberland, Kentucky July 1984 aberrant male on milkweed

Cohen & Cohen 1991 Bath County, Virginia 1990 George Washington National Forest

Montgomery County, Virginia 1990 photograph of pair in copula

Krizek 1991 western Virginia 11 July 1991 males preferred nectar over horse manure

Adams 1992 Fannin County, Georgia 28 August 1992 female netted by Irving Finkelstein

Opler & Malikul 1992 eastern United States 1992 central Appalachians west to Ozarks, formerly Atlantic coastal plain of
Va., NC, and Ohio River Valley, rich forested valleys

Skillman & Heppner 1992 Coopers Creek WMA Georgia 10 June 1988 Gynandromorph specimen found in n. GA

Carlton & Nobles 1996 Arkansas, Missouri, Oklahoma 1819–1995 survey of Interior Highlands

Allen 1997 West Virginia 1997
ranges from Virginia and W. Virginia south to northern Georgia and

Alabama. A small population persists in Ozark Mountains of Arkansas
and Missouri

Ross 1997 Coweeta Forest, North Carolina 1990, 1996 classified as uncommon, 2–5 individuals sighted

Ross 1998 Mount Magazine, Arkansas 30 June 1993 photograph of male, locally abundant

Mount Magazine, Arkansas 20 August 1992 photograph of female, locally abundant
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Table 2. Cont.

Reference Location Date of Record(s) Description

Glassberg 1999 eastern United States 1999 formerly throughout Ohio River Valley and southeastern Virginia
and northwest N.C

Moran & Baldridge 2002 Arkansas, Missouri, Oklahoma 1997–1999 22 counties inhabited, Arkansas expanding

Scholtens 2004 Oconee County, South Carolina 2002 present in Sumter National Forest

Cech & Tudor 2005 2000s locally common in mountain colonies, s. W. Virginia to n. GA; also
e. AL/KY, Ozarks

Vaughan & Shepherd 2005 Red List species profile 2005

core of species distribution is in the southern Appalachians from
central Virgina and W. VA through the mountains to northern
Georgia and Alabama. Also in Ozarks of Missouri, Arkansas,

and eastern Oklahoma

Adams & Finkelstein 2006 Fannin County, Georgia 12 October 2006 lots of aggregating females flying late

Rudolph et al., 2006 Ouachita Mountains, Arkansas 1999–2005 feeding records by month sites

Spencer 2006 Arkansas 2006 uncommon to locally common in colonies Scattered throughout the
Interior Highlands Coastal Plain

Campbell et al., 2007 North Carolina 17 June 2004 at least four males visiting flowering sourwood

Ross 2008 Mount Magazine, Arkansas 2008 description of Mount Magazine State Park

Wells et al., 2010 Mount Magazine, Arkansas 2009 copulating pair photographed

Wells et al., 2011 Georgia, North Carolina, Tennessee 2009 females collected for rearing trial
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Table 3. Field-sampled Speyeria diana (2006–2009). Records are provided to the level of county. All voucher specimens are held at the Clemson University Arthropod
Collection (adapted from Wells and Tonkyn 2014).

State County Ecoregion # S. diana (m/f) Survey Dates

Arkansas Benton Ozark Plateau 7 (7/1) 12–14 June 2007, 22–23 June 2009
Carroll Ozark Plateau 9 (7/2) 15–16 June 2007, 23–24 June 2009
Boone Ozark Plateau 2 (2/0) 16 June 2007

Faulkner Arkansas River Valley 5 (5/0) 18–20 June 2006, 20 June 2007, 16 June 2008, 3–6 August 2009
Conway Arkansas River Valley 15 (11/4) 22 June 2007, 26 June 2008, 5 August 2009
Pulaski Arkansas River Valley 4 (2/2) 28 August 2009
Logan Arkansas River Valley 37 (29/8) 20–24 June 2006, 21–24 June 2007, 1–3 August 2009

Montgomery Ouachita Mountains 12 (7/5) 31 July 2008, 1–3 September 2009
Polk Ouachita Mountains 5 (1/4) 1–3 September 2009

Saline Ouachita Mountains 8 (7/1) 14 June 2008, 18 June 2009
Oklahoma Leflore Ouachita Mountains 3 (0/3) 30 August 2009

Georgia Fannin Blue Ridge Mountains 26 (17/9) 12–13 July & 1 August 2006, 12 July 2007, 22 June & 20 July 2008
Rabun Blue Ridge Mountains 8 (2/6) 7 September 2008, 29 August 2009
Union Blue Ridge Mountains 14 (6/8) 29 July 2007, 15 June & 5–7 August 2008,

North Carolina Ashe Blue Ridge Mountains 4 (4/0) 22–23 June 2007
Buncombe Blue Ridge Mountains 13 (8/5) 27 July 2006, 30 July 2007, 9 August 2008
McDowell Blue Ridge Mountains 15 (10/5) 9 September 2007, 24 June 2008, 30 June, 11 September 2009

Transylvania Blue Ridge Mountains 24 (19/5) 5 June 2006, 16 July & 5 September 2007, 14 June 2008, 26 June 2009
Watauga Blue Ridge Mountains 7 (5/2) 30 May & 9 June 2006, 25 July 2008, 19 September 2009

South Carolina Greenville Blue Ridge Escarpment 12 (7/5) 31 June 2006, 27–29 July 2007, 1 September 2008, 8–13 September 2009
Tennessee Blount Great Smoky Mountains 42 (33/9) 1–26 June 2007, 1–28 June & 20–29 August 2008, 1–15 September 2009

Sevier Great Smoky Mountains 33 (25/8) 1–26 June 2007, 26–29 June 2008, 5 June-26 September 2009
Carter Appalachian Mountains 57 (35/22) 5–9 June & 5–11 July 2006, 30–31 May 2007, 29–30 August 2008

Sullivan Appalachian Mountains 36 (25/11) 13–16 July 2006, 20–22 July 2007, 5 August, 18–20 September 2009
Virginia Montgomery Appalachian Mountains 21 (14/7) 3–7 July 2007, 2–4 July 2008
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Table 4. Elevation plus the 19 bioclimate variables from the WorldClim dataset (Hijmans et al., 2005) collapsed into groups of highly correlated variables (Pearson’s
correlation coefficient, r ≥ ±0.70), and their corresponding contribution to the Maxent model. The ten variables kept in the final model are bold and highlighted
in grey. The community climate system model (CCCM) and model for interdisciplinary research on climate (MIROC) global circulation models are shown under
representative concentration pathways (RCPs) 4.5 (low) and 8.5 (high), as predicted by the Intergovernmetnal Panel on Climate Change (IPCC) 5th report on climate.
AVG—average; AUC—area under curve.

Bioclimate Variables Abbreviation
% Contribution

CCCM-45 MIROC-45 AVG CCCM-85 MIROC-85 AVG
Annual Mean Temperature Bio 1 4.4 0.7 2.5 0.5 1.4 0.96

Max Temperature of Warmest Month Bio 5 0.6 1.7 1.2 1.4 0.8 1.1
Min Temperature of Coldest Month Bio 6 3.9 36.3 20.1 2.6 3.3 10.4

Mean Temperature of Wettest Quarter Bio 8 14.1 10.2 12.2 4.0 16.8 2.6
Mean Temperature of Driest Quarter Bio 9 15.5 5.1 10.3 30.2 19.8 25.0

Mean Temperature of Warmest Quarter Bio 10 0.5 0.8 0.7 0.1 0.3 0.2
Mean Temperature of Coldest Quarter Bio 11 0.8 12.5 11.9 3.3 1.5 2.4

Precipitation of Wettest Month Bio 13 3.7 0.2 3.5 2.0 5.8 3.9
Precipitation Seasonality Bio 15 6.0 3.7 4.9 8.7 2.7 5.6

Precipitation of Wettest Quarter Bio 16 0.8 0.6 0.7 0.2 0.9 0.6
Precipitation of Warmest Quarter Bio 18 1.1 0.3 1.0 1.9 1.0 1.5

Precipitation of Driest Month Bio 14 0.9 1.6 1.4 2.7 8.0 5.4
Precipitation of Driest Quarter Bio 17 4.2 2.3 3.3 2.2 2.6 2.4

Precipitation of Coldest Quarter Bio 19 0.1 0.2 0.2 0.2 1.7 0.9
Elevation Elev 2.0 1.0 1.5 4.9 2.0 3.5

Isothermality (BIO 2/BIO 7) (*100) Bio 3 11.0 3.5 7.3 8.5 6.6 7.6
Temperature Seasonality (standard deviation *100) Bio 4 6.4 1.0 3.7 0.0 4.2 2.1

Mean Diurnal Range (Mean of monthly (max
temp—min temp)) Bio 2 0.6 3.0 1.8 2.0 3.6 2.8

Temperature Annual Range (BIO 5–BIO 6) Bio 7 1.2 1.9 1.6 1.5 1.0 1.3
Annual Precipitation Bio 12 22.3 13.4 17.9 22.9 15.9 19.4

AUC 0.86 0.96 0.91 0.87 0.86 0.87
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Figure 1. The present-day geographic distribution of Speyeria diana, with indices of habitat suitability
as predicted by maximum entropy modelling (Maxent) under current climatic conditions (1950–2010).

3. Results

Species distributional modeling resulted in “excellent” model fits for Speyeria diana, with a mean
AUC = 0.91 ± 0.0028 SE, TSS = 0.87 ± 0.0032 SE for RCP = 4.5; and a mean AUC = 0.87 ± 0.0031 SE,
TSS = 0.84 ± 0.0032 SE for RCP = 8.5 (Table 1). Annual precipitation explained the largest fraction
of the distribution of S. diana under both RCPs (17.9%, RCP = 4.5; 19.4%, RCP = 8.5). Among the
remaining bioclimatic variables, mean temperature of driest quarter had the next highest average
percent contribution (10.3%, RCP = 4.5; 25.0%, RCP = 8.5), followed by minimum temperature of
coldest month (20.1%, RCP = 4.5; 10.4%, RCP = 8.5), isothermality (7.3%, RCP = 4.5; 7.6%, RCP = 8.5),
precipitation of wettest month (3.5%, RCP = 4.5; 3.9%, RCP = 8.5), precipitation of driest month
(1.4%, RCP = 4.5; 5.4%, RCP = 8.5), precipitation of driest quarter (3.3%, RCP = 4.5; 2.4%, RCP = 8.5),
Elev (1.5%, RCP = 4.5; 3.5%, RCP = 8.5), mean diurnal range (1.8%, RCP = 4.5; 2.8%, RCP = 8.5),
and temperature annual range (1.6%, RCP = 4.5; 1.3%, RCP = 8.5) (Table 1).

Modelling with Maxent under the selected climate-change scenarios predicted that habitat
suitability would decrease for S. diana by 2050 (two-tailed paired t-tests comparing current Maxent
values with those of 2050; all p < 0.01). The MIROC model resulted in more loss of suitable habitat
than CCSM under both RCP scenarios (88.2% versus 92.4% of suitable habitat retained for RCP 4.5,
and 90.2% versus 94.3% of suitable habitat retained for RCP 8.5 in CCSM and MIROC, respectively).
Both climate models indicate that the loss of core distributional area is modest, with an average of
91.3% of present distributional areas retained. The most drastic reduction in habitat is apparent across
the southern Appalachian Mountains (Figure 2).
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the community climate system model (CCMA) and model for interdisciplinary research on climate
(MIROC) representative concentration pathways (RCP) 4.5 climate change scenarios; (b) habitat
suitability indices for the projected future distribution of Speyeria diana under the CCMA and MIROC
RCP 8.5 climate change scenarios.

4. Discussion

Our ecological niche models predicted that the amount of suitable habitat for Speyeria diana will
decline substantially by the year 2050 across its entire distribution. Both CCSM and MIROC climate
models predicted severe habitat loss and fragmentation in the southern Appalachian Mountains
by 2050, with some range expansion predicted into higher latitudes in both eastern and western
populations. High elevation habitat will be an important refuge for the species across the entire
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distribution, as the range of S. diana is already shifting to higher elevations at an estimated rate of
18 m per decade [33]. Recent evidence further suggests that some S. diana populations may already be
adapting to high elevations, as S. diana female forewings from high elevation populations were found
to be narrower than low elevation populations, indicating that these females may be more mobile than
those from low elevations with wider forewings [35].

Unlike populations in the eastern distribution, the wing shape of western populations of S. diana
appears to be better adapted for lower dispersal, which is in alignment with findings that western
populations of S. diana are both spatially and genetically isolated [35]. Our models predicted that
the southern edge of the highly suitable habitat in the west will recede by 2050; However, as was
found in the southern Appalachian Mountains, the suitable habitat was predicted to expand in the
higher elevations of the Ozark and Ouachita mountains of Arkansas. The genetic isolation of western
populations may ultimately prevent them from adapting to higher elevations as successfully as
populations in the eastern distribution of the species. If this is the case, lower elevation populations
will be even more vulnerable to climate change than our models predict.

We would like to note that all ecological niche models should be used and interpreted with caution
because of various sources of bias and error that result in inaccurate predictions [78]. Some have
questioned the applicability of bioclimatic modeling at regional scales because of the somewhat
coarse resolution [79]. However, we are confident that the size of our study area, and our uniquely
extensive dataset, provide sufficient data to forecast climate-driven range shifts in S. diana with
accuracy. Both global circulation models (CCCM and MIROC) were very closely aligned in their
outcomes, indicating strong agreement between them. Climate is well understood to play a primary
role in shaping the distributions of species [80], and we are confident in our overall findings that the
suitable habitat for S. diana will decline and become increasingly fragmented by 2050.

5. Conclusions

These results highlight the importance of maintaining connectivity of the suitable habitat for
S. diana, especially in the eastern populations that appear most vulnerable to increased fragmentation
and loss of suitable habitat. These populations in the eastern distribution of S. diana harbor important
genetic diversity that may become lost through genetic drift if these populations become small and
isolated. The Ozark and Ouachita Mountains of Arkansas and Missouri appear to be least vulnerable to
loss of suitable habitat from climate change, and therefore will be important for the future conservation
of S. diana after 2050. As a result of the geographic and genetic isolation of the western populations,
conservation of suitable habitat in the west is equally as important as in the east. Our climate models
show that the 800-km disjunction across the center of the range of S. diana is not due to complete
absence of suitable habitat, but more probably a result of the extensive habitat fragmentation regionally
across the Ohio River Valley from agricultural land use change, and other human related factors that
were not included in our models. We conclude that maintaining well-connected low and high elevation
habitats across the entire distribution of S. diana, both now and into the future, will be necessary for
this species, even under conservative forecasts of climate change.
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