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Abstract: Exercising with elevated core temperatures may negatively affect autonomic nervous
system (ANS) function. Additionally, longer training duration under higher core temperatures
may augment these negative effects. This study evaluated the relationship between exercise
training duration and 24 h ANS recovery and function at ≥37 ◦C, ≥38 ◦C and ≥39 ◦C core
temperature thresholds in a sample of male Division I (D1) collegiate American football athletes.
Fifty athletes were followed over their 25-week season. Using armband monitors (Warfighter
MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA), core temperature (◦C) and 24 h post-
exercise baseline heart rate (HR), HR recovery and heart rate variability (HRV) were measured. For
HRV, two time-domain indices were measured: the root mean square of the standard deviation of
the NN interval (rMSSD) and the standard deviation of the NN interval (SDNN). Linear regression
models were performed to evaluate the associations between exercise training duration and ANS
recovery (baseline HR and HRV) and function (HR recovery) at ≥37 ◦C, ≥38 ◦C and ≥39 ◦C
core temperature thresholds. On average, the athletes were 21.3 (± 1.4) years old, weighed 103.0
(±20.2) kg and had a body fat percentage of 15.4% (±7.8%, 3.0% to 36.0%). The duration of training
sessions was, on average, 161.1 (±40.6) min and they ranged from 90.1 to 339.6 min. Statistically
significant associations between training duration and 24 h ANS recovery and function were
observed at both the ≥38.0 ◦C (baseline HR: β = 0.10 ± 0.02, R2 = 0.26, p < 0.0000; HR recovery:
β = −0.06 ± 0.02, R2 = 0.21, p = 0.0002; rMSSD: β = −0.11 ± 0.02, R2 = 0.24, p < 0.0000; and SDNN:
β = −0.16 ± 0.04, R2 = 0.22, p < 0.0000) and ≥39.0 ◦C thresholds (β = 0.39 ± 0.05, R2 = 0.62,
p < 0.0000; HR recovery: β = −0.26 ± 0.04, R2 = 0.52, p < 0.0000; rMSSD: β = −0.37 ± 0.05,
R2 = 0.58, p < 0.0000; and SDNN: β = −0.67 ± 0.09, R2 = 0.59, p < 0.0000). With increasing
core temperatures, increases in slope steepness and strengths of the associations were observed,
indicating accelerated ANS deterioration. These findings demonstrate that exercise training under
elevated core temperatures (≥38 ◦C) may negatively influence ANS recovery and function 24 h
post exercise and progressively worsen.
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1. Introduction

Achieving peak sport performance relies on optimal functioning of the autonomic
nervous system (ANS) [1,2]. The ANS plays an integral role in thermoregulation, a process
that provides homeostatic control of core body temperatures, typically between 36.1 ◦C
and 37.8 ◦C [3]. During exercise, core temperature increases as skeletal muscle metabolism
quickly accelerates heat production [4]. Slight elevations in core temperature improve
energy efficiency and performance due to increased enzymatic activity and O2 diffusion into
skeletal muscle [4]. As core temperature rises, the ANS thermoregulates via evaporation,
the primary method for controlling internal temperature during exercise [4]. To dissipate
heat, the peripheral vasculature vasodilates, shunting the blood away from the working
skeletal muscles to the skin, activating the sweat glands [4]. Subsequently, the body starts to
sweat, inducing heat loss [4]. However, any perturbations inhibiting evaporation like high
external heat, dehydration, high humidity and restrictive clothing may further increase
core temperature [5–7]. A persisting increase in core temperature indicates the inability of
the ANS to adequately thermoregulate, potentially leading to ANS deterioration.

Several studies previously evaluated the negative effects of high heat exposure dur-
ing exercise training among athletes [8–10]. Collectively, these studies demonstrated that
athletes, when training in high heat, may experience reductions in cardiac output, in-
creased carbohydrate metabolism, glycogen depletion, dehydration, an accelerated decline
in performance and increased risk of exertional heat illnesses (EHIs) like heat exhaustion
(38.5 ◦C–39.9 ◦C) and/or heat stroke (≥40.0 ◦C) [8–10]. While these acute effects are signif-
icant, it is possible that disturbances to ANS recovery and function occur prior to these
observable effects and persist the following day. Importantly, to our knowledge, no studies
have previously evaluated the potential longer-term influence of training in high heat on
24 h ANS recovery and function. Additionally, while duration of training undoubtedly
influences the severity of effects consequent to training in high heat, former studies did not
evaluate the relationship between training duration and 24 h ANS recovery and function
under specific core temperature thresholds. As such, there is a significant gap in knowledge
on whether ANS dysfunction persists beyond the immediate post-training period and
if prolonged training duration at sub-hyperthermic and hyperthermic levels influences
ANS recovery and function. Lastly, a vast majority of previous studies were conducted for
endurance-based sports, like long-distance cycling and marathon running; thus, much less
is known for non-endurance-based sports like American collegiate football [11,12].

Understanding the potential longer-term effects of heat exposure among American
collegiate football athletes is an imminent concern because these athletes are at a higher
risk of heat injury [13–15]. The increased risk is due to several factors including prolonged,
consecutive training sessions (e.g., 2 to 4 h), the inclusion of high-intensity activities and
wearing heat-intolerant clothing/equipment [6,16,17]. Knowing the functional limits of
the ANS to heat exposure may allow coaches to structure training programs more effec-
tively in hot and humid climates (≥32.2 ◦C and ≥30% relative humidity) to prevent ANS
dysfunction and optimize sports performance. Therefore, the purpose of this study was to
evaluate the influence of varying core temperatures on the relationship between training
duration and 24 h ANS function throughout a 25-week collegiate football season. We
hypothesized that prolonged training sessions under sub-hyperthermic and hyperthermic
core temperatures would negatively influence 24 h ANS recovery and function.
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2. Materials and Methods
2.1. Study Design

The current study employed a prospective cohort design that tracked ANS recovery
and function 24 h post-exercise training sessions over a 25-week season in a sample of male
Division I collegiate American football athletes. Indicators of ANS recovery and function
were baseline heart rate (HR), HR recovery and heart rate variability (HRV).

2.2. Subjects

Male subjects were recruited from the current year’s roster of a D1 collegiate American
football team located in southeast Florida, United States. Fifty healthy, male football
athletes participated in this study and, on average, were 21.3 (±1.4) years old, weighed
103.0 (±20.2) kg, were 187.5 (±6.6) cm tall, 70.0% non-Hispanic black, 20.0% Caucasian, and
10.0% Hispanic. The anthropometric profiles of the athletes varied widely with body mass
indices and percent body fat ranging from 23.7 kg/m2 to 44.9 kg/m2 and 3.0% to 36.0%,
respectively. Prior to study participation, the athletes were informed of the benefits and
risks of the study and voluntarily consented to the study. Informed consent was obtained
from all subjects involved in the study. All study protocols followed the ethical principles
defined in the Declaration of Helsinki and were approved by the university’s Institutional
Review Board (IRB #20191223).

2.3. Procedures
2.3.1. Exercise Training Sessions

Fifty collegiate American football athletes participated during their 27-week season
consisting of two 4-week summer camps, each separated by a week of rest, one 4-week pre-
season camp and a 13-week in-season (see Figure 1). The exercise training sessions lasted,
on average, 161.1 (±40.6) min and ranged from 90.1 to 339.6 min. Although the intensity and
exercises performed varied within and between training sessions, all athletes were exposed
to the same training. All training occurred during football practices and incorporated
strength- and power-focused resistive exercises, short-distance sprint intervals, aerobic
training and agility training.
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Figure 1. Prospective study design for exercise training sessions and measurement days.

2.3.2. Measurements

Participants wore armband monitors equipped with temperature and electrocardiography
(ECG) capabilities (Warfighter Monitor (WFM), Tiger Tech Solutions Inc., Miami, FL, USA). The
WFM was previously validated in many subpopulations, including athletes [18–21]. Monitors
were secured with an elastic band placed on the upper left arm and worn throughout
exercise training sessions. Core temperature, HR, HRV and duration were all measured
using the WFM and are described in further detail below.

2.3.3. Core Temperature

Core body temperature was derived from temperature sensors on the WFM. The tem-
perature sensors on the WFM are medical-grade infrared temperature sensors which have
been calibrated to core body temperature across thousands of subjects in a hospital setting
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utilizing health monitors and Swan–Ganz catheters as the gold standard measure [22,23].
Core temperature was measured throughout the duration of each training session.

2.3.4. 24 h ANS Recovery and Function

The current study used cardiac-based metrics to represent ANS recovery and function
given that cardiac activity is a strong indicator of ANS activity. The release of acetylcholine
and epinephrine from cardiac nerve fibers controls the firing rate of the sinoatrial (SA) node
affecting cardiac activity. Thus, cardiac metrics like baseline HR, HR recovery and heart rate
variability (HRV) provide accurate information on the interaction between parasympathetic
and sympathetic nervous systems, the two branches of the ANS.

2.3.5. Baseline HR

Baseline HR represented ANS recovery and was measured in the morning (0600–0700),
prior to the start of a football training session and 24 h after the start of the previous
day’s training session. Baseline HR was obtained following at least 4 min of inactivity, per
established protocols [24]. During this measurement, athletes remained seated and nearly
motionless for 5 min to collect a “resting” baseline HR.

2.3.6. HR Recovery

HR recovery was measured throughout the next day’s football training session, 24 h
following the previous day’s training session. HR recovery was defined as the reduction
in HR during 30 s rest intervals and represented localized parasympathetic activation.
HR recovery was measured within the first 30 s of the rest interval, as during this period
HR exhibits the greatest rate of change following an acute bout of exercise [25]. HR
recovery was estimated during all rest intervals occurring within a training session and
then averaged.

2.3.7. HRV

Like baseline HR, HRV was measured in the morning (0600–0700), prior to the start
of a football training session and 24 h after the start of the previous day’s training session.
Per established protocols [24], HRV was obtained following at least 4 min of inactivity.
Two HRV time-domain indices were measured which assessed the changes in the inter-beat
interval including RR and NN intervals. RR intervals were the time between R waves on
consecutive QRS complexes and NN intervals were noise-free RR intervals. From these data,
the two separate time-domain indices were derived including SDNN (standard deviation
of the NN interval) and RMSSD (the root mean square of the standard deviation of the NN
interval). These HRV time-domain indices have been shown to reflect parasympathetic
autonomic output [26].

Because the current study focused on ANS recovery and function 24 h post-exercise
training, baseline HR, HR recovery and HRV were not measured following one or more rest
days. For example, baseline HR, HR recovery and HRV were not measured on Mondays
during summer training camps as this day was preceded by two rest days (Saturday and
Sunday). The inclusion of rest days in the analyses would likely weaken the associations
and, thus, less accurately estimate the acute impact of exercise training duration and core
temperature on short-term ANS recovery and function (see Figure 1).

2.4. Statistical Analysis

The current study evaluated the relationships between acute exercise training duration,
varying core temperature thresholds and the influence on ANS recovery and function within
24 h post exercise. The primary independent variables were exercise training duration
(in minutes) and core temperature (◦C). The measures of ANS recovery and function
including 24 h HR, HR recovery and HRV, specifically SDNN and rMSSD, served as the
primary outcome variables. The relationships between exercise training duration and ANS
recovery and function were stratified by data-driven core temperature thresholds: ≥37 ◦C,
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≥38 ◦C and ≥39 ◦C. All conditional associations exhibited a normal distribution, evaluated
via the Kolmogorov–Smirnov test. The relationships of interest were estimated using linear
regression models and were performed separately for each core temperature threshold and
outcome variable. For all models, β coefficients and standard errors were estimated, and
the a priori threshold for statistical significance was set at α = 0.05. Statistical analyses were
performed in MATLAB, version 2021b (MathWorks, Natick, MA, USA).

3. Results

The duration of training sessions under specific temperature thresholds and the ath-
letes’ 24 h ANS recovery and function are presented in Table 1. The average duration of
training sessions was 161.1 (±40.6) min. The average time athletes spent in each temper-
ature threshold decreased with increasing temperature from 30.4 (±35.9) min at a core
temperature ≥ 37 ◦C to 10.5 (±12.9) min at a core temperature ≥ 39 ◦C. For 24 h ANS
recovery, the athletes, on average, exhibited a baseline HR of 61.4 (±8.6) bpm, ranging be-
tween 44.8 and 118.2 bpm. Following acute bouts of exercise performed 24 h post training,
the athletes exhibited HR recovery values of 30.6 (±6.0) bpm, ranging between 11.2 and
49.6 bpm, during 30 s rest intervals. For HRV post 24 h, athletes exhibited, on average,
rMSSD values of 72.0 ms (SD ± 7.0, range: 55.4 to 93.2) and SDNN values of 106.7 ms
(SD ± 107.6, range: 81.1 to 141.8).

Table 1. Duration of acute exercise training sessions, time spent in temperature thresholds and 24 h
ANS recovery and function.

Mean (SD) Median (Min, Max)

No. of Training Sessions 128 -----

Duration of Sessions (min) 161.1 (40.6) 157.1 (90.1, 339.6)

Duration (min) Under
Temperature Thresholds

≥37 ◦C 30.4 (35.9) 18.0 (0.0, 121.5)

≥38 ◦C 19.5 (21.5) 15.0 (0.0, 81.0)

≥39 ◦C 10.5 (12.9) 2.8 (0.0, 40.5)

24 h ANS Recovery and
Function

Baseline HR (bpm) 61.4 (8.6) 60.1 (44.8, 118.2)

30 s HR Recovery (bpm) 30.6 (6.0) 31.0 (11.2, 49.6

rMSSD (ms) 72.0 (7.0) 72.5 (55.4, 93.2)

SDNN (ms) 106.7 (12.2) 107.6 (81.1, 141.8)

Adjusted linear regression and correlation coefficients estimating the relationships
between exercise training duration under specific core temperature thresholds and 24 h
ANS recovery and function are shown in Table 2. For baseline HR, statistically signifi-
cant associations with 24 h recovery were observed for two of the three core temperature
thresholds including ≥38.0 ◦C (β = 0.10 ± 0.02, R2 = 0.26, p < 0.0000) and ≥39.0 ◦C
(β = 0.39 ± 0.05, R2 = 0.62, p < 0.0000). Similar associations were observed for 24 h
ANS function including ≥38.0 ◦C (β = −0.06 ± 0.02, R2 = 0.21, p < 0.0002) and 39.0 ◦C
(β = −0.26 ± 0.04, R2 = 0.52, p < 0.0000). At higher core temperature thresholds, specifically
≥38.0 ◦C and 39.0 ◦C, duration of training sessions was positively and negatively associ-
ated with 24 h baseline HR and HR recovery, respectively. Moreover, the strengths of the
associations between duration and ANS recovery and function increased with increases
in core temperature, ≥38.0 ◦C and ≥39.0 ◦C bpm (baseline HR: β range = 0.10 vs. 0.39,
R2: 0.26 vs. 0.62; and HR recovery: β range = −0.06 vs. −0.26, R2 = 0.21 vs. 0.52). At the
lowest core temperature threshold (≥37.0 ◦C), duration of training was not significantly as-
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sociated with ANS recovery and function. Graphical representations of these relationships
appear in Figures 2–4.

Table 2. Adjusted linear regression coefficients for the relationships between time spent in different
temperature thresholds and baseline heart rate and heart rate recovery.

Slope (β) SE Adjusted R2 95% CI p-Value

Baseline HR (bpm)

Duration Under Temperature Thresholds

≥37 ◦C 0.01 0.01 0.03 (−0.02, 0.02) 0.698

≥38 ◦C 0.10 0.02 0.26 (0.06, 0.14) p < 0.0000

≥39 ◦C 0.39 0.05 0.62 (0.30, 4.49) p < 0.0000

HR Recovery (bpm)

Duration Under Temperature Thresholds

≥37 ◦C 0.003 0.01 0.02 (−0.01, 0.02) 0.609

≥38 ◦C −0.06 0.02 0.21 (−0.10, −0.03) 0.0002

≥39 ◦C −0.26 0.04 0.52 (−0.34, −0.18) p < 0.0000
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Table 3 presents the adjusted linear regression and correlation coefficients for the
associations between time spent training under specific core temperature thresholds and
HRV indices. For rMSSD, statistically significant associations with training duration associ-
ations were observed at the ≥38 ◦C and ≥39 ◦C thresholds (β = −0.11 ± 0.02, R2 = 0.24,
p < 0.0000; and β = −0.37 ± 0.05, R2 = 0.58, p < 0.0000). Under the ≥37 ◦C threshold, a
weak, non-statistically significant association between training duration and rMSSD was
observed. Like rMSSD, statistically significant associations between training duration and
SDNN were found at the ≥38 ◦C and ≥39 ◦C thresholds (β = −0.16 ± 0.04, R2 = 0.22,
p < 0.0000; and β = −0.67 ± 0.09, R2 = 0.59, p < 0.0000). At ≥37 ◦C, however, the weak
association between training duration and SDNN did not reach statistical significance.
Similar to 24 h baseline HR and HR recovery, the strengths of the associations for rMSSD
and SDNN increased with an increase in the temperature threshold, whereby a higher core
temperature resulted in a greater decline in HRV when exercising for longer durations.

Table 3. Adjusted linear regression coefficients for the relationships between time spent under
different temperature thresholds and 24 h heart rate variability.

Slope (β) SE Adjusted R2 95% CI p-Value

rMSSD

Duration Under Temperature
Thresholds

≥37 ◦C −0.01 0.01 0.04 −0.03, 0.02 0.635

≥38 ◦C −0.11 0.02 0.24 −0.15, −0.06 p < 0.0000

≥39 ◦C −0.37 0.05 0.58 −0.47, −0.26 p < 0.0000

SDNN

Duration Under Temperature
Thresholds

≥37 ◦C −0.01 0.02 0.027 −0.05, 0.03 0.529

≥38 ◦C −0.16 0.04 0.22 −0.24, −0.08 p < 0.0000

≥39 ◦C −0.67 0.09 0.58 −0.85, −0.49 p < 0.0000

4. Discussion

The purpose of this study was to evaluate the influence of varying core temperature
thresholds on the relationship between training duration and 24 h ANS function throughout
a 25-week collegiate football season. We hypothesized that prolonged training sessions
under sub-hyperthermic and hyperthermic core temperatures would negatively influence
24 h ANS recovery and function. The major findings of this study were that (1) athletes
training longer at temperatures ≥38.0 ◦C and ≥39.0 ◦C negatively influenced ANS recovery
and function 24 h later, (2) the strengths of these associations increased with increases in core
temperature, (3) the training duration that led to a similar magnitude of ANS deterioration
differed between the ≥38.0 ◦C and ≥39.0 ◦C thresholds and (4) when including core
temperatures between 37.0 ◦C and 37.9 ◦C, statistical significance no longer held between
duration of training and 24 h ANS recovery and function.

The most novel aspect of this study was observing reduced ANS recovery and function
24 h following exercise training at core temperature thresholds ≥38.0 ◦C and ≥39.0 ◦C. At
these thresholds, training duration was associated with a progressively negative impact on
24 h baseline HR, HR recovery and HRV. That is, athletes training longer at core tempera-
tures ≥38.0 ◦C and ≥39.0 ◦C, on average, showed signs of ANS deterioration. Specifically,
the observed higher baseline HR, slower HR recovery and depressed HRV suggest that ath-
letes had residual elevated sympathetic activity and reduced parasympathetic outflow 24 h
post training. This finding significantly expands upon the existing evidence and highlights
two important concepts. First, our study showed that training at higher core temperatures
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may elicit a longer-lasting negative impact on the ANS than previously demonstrated.
Former studies primarily focused on ANS recovery in the immediate post-training period,
typically following a competition [11,12]. After competitions, most athletes refrain from
moderate- and high-intensity exercise for at least 48 h before returning to training [27,28].
As such, evaluating ANS function 24 h post competition was possibly not relevant and its
significance remained unclear. Second, previous research largely evaluated, understand-
ably, the acute effects of elevated core temperatures, such as decrements in performance,
dehydration, cognitive deficits, etc. [10,29]. Of concern is that this potentially assumes that
signs of heat-related ANS dysfunction are only present if observable. However, it is possible
that not all athletes exhibit noticeable symptoms of ANS degradation and, consequently, it
can remain undetected and may persist the following day, as demonstrated in our study.
More importantly, collegiate American football often requires athletes to train 5 to 6 days
per week, meaning that training sessions often occur on consecutive days. This could be
problematic for athletes training in hot and humid climates if ANS dysfunction consequent
to higher core temperatures remains undetected and athletes continue practicing. These
cumulative exposures to training with ANS dysfunction and/or elevated core temperature
may further perpetuate ANS deterioration, suboptimal performance and greatly increase
the risk of exertional heat illness. Thus, for optimizing sports performance, this study
finding suggests coaches should frequently monitor core temperature and duration of
exposure, especially during summer training camps and preseason [16,30].

Our study also found that the influence of training duration on ANS deterioration is
augmented at higher core temperatures and the “time to” ANS deterioration is accelerated.
The strength of the associations between training duration and ANS recovery and function
strengthens with increases in core temperature. Specifically, at the ≥39 ◦C threshold, we
observed a larger magnitude of this association for baseline HR, HR recovery, rMSSD
and SDNN (R2 = 0.62 vs. 0.26, 0.52 vs. 0.21, 0.58 vs. 0.24 and 0.59 vs. 0.22, respectively).
Additionally, we observed a steeper slope between duration and 24 h ANS recovery and
function when core temperature increased from the ≥38 ◦C threshold to ≥39.0 ◦C (baseline
HR: β = 0.10 vs. 0.39, HR recovery: β = −0.06 vs. −0.26, rMSSD: β=−0.11 vs. −0.37 and
SDNN: β = −0.16 vs. −0.67). This finding suggests that as core temperatures increase
beyond 38 ◦C, ANS deterioration is accelerated. The precipitous deterioration of the ANS
following exposure to increasing hyperthermic temperatures is well-established [31–33].
Former studies show that sport performance, even at the elite level, significantly declines
at very high core temperatures (40.0 ◦C–41.5 ◦C) despite adequate heat acclimatization
and pre-, during- and post-competition cooling strategies [11,12]. These studies reported
varying degrees of dehydration, extreme central and peripheral fatigue, reduced motor
function, etc., throughout and immediately post competition. Given the findings of the
current study, we speculate that those elite athletes likely experienced some degree of ANS
dysfunction 24 h later, but it was not measured. Relatedly, our study also showed that 24 h
ANS deterioration may occur following shorter bouts of training in the high heat than at
sub-hyperthermic core temperatures. For example, in Figure 5, ANS recovery (baseline
HR) degradation under the ≥39.0 ◦C threshold was initiated following only a 10 min bout
of training, whereas under the ≥38.0 ◦C threshold a 60 min exposure was required to
elicit ANS degradation. Similarly, deterioration of ANS function (HR recovery, rMSSD
and SDNN) followed 10 min and 70 min exposures under the ≥39.0 ◦C and ≥38.0 ◦C
thresholds, respectively. This indicates that at elevated core temperatures, a longer duration
may be required to induce the same level of ANS dysfunction, and vice versa for training
under higher core temperatures. This finding further emphasizes the importance of coaches
monitoring both core temperature and duration throughout training, as the physiological
load amplifies with parallel increases in temperature. The increased physiological load
consequent to higher core temperature, however, is deteriorative due to the body working
against the heat and not towards improved performance. Core temperature increases
rapidly at the onset of exercise due to higher ATP production and hydrolysis. In hot and
humid climates, core temperature fails to reach a steady state, continuing to climb until
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the heat exposure is removed (e.g., cooling intervention) [34]. Without monitoring, an
athlete may quickly surpass a core temperature of 38.0 ◦C and 39.0 ◦C without acute and
observable effects of ANS deterioration.
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Interestingly, and rather expectedly, this study found that under core temperature
values between 37.0 ◦C and 37.9 ◦C, training duration was no longer significantly associated
with 24 h ANS recovery and function. This observation was not surprising as resting core
temperature fluctuates between 36.1 ◦C and 37.8 ◦C. Importantly, as shown in Figure 5,
athletes were able to perform exercise longer under the 37.0 ◦C threshold compared to
the 38 ◦C and 39 ◦C thresholds before the onset of ANS deterioration. Here, training for
a longer duration is physiologically plausible as the ANS can adequately thermoregulate
and dissipate metabolic heat at the same rate it is produced [4]. Maintaining this core
temperature, however, is only possible when practicing in thermoneutral environments
like air-conditioned facilities [35]. Serving as their own control, when practicing indoors at
thermoneutral temperatures, the core temperatures of the study sample remained, on aver-
age, within normal limits and not surpassing 37.8 ◦C (data not shown). More importantly,
the core temperatures reached during indoor training, regardless of duration, were not
associated with ANS deterioration. These findings indicate, at the lower core temperature
threshold (within normal limits), that duration of training may not meaningfully impact
ANS recovery and function post 24 h. As such, training longer in thermoneutral environ-
ments, and including short, intermittent bouts (e.g., 30 to 45 min) outside in environments
that may increase core temperature quickly (e.g., hot and humid and/or wearing heat-
intolerant clothing), may be the most effective approach for optimizing sports performance.
This alternating pattern allows for athletes to “cool off” following exposure to an elevated
core temperature and safely continue training for longer durations [36].
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There are strengths and weaknesses of the current study that warrant attention. First,
this study employed a prospective cohort design in a natural setting, producing higher
quality evidence and improved translation of findings. Second, this study was the first, to
our knowledge, to observe ANS deterioration 24 h following prolonged exercise at sub-
hyperthermic temperature thresholds. This finding highlights the importance of monitoring
athletes’ physiological tolerance (e.g., core temperature, ANS function, external load) of
exercise training. Third, core temperature was measured using a noninvasive method
which was previously validated and strongly correlated with the gold standard measure
(Swan–Ganz catheter temperature) [22,23]. There are some limitations to this study. First,
the generalizability of our findings is restricted to one D1 college football team in a single
geographical location. As such, we cannot assume these findings apply to different sports,
levels of competition (e.g., D2, D3) and/or female sports. Second, other factors potentially
influencing the magnitude of the observed associations, such as medications (e.g., Adderall),
caffeine, sleep and mental stress, were not measured.

5. Conclusions

In conclusion, the findings of this study demonstrate that the duration of training
negatively influenced 24 h ANS recovery and function when performed at core temper-
atures ≥38 ◦C and ≥39.0 ◦C. Training sessions as short as 5 min at the highest threshold
were associated with greater ANS dysfunction. This finding indicates that training while
exposed to elevated core temperatures, even in small doses, may elicit a longer-lasting
negative impact on ANS recovery function than previously shown. Our observations em-
phasize the need for coaches to monitor their athletes’ physiological responses to exercise
training, especially during summer training camps and preseason training. These training
sessions occur during the hottest and most humid months of the year and following a
period of detraining in the off-season. Consequently, during this time, athletes may be
unaccustomed to training in hot/humid climates, potentially resulting in an accelerated
rise in core temperature. Additionally, our findings suggest that for long-duration training
sessions, coaches should consider implementing short, intermittent bouts of training if
core temperatures are elevated (e.g., 30 to 45 min), and separating them with prolonged
“cooling off” periods. We recommend that future studies evaluate the cumulative effect of
training at various core temperature thresholds on ANS recovery and function, as collegiate
athletes often train 5 to 6 days per week. Consecutive training sessions following exposure
to elevated core temperatures may facilitate further ANS deterioration, reducing the ability
to thermoregulate and negatively affecting sports performance.
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