Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Sports, Volume 4, Issue 3 (September 2016) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
1225 KiB  
Article
Coffee and Caffeine Ingestion Have Little Effect on Repeated Sprint Cycling in Relatively Untrained Males
by Neil Clarke, Harry Baxter, Emmanuel Fajemilua, Victoria Jones, Samuel Oxford, Darren Richardson, Charlotte Wyatt and Peter Mundy
Sports 2016, 4(3), 45; https://doi.org/10.3390/sports4030045 - 29 Aug 2016
Cited by 6 | Viewed by 11055
Abstract
The present study investigated the effect of ingesting caffeine-dose-matched anhydrous caffeine or coffee on the performance of repeated sprints. Twelve recreationally active males (mean ± SD age: 22 ± 2 years, height: 1.78 ± 0.07 m, body mass: 81 ± 16 kg) completed [...] Read more.
The present study investigated the effect of ingesting caffeine-dose-matched anhydrous caffeine or coffee on the performance of repeated sprints. Twelve recreationally active males (mean ± SD age: 22 ± 2 years, height: 1.78 ± 0.07 m, body mass: 81 ± 16 kg) completed eighteen 4 s sprints with 116 s recovery on a cycle ergometer on four separate occasions in a double-blind, randomised, counterbalanced crossover design. Participants ingested either 3 mg·kg−1 of caffeine (CAF), 0.09 g·kg−1 coffee, which provided 3 mg·kg−1 of caffeine (COF), a taste-matched placebo beverage (PLA), or a control condition (CON) 45 min prior to commencing the exercise protocol. Peak and mean power output and rating of perceived exertion (RPE) were recorded for each sprint. There were no significant differences in peak power output (CAF: 949 ± 199 W, COF: 949 ± 174 W, PLA: 971 ± 149 W and CON: 975 ± 170 W; p = 0.872; η P 2 = 0.02) or mean power output (CAF: 873 ± 172 W, COF: 862 ± 44 W, PLA: 887 ± 119 W and CON: 892 ± 143 W; p = 0.819; η P 2 = 0.03) between experimental conditions. Mean RPE was similar for all trials (CAF: 11 ± 2, COF: 11 ± 2, PLA: 11 ± 2 and CON: 11 ± 2; p = 0.927; η P 2 = 0.01). Neither the ingestion of COF or CAF improved repeated sprint cycling performance in relatively untrained males. Full article
(This article belongs to the Special Issue Sport Nutrition for Health and Performance)
Show Figures

Figure 1

1186 KiB  
Article
Star Excursion Balance Test in Young Athletes with Back Pain
by Edem Korkor Appiah-Dwomoh, Steffen Müller, Miralem Hadzic and Frank Mayer
Sports 2016, 4(3), 44; https://doi.org/10.3390/sports4030044 - 23 Aug 2016
Cited by 11 | Viewed by 10799
Abstract
The Star Excursion Balance Test (SEBT) is effective in measuring dynamic postural control (DPC). This research aimed to determine whether DPC measured by the SEBT in young athletes (YA) with back pain (BP) is different from those without BP (NBP). 53 BP YA [...] Read more.
The Star Excursion Balance Test (SEBT) is effective in measuring dynamic postural control (DPC). This research aimed to determine whether DPC measured by the SEBT in young athletes (YA) with back pain (BP) is different from those without BP (NBP). 53 BP YA and 53 NBP YA matched for age, height, weight, training years, training sessions/week and training minutes/session were studied. Participants performed 4 practice trials after which 3 measurements in the anterior, posteromedial and posterolateral SEBT reach directions were recorded. Normalized reach distance was analyzed using the mean of all 3 measurements. There was no statistical significant difference (p > 0.05) between the reach distance of BP (87.2 ± 5.3, 82.4 ± 8.2, 78.7 ± 8.1) and NBP (87.8 ± 5.6, 82.4 ± 8.0, 80.0 ± 8.8) in the anterior, posteromedial and posterolateral directions respectively. DPC in YA with BP, as assessed by the SEBT, was not different from NBP YA. Full article
Show Figures

Figure 1

211 KiB  
Article
Greater Strength Drives Difference in Power between Sexes in the Conventional Deadlift Exercise
by Margaret T. Jones, Andrew R. Jagim, G. Gregory Haff, Patrick J. Carr, Joel Martin and Jonathan M. Oliver
Sports 2016, 4(3), 43; https://doi.org/10.3390/sports4030043 - 05 Aug 2016
Cited by 27 | Viewed by 6227
Abstract
Limited research exists comparing sex differences in muscular power. The primary purpose of this research was to determine if differences exist in power and velocity in the conventional deadlift (CDL). A secondary purpose was to examine the relationship among power, velocity, strength, and [...] Read more.
Limited research exists comparing sex differences in muscular power. The primary purpose of this research was to determine if differences exist in power and velocity in the conventional deadlift (CDL). A secondary purpose was to examine the relationship among power, velocity, strength, and fat free mass (FFM). Eighteen strength trained athletes with ≥1 year CDL experience (women: n = 9, 29 ± 2 years, 162.3 ± 1.8 cm, 62 ± 2.4 kg, 23.3 ± 3.2 % body fat (%BF); men: n = 9, 29 ± 3 years, 175.6 ± 1.8 cm, 85.5 ± 1.4 kg, 14.8 ± 2.4 %BF), and ≥1.5 one repetition maximum (1-RM) CDL: body mass (BM) ratio (women: 1.6 ± 0.1 1-RM CDL: BM; men: 2.3 ± 0.1 1-RM CDL: BM), performed baseline (body composition, 1-RM CDL) and experimental sessions, in which velocity and power were measured at 30%, 60%, and 90% 1-RM. Repeated measures ANOVA and bivariate correlations were conducted. Men produced higher absolute average and peak power across all loads, but higher average velocity at only 30% 1-RM. When normalized to FFM, men produced higher peak and average power; however, women produced higher peak and average velocities across all loads. FFM and 1-RM were correlated with power. Greater power observed in men is driven by larger muscle mass, which contributes to greater strength. Full article
1993 KiB  
Article
Beneficial Effects of New Zealand Blackcurrant Extract on Maximal Sprint Speed during the Loughborough Intermittent Shuttle Test
by Mark ET Willems, Luke Cousins, David Williams and Sam D. Blacker
Sports 2016, 4(3), 42; https://doi.org/10.3390/sports4030042 - 05 Aug 2016
Cited by 23 | Viewed by 10250
Abstract
New Zealand blackcurrant (NZBC) extract has been shown to enhance high-intensity intermittent treadmill running. We examined the effects of NZBC extract during the Loughborough Intermittent Shuttle Test (LIST) which involves 5 × 15 min blocks with intermittent 15-m maximal sprints, interspersed by moderate [...] Read more.
New Zealand blackcurrant (NZBC) extract has been shown to enhance high-intensity intermittent treadmill running. We examined the effects of NZBC extract during the Loughborough Intermittent Shuttle Test (LIST) which involves 5 × 15 min blocks with intermittent 15-m maximal sprints, interspersed by moderate and high-intensity running to simulate team sport activity, and a subsequent run to exhaustion. Thirteen males (age: 22 ± 1 year, V ˙ O 2 max : 50 ± 5 mL·kg−1·min−1) participated in three indoor sessions (T: 24 ± 3 °C, humidity: 52% ± 9%). In the first session, a multistage fitness test was completed to determine peak running speed and estimate V ˙ O 2 max . Participants consumed NZBC extract in capsules (300 mg·day−1 CurraNZ™) or placebo (PL) (300 mg·day−1 microcrystalline cellulose M102) for seven days in a double-blind, randomized, cross-over design (wash-out at least seven days). NZBC extract did not affect average 15-m sprint times in each block. NZBC reduced slowing of the fastest sprint between block 1 and 5 (PL: 0.12 ± 0.07 s; NZBC: 0.06 ± 0.12 s; p < 0.05). NZBC extract had no effect on heart rate, vertical jump power, lactate and time to exhaustion (PL: 13.44 ± 8.09 min, NZBC: 15.78 ± 9.40 min, p > 0.05). However, eight participants had higher running times to exhaustion when consuming NZBC extract. New Zealand blackcurrant extract may enhance performance in team sports with repeated maximal sprints. Full article
(This article belongs to the Special Issue Sport Nutrition for Health and Performance)
Show Figures

Figure 1

554 KiB  
Article
Profiling of Junior College Football Players and Differences between Position Groups
by Robert G. Lockie, Adrina Lazar, Ashley J. Orjalo, DeShaun L. Davis, Matthew R. Moreno, Fabrice G. Risso, Matthew E. Hank, Randal C. Stone and Nicholas W. Mosich
Sports 2016, 4(3), 41; https://doi.org/10.3390/sports4030041 - 05 Aug 2016
Cited by 12 | Viewed by 6407
Abstract
This study profiled junior college football players. Sixty-two subjects completed vertical jump (VJ; height and peak power), standing broad jump (SBJ), 36.58 m sprint, pro-agility shuttle, three-cone drill, and maximal-repetition bench press and front squat. The sample included 2 quarterbacks (QB), 7 running [...] Read more.
This study profiled junior college football players. Sixty-two subjects completed vertical jump (VJ; height and peak power), standing broad jump (SBJ), 36.58 m sprint, pro-agility shuttle, three-cone drill, and maximal-repetition bench press and front squat. The sample included 2 quarterbacks (QB), 7 running backs (RB), 13 wide receivers (WR), 1 tight end (TE), 18 defensive backs (DB), 8 linebackers (LB), and 13 offensive and defensive linemen (LM). To investigate positional differences, subjects were split into skill (SK; WR, DB), big skill (BSK; QB, RB, TE, LB), and LM groups. A one-way ANOVA determined between-group differences. LM were taller and heavier than SK and BSK players. The SK and BSK groups were faster than LM in the 0–36.58 m sprint, pro-agility shuttle, and three-cone drill (p ≤ 0.009). The SK group had greater VJ height and SBJ distance; LM generated greater VJ peak power (p ≤ 0.022). There were no between-group differences in the strength endurance tests. Compared to Division I data, junior college players were smaller, slower, and performed worse in jump tests. Positional differences in junior college football are typical to that of established research. Junior college players should attempt to increase body mass, and improve speed and lower-body power. Full article
Show Figures

Figure 1

384 KiB  
Article
Betalain-Rich Concentrate Supplementation Improves Exercise Performance in Competitive Runners
by Justin S. Van Hoorebeke, Casey O. Trias, Brian A. Davis, Christina F. Lozada and Gretchen A. Casazza
Sports 2016, 4(3), 40; https://doi.org/10.3390/sports4030040 - 25 Jul 2016
Cited by 22 | Viewed by 14126
Abstract
This study aimed to determine the effects of a betalain-rich concentrate (BRC) of red beets, containing antioxidant and anti-inflammatory properties, on performance and exercise-related muscle damage. Thirteen (25.3 ± 5.4 years) competitive male runners completed two double-blind, cross-over, randomized trials (BRC and control) [...] Read more.
This study aimed to determine the effects of a betalain-rich concentrate (BRC) of red beets, containing antioxidant and anti-inflammatory properties, on performance and exercise-related muscle damage. Thirteen (25.3 ± 5.4 years) competitive male runners completed two double-blind, cross-over, randomized trials (BRC and control) separated by seven days. Each trial was preceded by six days of supplementation with 100 mg of BRC or control. On the seventh day, exercise trials commenced 150 min after supplementation with 50 mg BRC or control and consisted of 30 min of treadmill running (77 ± 4% VO2max) followed by a 5-km time trial (TT). During exercise at the same intensity, BRC resulted in a 3% lower heart rate, a 15% lower rate of perceived exertion (RPE) and a 14% lower blood lactate concentration compared to the control (p = 0.05). Five-kilometer TT duration (23.0 ± 4.2 versus 23.6 ± 4.0 min) was faster in 10 of the 13 subjects, and RPE was lower (p < 0.05) with the BRC treatment compared to the control. Lactate dehydrogenase, a marker of muscle damage, increased less from baseline to immediately and 30 min after the 5-km TT with the BRC treatment, despite no differences in subjective measures of muscle soreness and fatigue. In summary, BRC supplementation improved 5-km performance time in male competitive runners. Full article
(This article belongs to the Special Issue Sport Nutrition for Health and Performance)
Show Figures

Figure 1

487 KiB  
Article
The Effect of Recovery Duration on Technical Proficiency during Small Sided Games of Football
by Scott McLean, Hugo Kerhervé, Mitchell Naughton, Geoff P. Lovell, Adam D. Gorman and Colin Solomon
Sports 2016, 4(3), 39; https://doi.org/10.3390/sports4030039 - 08 Jul 2016
Cited by 13 | Viewed by 5848
Abstract
The aim of this study was to determine the effect of increasing the duration of the recovery periods separating serial bouts of small sided games (SSG) of football on technical skills (TS). Twelve semi-professional footballers (mean ± SD; age 21 ± 3 years; [...] Read more.
The aim of this study was to determine the effect of increasing the duration of the recovery periods separating serial bouts of small sided games (SSG) of football on technical skills (TS). Twelve semi-professional footballers (mean ± SD; age 21 ± 3 years; VO2peak 64 ± 7 mL∙min∙kg−1; playing experience 15 ± 3 years) completed two SSG sessions, consisting of 3 vs. 3 players and 6 bouts of 2 min, separated by either 30 s recovery (REC-30) or 120 s recovery (REC-120). Sixteen TS, including passing, possession, and defensive related variables, and exercise intensity (heart rate, rating of perceived exertion, time motion descriptors) during the bouts were measured. Repeated measures ANOVA were used to determine differences between-conditions, for TS. The number of successful tackles was significantly higher, and the average time each team maintained possession was significantly lower in REC-120 compared to REC-30. There were no significant differences for all other TS variables, or exercise intensity measures between REC-30 and REC-120. Overall, a four-fold increase in the duration of recovery separating SSG bouts did not alter the technical skill execution of players. The experience and skill level of the players, combined with an apparent regulation of effort through pacing, may have assisted in the maintenance of technical skill execution. Full article
(This article belongs to the Special Issue Performance in Soccer)
1317 KiB  
Article
Effects of Intermittent Neck Cooling During Repeated Bouts of High-Intensity Exercise
by Andrew J. Galpin, James R. Bagley, Blake Whitcomb, Leonard D. Wiersma, Jakob Rosengarten, Jared W. Coburn and Daniel A. Judelson
Sports 2016, 4(3), 38; https://doi.org/10.3390/sports4030038 - 29 Jun 2016
Cited by 6 | Viewed by 9660
Abstract
The purpose of this investigation was to determine the influence of intermittent neck cooling during exercise bouts designed to mimic combat sport competitions. Participants (n = 13, age = 25.3 ± 5.0 year height = 176.9 ± 7.5 cm, mass = 79.3 [...] Read more.
The purpose of this investigation was to determine the influence of intermittent neck cooling during exercise bouts designed to mimic combat sport competitions. Participants (n = 13, age = 25.3 ± 5.0 year height = 176.9 ± 7.5 cm, mass = 79.3 ± 9.0 kg, body fat = 11.8% ± 3.1%) performed three trials on a cycle ergometer. Each trial consisted of two, 5-min high-intensity exercise (HEX) intervals (HEX1 and HEX2—20 s at 50% peak power, followed by 15 s of rest), and a time to exhaustion (TTE) test. One-minute rest intervals were given between each round (RI1 and RI2), during which researchers treated the participant’s posterior neck with either (1) wet-ice (ICE); (2) menthol spray (SPRAY); or (3) no treatment (CON). Neck (TNECK) and chest (TCHEST) skin temperatures were significantly lower following RI1 with ICE (vs. SPRAY). Thermal sensation decreased with ICE compared to CON following RI1, RI2, TTE, and a 2-min recovery. Rating of perceived exertion was also lower with ICE following HEX2 (vs. CON) and after RI2 (vs. SPRAY). Treatment did not influence TTE (68.9 ± 18.9s). The ability of intermittent ICE to attenuate neck and chest skin temperature rises during the initial HEX stages likely explains why participants felt cooler and less exerted during equivalent HEX bouts. These data suggest intermittent ICE improves perceptual stress during short, repeated bouts of vigorous exercise. Full article
Show Figures

Figure 1

1121 KiB  
Article
America’s Cup Sailing: Effect of Standing Arm-Cranking (“Grinding”) Direction on Muscle Activity, Kinematics, and Torque Application
by Simon N. Pearson, Patria A. Hume, John Cronin and David Slyfield
Sports 2016, 4(3), 37; https://doi.org/10.3390/sports4030037 - 27 Jun 2016
Cited by 1 | Viewed by 7477
Abstract
Grinding is a key physical element in America’s Cup sailing. This study aimed to describe kinematics and muscle activation patterns in relation to torque applied in forward and backward grinding. Ten male America’s Cup sailors (33.6 ± 5.7 years, 97.9 ± 13.4 kg, [...] Read more.
Grinding is a key physical element in America’s Cup sailing. This study aimed to describe kinematics and muscle activation patterns in relation to torque applied in forward and backward grinding. Ten male America’s Cup sailors (33.6 ± 5.7 years, 97.9 ± 13.4 kg, 186.6 ± 7.4 cm) completed forward and backward grinding on a customised grinding ergometer. In forward grinding peak torque (77 Nm) occurred at 95° (0° = crank vertically up) on the downward section of the rotation at the end of shoulder flexion and elbow extension. Backward grinding torque peaked at 35° (69 Nm) following the pull action (shoulder extension, elbow flexion) across the top of the rotation. During forward grinding, relatively high levels of torque (>50 Nm) were maintained through the majority (72%) of the cycle, compared to 47% for backward grinding, with sections of low torque corresponding with low numbers of active muscles. Variation in torque was negatively associated with forward grinding performance (r = −0.60; 90% CI −0.88 to −0.02), but positively associated with backward performance (r = 0.48; CI = −0.15 to 0.83). Magnitude and distribution of torque generation differed according to grinding direction and presents an argument for divergent training methods to improve forward and backward grinding performance. Full article
(This article belongs to the Special Issue Boat-Based Sports Biomechanics)
Show Figures

Figure 1

934 KiB  
Article
Differences in Spatial Physical Activity Patterns between Weekdays and Weekends in Primary School Children: A Cross-Sectional Study Using Accelerometry and Global Positioning System
by Rahel Bürgi and Eling D. De Bruin
Sports 2016, 4(3), 36; https://doi.org/10.3390/sports4030036 - 27 Jun 2016
Cited by 15 | Viewed by 5350
Abstract
Targeting the weekend to promote physical activity (PA) in children seems to be promising given that they tend to be less physically active and, particularly, as the age-related decline in PA is more marked during weekends. Considering the ambiguity of why children are [...] Read more.
Targeting the weekend to promote physical activity (PA) in children seems to be promising given that they tend to be less physically active and, particularly, as the age-related decline in PA is more marked during weekends. Considering the ambiguity of why children are not able to maintain their PA level on weekends, the aim of the present study was to objectively investigate differences in children’s spatial PA patterns between week and weekend days using the combination of Global Positioning System (GPS) and accelerometry. Seventy-four second graders (aged 7–9 years) and 98 sixth graders (aged 11–14 years) wore an accelerometer and GPS sensor for seven consecutive days to determine where children spend time and engage in PA. Time-matched accelerometer and GPS data was mapped with a geographic information system and multilevel analyses accounting for the hierarchical structure of the data were conducted. Differences between weekdays and weekends regarding the total time spent and the absolute and relative level of PA in various settings were found in both age groups. The findings support previous research pointing to the importance of targeting weekend PA, especially when children grow older. Future interventions should encourage children to use outdoor spaces more frequently on weekends, rather than stay at home, and to commute actively to destinations other than school. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop