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Abstract: Climate change has caused many ecological changes around the world. Altered phenology
is among the most commonly observed effects of climate change, and the list of species interactions
affected by altered phenology is growing. Although many studies on altered phenology focus on
single species or on pairwise species interactions, most ecological communities are comprised of
numerous, ecologically similar species within trophic groups. Using a 12-year butterfly monitoring
citizen science data set, we aimed to assess the degree to which butterfly communities may be
changing over time. Specifically, we wanted to assess the degree to which phenological sensitivities
to temperature could affect temporal overlap among species within communities, independent of
changes in abundance, species richness, and evenness. We found that warming winter temperatures
may be associated with some butterfly species making use of the coldest months of the year to fly as
adults, thus changing temporal co-occurrence with other butterfly species. Our results suggest that
changing temperatures could cause immediate restructuring of communities without requiring
changes in overall abundance or diversity. Such changes could have fitness consequences for
individuals within trophic levels by altering competition for resources, as well as indirect effects
mediated by species interactions across trophic levels.
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1. Introduction

Climate change is affecting species globally through range shifts [1,2], species invasions [3,4],
extinctions [5,6], and altered phenology [3,7]. Altered phenology is among the most commonly
described ecological consequences to climate change, and altering phenology can have effects on
survival and reproduction. Phenological events are typically strongly influenced by certain abiotic
factors, such as temperature [8,9], precipitation [8,10], and photoperiod [8,11]. Moreover, more than
one of these factors may influence phenologies simultaneously. For example, the flowering phenology
of wildflowers in the Rocky Mountains is best explained by a combination of the date of bare ground
and soil temperature [12]. Each species within a community can have unique requirements to the
abiotic cues influencing phenology [13,14]. Thus, changes in abiotic cues could influence species within
a community differently, causing changes in the temporal overlap of species and affecting species
interactions [15,16]. Species interactions among insects with short flight seasons may be particularly
sensitive to changes in phenological mismatches. For example, small sweat bees (Halictidae) may only
fly for two to three weeks per season, and a phenological mismatch between the bee and a floral
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resource of just one day could cause an almost 10% reduction in the bee’s opportunity to forage before
nest provisioning begins [16].

Studies on the ecological consequences of climate change often focus on single species, or tend
to focus on pairwise species interactions at most [17–19]. However, most ecological systems are
comprised of a diverse suite of organisms, with ecologically similar species within trophic levels (e.g.,
the dozens of species of wild flowers or butterflies in a meadow). Recent studies are exploring how
multiple species are affected differently by the same shifts in abiotic factors [14,15,20–22]. However,
the emphasis of these studies tends to focus on there being differences or similarities among species
within a community, and tend not to focus on the specific community changes that happen as a
consequence of climate change. Understanding how suites of species respond to climate change in
concert and considering the potential ecological consequences of such changes is therefore a logical
next step in understanding how communities may respond to climate change over the coming decades.

Subtropical systems differ from temperate systems in that seasonality is less punctuated by
dramatic abiotic changes, and diverse communities are often present during all months of the year [23].
In many temperate systems, snowmelt signals the beginning of the growing season of most plants,
and soon after, the flight season of many insects. Within the flight season, there is a typical succession
of species. For example, spring beauties and glacier lilies are typically the first flowers to bloom after
the snow melts in the Rockies [12,24], and Aspen sunflowers are typically the last flowers standing
in the fall [24]. In such communities, there is very little opportunity for the early-season species to
overlap in time with the late-season species. In contrast, seasons in tropical and subtropical habitats
may be less clearly constrained, and some species can be present year-round or have more than
one flight per year [23,25]. Thus, subtropical systems offer the opportunity for more phenological
drift in either direction (earlier or later in the year), to the point where “early” and “late” season
species could find themselves being active simultaneously. Conventional wisdom tends to posit
that seasonal timing is more important in temperate regions. However, tropical and subtropical
habitats may be more open to fluid phenological windows than temperate regions due to the increased
effects of thermal change [26,27], and thus, tropical and subtropical regions may be more sensitive to
phenological asynchronies.

To investigate how species assemblages in a subtropical climate may be responding to a changing
climate, we analyzed a twelve-year (2005–2016) data set collected from four surveyed butterfly routes
within Walt Disney World® property, in Orange County, FL, USA. We predicted that the phenologies
of each species of butterfly would have unique responses to the abiotic environment, which would
compound to cause changes in butterfly community composition over time, even in the absence
of changes in butterfly species’ richness, evenness, or the population size of individual species.
Specifically, we hypothesized that the flights of the various species would shift relative to one another,
creating unique communities flying at any given time.

2. Materials and Methods

2.1. Study System

This study was conducted in the Wildlife Management and Conservation Area (WMCA) on
Walt Disney World Resort® property in Lake Buena Vista, Florida (Orange County) from 2004–2016.
The WMCA consists of approximately 3370 ha of privately accessed wetland and upland habitat, and is
designated as a permanent conservation area. Habitat types in the WMCA consisted of oak scrub, pine
flatwoods, and temperate hardwood forest. The study site is subtropical, with temperatures typically
ranging from −3 ◦C to 37 ◦C throughout the year (National Oceanic and Atmospheric Admiration
[NOAA] weather station KISSIMMEE 2 FL US #84625). We also obtained long-term temperature and
precipitation data collected at Orlando International Airport (MCO) from the Florida State University’s
Florida Climate Center (NOAA weather station #12815) to look at broad climate patterns in our area
over the past five decades. The hurricane season occurs from June through November, with some
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areas in the WMCA flooding during these months and remaining flooded for long periods of time.
Monthly average rainfall ranges from 19.18 cm at its peak in June during hurricane season to 3.76 cm
during the driest month of December (NOAA weather station KISSIMMEE 2 FL US #84625).

2.2. Sampling Design

We used a total of four designated butterfly monitoring sites (Routes A–D, Figure 1) in this study.
Routes were chosen based on proximity to access roads and to be representative of local habitat types.
Routes A and D were roadside habitats bordering patches of pine forest, scrub habitat, and wetland
habitat. Routes B and C were near roadways but ran within pine forest, scrub, and wetland habitats.
Routes ranged in length from 0.64 km to 1.12 km, and the average distance between routes was 0.64 km
(Arc GIS 10, Esri, Redlands, CA, USA).
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Figure 1. Site map of the study area within Walt Disney World Resort®’s Wildlife Management and
Conservation Area, showing the four sampling routes used throughout this study.

We sampled each route monthly between 1000–1200 or 1400–1600 hr, and on days with less than
50% cloud cover and light to moderate wind using the non-invasive method developed by Pollard
(1975, 1977). Routes were walked by an observer at a slow and uniform pace, observing and recording
all butterflies sighted ahead and to the sides of the observer to a maximum distance of 5 m. Each survey
of a single route on a single day (hereafter referred to as a “bout”) was surveyed by teams consisting
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of a trained observer, plus zero to two additional participants to assist with data collection and insect
identification. Butterflies were assumed to be absent from overgrown areas that were unable to be seen,
such as tall willows running along a route [28,29]. Estimates of wind speed and percent cloud cover
were recorded at the beginning of each sampling bout. Sample bouts were canceled or rescheduled in
the case of rain or cloud cover greater than 50%. The start and stop times of each sample bout were
recorded and used to determine sampling effort (in minutes). Sampling was paused to chase, capture,
and identify fast-moving or elusive individuals as needed. Unidentifiable butterflies were recorded as
“unidentified” along with the lowest taxonomic resolution possible (e.g., “unidentified skipper”).

2.3. Analyses

Weather data: Using long-term data collected at Orlando International Airport, we calculated
the thermal sum for each year by totaling the mean temperature for each day in each calendar year.
We also approximated the incidence of frost by determining the number of days per year where the
temperature dropped below freezing 0 ◦C. Although frost is more complex than simply falling below
zero [24], freezing temperatures can be an adequate proxy. To determine if either the maximum thermal
sum or total number of frost days increased over time, we used simple linear regression with the
appropriate response variable as a function of year.

Community composition: To determine how butterfly community composition changed over a
twelve-year time span, we calculated the total abundance, species richness, and evenness (calculated
as Evar, [30]). Evar ranges from 0 to 1, with 0 representing minimum evenness and 1 representing
maximum evenness [30]. We then tested whether these metrics of community composition varied
as a function of year using simple linear regression, as log+1 transformed abundance to fulfill the
assumptions of the model. We then used non-metric multidimensional scaling (NMDS), using the
Bray-Curtis dissimilarity index, to visualize the butterfly communities. NMDS was performed using
the vegan package [31] in R version 3.0.3 [32]. Stress values from models with two to eight dimensions
were compared to determine the most appropriate summary of the butterfly community.

To determine how community composition varied over the course of each sampling season,
we used general linear mixed models. We used corrected Akaike’s Information Criterion (AICc) values
to rank and compare multiple a priori hypotheses and pick the model best supported by the data.
The candidate models included the day of the year, lag precipitation (total precipitation in the 60 days
prior to the sampling bout), fixed effects and sampling effort (in minutes), sample route (A–D), wind
(ranked 1–5, see Section 2.2), cloud cover (as a percent), and temperature at the start of the sample
bout (◦C) as random effects. We used the lmer function in the lme4 package to construct the models,
and the aictab function in the AICcmodavg package to rank and compare models using R version
3.0.3 [32–34]. We used type III sums of squares and the Satterthwaite approximation of degrees of
freedom to calculate F and P values using the lmerTest package [35], and estimated the R2 values using
the sem.model.fits function in the piecewiseSEM package [36,37]. Continuous explanatory variables
were rescaled prior to analysis using the rescale function in the scales package [38]. Separate analyses
were then performed for each year.

We expected that relatively warm temperatures would spread butterfly activity over a longer
period of time, meaning that warm years would be less seasonal than colder years. To test this
hypothesis, we used the quadratic term for the day of the year from the aforementioned linear mixed
models, and tested whether it varied as a function of annual thermal sum. Likewise, we expected that
the seasonal community composition would have a lower predictability (R2 values) in the warmer
years. To test this hypothesis, we used the R2 values from the aforementioned linear models and tested
whether it varied as a function of the annual thermal sum.

3. Results

Across 12 years and 4 transects, we conducted 510 sampling bouts with 83 citizen scientists (28 as
primary observers, and 55 as participants). Individual citizen scientists conducted anywhere from 1
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to 136 sampling bouts (mean = 8.6 bouts per participant). Throughout the study period, 74 species
of butterflies were identified, which represents approximately 37% of butterfly species in Florida,
and approximately 10% of North American butterflies north of Mexico. Collectively, these insects
belonged to 49 genera from 6 families (Table S1). The most commonly sighted butterflies were
the white peacock (Anartia jatrophae), fiery skipper (Hylephila phyleus), and palamedes swallowtail
(Papilio palamedes) (27.7%, 7.6%, and 7.0% of sightings, respectively). We observed 6 species represented
by a single individual. 1.1% of the observations were recorded as “unidentified”. We observed 50%
of the documented species after just 27 of the sample bouts, and 100% of the species after 299 bouts
(i.e., no new species were observed in the final 211 sample bouts). Species accumulation and rarefaction
curves of the sampling data (Figures S1 and S2, respectively) revealed a saturating function, suggesting
that our efforts adequately characterized the butterfly fauna of the WMCA, and that continued
sampling will record new, rarer species at a low rate, if at all.

Weather data obtained from the Florida State University Climate Center (“Downloadable Data”,
2017) revealed that the annual thermal sum in central Florida has been increasing since data collection
began in 1964 (Figure 2, R2 = 0.35, F1, 48 = 27.46, p < 0.0001). Likewise, the annual thermal sum
increased over the 12 sampling years used in the present study (Figure 3, R2 = 0.39, F1, 9 = 7.42, p = 0.02).
In analyses presented in the main manuscript, 2010, the infamous “polar vortex” year, was removed
from the dataset as an extreme and influential outlier. When 2010 is included, the results are
quantitatively, but not qualitatively, different (i.e., parameter estimates change but our interpretation
of the data does not), but meeting the assumptions of the models was more challenging. Analyses with
2010 included are available in the supplementary materials. Similarly, the number of days with
freezing temperature has been decreasing over the time since data collection began in 1964 (Figure 4,
R2 = 0.11, F1, 47 = 6.71, p < 0.013). Prior to 1984, there were no documented years where temperatures
dropped below freezing, but since 2004 there are as many years without frost as there are with freezing
temperature (Figure 4, Figure S4).
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Figure 2. Long-term thermal sum trend. The total amount of heat experienced by organisms in Central
Florida is increasing over time. The thermal sum (in degree days, ◦Cd) was calculated by totaling the
mean temperature for each day within each year, and a best-fit line was added (solid black) using
simple linear regression. The red dotted line was added using locally estimated scatterplot smoothing
(LOESS) with a span of 1 for visualization purposes.
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Figure 4. Frost events over time. The number of days per year where the temperature drops below
freezing (0 ◦C) is decreasing over time in Central Florida. Data was obtained from the Florida Climate
Center’s website, collected at the Orlando International Airport from 1964 through 2016. This figure
excludes 2010, an extreme outlier with 13 days below freezing, due the “polar vortex”. The pattern is
similar, though not significant when 2010 is included in the analysis. The red dotted line was added
using LOESS with a span of 2 for visualization purposes due to violations of the assumptions of simple
linear regression.
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Butterfly abundance and evenness did not vary as a function of year during our sampling
(Figure 5A,B, R2 = 0.002, F1, 480 = 0.0002, p = 0.99 and R2 = 0.002, F1, 480 = 0.01, p = 0.91, respectively).
We did, however, find a weak but significant decrease in species richness over time (Figure 5C,
R2 = 0.007, F1, 480 = 4.21, p = 0.041). NMDS indicated a high degree of overlap in butterfly community
composition among sample routes (Figure 6), although no route fell completely within the others,
indicating that each route had at least one unique community at some point during data collection.
The overall stress for the two dimensional model visualized in Figure S5 was 31.47, which is higher
than is desirable [39]; however, the results of a four-dimensional model did not differ qualitatively,
and yielded an acceptable stress value of 18.01.

The best-fit model for explaining community composition included the day of the year and day
of the year2 as fixed effects, and route as a random effect (Tables 1 and 2). The next-best model was
identical but included lag precipitation, although precipitation appears to be a pretending variable,
and this model was therefore discarded (Table 1). When analyzed separately for each year (Figure 7),
the day of the year was a strong predictor of community composition (NMDS 1) for every year
tested except two. Furthermore, the quadratic terms of the regression models and the R2 varied as a
function of annual thermal sum (Figure 8, R2 = 0.31, F1, 10 = 5.95, p = 0.035 and R2 = 0.69, F1, 10 = 25.58,
p < 0.0005, respectively). Prior to performing the mixed models, we calculated Moran’s I as a measure
of spatial autocorrelation and determined that the data are spatially autocorrelated (observed = −0.079,
expected = −0.002, p < 0.0001).
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Figure 5. Community trends over time. Simple linear regressions showing that the overall abundance
and evenness (Evar) did not change over the 12 years of sampling (A and B, respectively). However,
there was a weak negative relationship between species richness and sample year (C). Jitter was used
on x axis values to make overlapping points more visible.
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Figure 7. Butterfly community composition (summarized by the first non-metric multidimensional
scaling axis) varied over the course of the year, as well as among years. As winter temperatures
become more suitable for butterfly activity, the flight season of individual species are spreading out to
take advantage of the colder months. As a result, butterfly communities are becoming less seasonal,
and broad patterns of community composition are responding less strongly to the day of year as a
predictor, as seen here by the flattening of the quadratic regression lines in warmer years, and roughly
as the years of sampling progress. Each color represents a different sampling year, and the order follows
the colors of the rainbow (i.e., 2005 is red and 2016 is purple). Notice that 2010 was a particularly
cold year, and the regression line has a pronounced arch, similar to curves from earlier in the data
collection, such as 2005. Conversely, 2012 and 2013 were warmer years, and have relatively little change
in community composition over the course of the year. Individual points represent all sampling bouts,
unseparated by year.
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Figure 8. Thermal sum moderates the fit and predictability of seasonality models. Simple linear
regressions showing how terms from the linear model vary as a function of thermal sum. In warmer
years (i.e., years with greater thermal sum values), butterfly communities are more homogenous and
less seasonal; thus, the community composition data vary less as a function of day of the year, here
by the quadratic term (A) and R2 (B) from annual polynomial regressions of community composition
(NMDS) as a function of day of the year.

Table 1. AICc table for fixed effects.

Model K AICc ∆AICc wi cwi Log L

doy + doy2 4 −162.46 0 0.73 0.73 85.27
doy + precipitation + doy2 5 −160.43 2.03 0.27 1 85.28

Precipitation × doy2 4 −95.4 67.06 0 1 51.74
Precipitation 3 −75.01 87.45 0 1 40.53

doy 4 −73.88 88.58 0 1 40.98
doy2 3 −70.71 91.76 0 1 38.38

precipitation + precipitation2 3 −56.8 105.66 0 1 31.43

Table comparing the fixed effects of a priori models of butterfly community composition (NMDS 1). K = number
of parameters in the model, wi = Akaike weights, cwi = cumulative Akaike weights, and log L = log likelihood.
Model parameters: “doy” is the day of year, and “precipitation” is the total precipitation in the 60 days prior to the
sample bout. Fixed effect model structure was determined first, and random effect model structure was determined
afterward (Table 2). Parameter estimates for the best fit model are found in the Results.
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Table 2. AICc table for models with fixed and random effects.

Model K AICc ∆AICc wi cwi log L

route 5 −378.46 0 0.54 0.54 194.29
effort + route 6 −376.42 2.04 0.19 0.74 194.3

route + temperature 6 −376.41 2.05 0.19 0.93 194.29
effort + route + temperature 7 −374.36 4.1 0.07 1 194.3

effort 5 −148.75 229.71 0 1 79.44
effort + temperature 6 −146.7 231.77 0 1 79.44

temperature 5 −145.55 232.91 0 1 77.84

Table comparing the random effects of a priori models of butterfly community composition (NMDS 1) using a
constant set of fixed effects, previously chosen to be the best-fit model (Table 1). K = number of parameters in the
model, wi = Akaike weights, cwi = cumulative Akaike weights, and log L = log likelihood. Model parameters:
“route” is the sample route (A through D), “effort” = duration of the sampling bout in minutes, and “temperature”
is the temperature at the beginning of the sample bout in ◦C. The fixed-effect model structure was determined first,
and the random-effect model structure was determined afterward. Parameter estimates for the best-fit model are
found in the Results.

4. Discussion

The twelve years of data included in the present analyses succeeded in capturing natural
annual variation in the abiotic environment and its impact on a butterfly community. We found
that temperature (thermal sum) impacted the phenologies of butterflies in our study system, but that
the phenological sensitivities to temperature varied among species. This gradient of thermal sensitivity
caused a lull in butterfly activity mid-winter in cold years, resulting in a later flight season for some
early species and greater overlap with later-season species. For example, the common buckeye (Junonia
coenia), which overwinters as an adult and is strongly polyphenic, was relatively common throughout
the year regardless of temperature, and observations of the gulf fritillary (Agraulis vanillae), a migratory
species, were similarly less sensitive to colder temperatures. Likewise, the phaon crescent (Phyciodes
phaon) tends to be an opportunistic breeder as long as favorable conditions allow. On the other hand,
Henry’s elfin (Callophrys henrici), which overwinters as a pupa and has a single spring flight, was slower
to emerge in colder years. Similarly, the zebra longwing (Heliconius charithonia), a subtropical species
and more sensitive to frost, was reported later in our surveys in colder years.

The observed changes in community composition were driven entirely by relative changes in
phenologies, suggesting that climate change will have immediate impacts on butterfly communities
through changes in temporal co-occurrence patterns. Specifically, community composition differed
the most between mid-summer and either early or late season in the colder years, and the warmer
years were dramatically less seasonal. In addition to patterns driven by developmental sensitivities to
temperature, frost sensitivity could also play a role. Although a trend of fewer frost events over time
was not captured in our study period, longer-term data from our area suggests that hard frosts are
becoming less frequent, a trend that is expected to continue due to climate change [40,41]. Our study
therefore suggests that butterfly community composition will continue to change over time as the
climate warms, even in the absence of overall changes in species richness and evenness.

Our results support observations that butterfly emergence is advancing over time, likely due
to climate change [42]. Our results also support findings that winter and spring temperatures affect
species phenologies in unique ways [15,43], which may have driven the observed changes in temporal
overlap in the present study. Our study is notable, however, in that standard descriptors of community
composition, such as abundance, evenness, and species richness, did not vary over time. Our study
is also unique in showing how regions without strongly demarcated seasons (e.g., sub-tropical and
tropical areas) may be more sensitive than temperate areas, because species can drift forward or
backward. For example, warm winters could cause late-season species to persist longer into the year,
and early-season species to emerge earlier, to the point that they could overlap in time. One caveat that
should be acknowledged, however, is that the four sites are close in proximity to one another, and in
some cases are within the foraging range of many of the sampled species. Thus, our design suffers



Insects 2018, 9, 174 11 of 13

from spatial autocorrelation. We have controlled for spatial autocorrection with appropriate mixed
models, but our inference space could be limited as a result. Nonetheless, the observed patterns are
logical, and we are confident in our interpretation of the data.

Despite the numerous studies documenting emerging phenological mismatches as a response
to climate change [44], few studies focus on communities of ecologically similar taxa within trophic
levels. However, most ecological systems are composed of such communities, and species rarely
interact in an isolated pair-wise fashion. Thus, the effects of factors affecting whole communities
should not be overlooked. The types of changes in community composition demonstrated in this
study could have fitness consequences on both the insects and the plants that they visit. Butterflies and
other flower-visiting insects play a critical role in the ecosystem function as pollinators, and changes
in pollinator community composition can affect plant–pollinator interactions, competition for floral
resources, pollinator visitation patterns, and plant reproduction.

5. Conclusions

Our results suggest that climate change is already affecting ecological communities, and in ways
that may go undetected when only looking at abundance, richness, and evenness. We found that
butterfly communities were responding in more subtle ways, with the slight drifting of species specific
phenologies compounding into different communities being present through the season. Such changes
could have fitness consequences by altering competition for resources, as well as indirect effects
mediated by species interactions across trophic levels. We therefore recommend that community
ecology focused on climate change use long-term research whenever possible, and that experimental
designs be created that capture as much within-season variation in addition to interannual variation.
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