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Abstract: Background: This study aimed at comparing bioenergetics and biomechanical parameters
between athletes with tetraplegia and paraplegia riding race handbikes at submaximal speeds in
ecological conditions. Methods: Five athletes with tetraplegia (C6-T1, 43 ± 6 yrs, 63 ± 14 kg) and
12 athletes with paraplegia (T4-S5, 44 ± 7 yrs, 72 ± 12 kg) rode their handbikes at submaximal speeds
under metabolic measurements. A deceleration method (coasting down) was applied to calculate the
rolling resistance and frontal picture of each participant was taken to calculate air resistance. The
net overall Mechanical Efficiency (Eff) was calculated by dividing external mechanical work to the
corresponding Metabolic Power. Results: Athletes with tetraplegia reached a lower aerobic speed
(4.7 ± 0.6 m s−1 vs. 7.1 ± 0.9 m s−1, P = 0.001) and Mechanical Power (54 ± 15 W vs. 111 ± 25 W,
P = 0.001) compared with athletes with paraplegia. The metabolic cost was around 1 J kg−1 m−1

for both groups. The Eff values (17 ± 2% vs. 19 ± 3%, P = 0.262) suggested that the handbike is an
efficient assisted locomotion device. Conclusion: Handbikers with tetraplegia showed lower aerobic
performances but a similar metabolic cost compared with handbikers with paraplegia at submaximal
speeds in ecological conditions.
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1. Introduction

The handbike is one of most popular alternative propulsion devices for people with spinal
cord injuries and is commonly used in rehabilitation programs [1,2], recreational activities [2,3], and
competitions [4–6]. Competitive handcycling has existed since the mid-1980s and became an integrated
Paralympic Cycling in the Athens 2004 Paralympic Games [2]. In last Rio 2016 Paralympic Games,
athletes competed in 13 road race events, an individual time-trial, and a mixed relay [7].

To date, handbikers are grouped in five classes depending on their level of functional ability (from
most impaired class—H1—to least impaired—H5) to minimize the impairment impact on competition
outcome [8]. Succinctly, athletes who present impaired muscle power, complete trunk stability loss,
and limited upper limb function, much like athletes with complete tetraplegia, are classified as H1 and
H2. Those presenting poor-to-good trunk control, much like athletes with high and low paraplegia, are
included in the H3 and H4 classes. H1–H4 compete using arm powered handbikes, where a recumbent
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position is mandatory. The H5 class includes those who have excellent trunk balance, like amputee
athletes, and mandatorily ride knee seat handbikes [7].

Increasing popularity as Paralympic discipline inspired lighter and more aerodynamic
handbikes [9]. Despite its increasing recognition, knowledge about the bioenergetics and biomechanics
of athletes riding race handbikes in ecological conditions is scarce. Namely, there is minimal field
evaluation in Paralympic sports [10]. Fischer and collaborators [6] were the first to calculate Metabolic
Power (

.
E, J kg−1 min−1) and metabolic cost (C, J kg−1 m−1) during a 22-km simulated handcycling

time trial in athletes with high paraplegia. According to authors, relatively high speeds (up to 8 m s−1)
and low C (about 1 J kg−1 m−1) could be attributed to advances in handbike technology, including the
gear system and the reduction of rolling, air resistances, and overall mass.

Rolling and air resistances of seated and knee seat handbikes were quantified by Groen et al. [11]
to obtain (external) Mechanical Power (

.
Wext). They proposed a power balance model to estimate

values of (overall) Mechanical Efficiency (Eff, %) in elite handcycling athletes. Mechanical Efficiency
quantifies the capability of converting metabolic power into mechanical power, viz. power useful for
propulsion [12]. The Mechanical Efficiency in the four athletes tested in Groen et al.’s study [11] was
17.9%. Lovell et al. [13] found similar values (17.2%) testing trained handbikers on an adapted cycle
ergometer. Both studies evaluated athletes with low lesion levels and little impaired function. Hence,
the economy and Eff values of athletes with more severe impairments, such as tetraplegia, are still
unknown. Therefore, this study aimed at comparing bioenergetics and biomechanical parameters
between athletes with tetraplegia and paraplegia riding race handbikes at submaximal speeds in
ecological conditions. We hypothesized that athletes with more severe impairments show lower speeds,
economy (i.e., higher C), and Eff.

2. Materials and Methods

2.1. Participants

Seventeen athletes with spinal cord injury participated in this study (5 athletes with tetraplegia
and 12 athletes with paraplegia). Specific information on impairment level and duration, sport class
classification, and anthropometric characteristics are presented in Table 1. All participants were
classified athletes according to the Union Cycliste Internationale (UCI) classification system with at
least two years’ experience in handcycling events. This study was approved by the University of
Verona Ethics Committee and conformed to standards set by the Declaration of Helsinki. Written
informed consent was obtained from all participants.

Table 1. Subjects’ anthropometric characteristics, impairment features, and sport classes.

Age (yrs) Height
(cm)

Body Mass
(kg)

Injury
Description

Duration of
Injury (yrs)

Sport Class

Tetraplegia
1 37 185 77 C6/7 incomplete 9 MH1
2 42 170 44 C6/7 incomplete 9 MH1
3 50 171 73 C6/7 complete 17 MH1
4 36 178 73 C8/T1 incomplete 16 MH2
5 50 160 49 C6/7 complete 21 WH1
Mean (SD) 43(6) 173(8) 63(14) 14(5)
Paraplegia
1 54 173 60 T6/8 complete 34 MH3
2 42 175 75 T4/5 complete 9 MH3
3 44 174 65 T6/7 complete 15 MH3
4 37 174 64 T5 complete 11 MH3
5 43 168 57 T6/7 complete 15 MH3
6 33 170 62 T5/9 incomplete 13 WH3
7 48 183 95 S1-S5 incomplete Birth MH4



Sports 2020, 8, 16 3 of 9

Table 1. Cont.

Age (yrs) Height
(cm)

Body Mass
(kg)

Injury
Description

Duration of
Injury (yrs)

Sport Class

8 41 182 80 T12 incomplete 8 MH4
9 48 170 74 L1/3 incomplete 24 MH4
10 42 175 87 T8 incomplete 22 MH4
11 38 170 65 S1-S5 incomplete 12 MH4
12 55 168 74 L1 incomplete 20 MH4
Mean (SD) 44(7) 174(5) 72(12) 17(8)

(MH – men athletes; WH – Women athletes)

2.2. Handbikes

Each participant used his/her own handbike, with a synchronous crank system, to perform all
tests. The majority of the studied handbikes were recumbent models (Figure 1). Tyre pressure was
controlled to 8 bars.

Figure 1. Recumbent handbike.

2.3. Procedures

Handbikers were asked to avoid high-intensity exercise for 48 hours before the test and also to
avoid caffeine intake on the morning of the testing day. Participants rode their handbikes on athletics
track at submaximal aerobic speeds under cardiorespiratory monitoring. They were equipped with
a portable telemetric gas analysis system unit (K4b2, Cosmed, Rome, Italy) for measuring oxygen
consumption (VO2, mL O2 kg−1 min−1) and respiratory exchange ratio (RER) on a breath-by-breath
basis. After a 5-min rest, participants started the test at a pre-determined constant “aerobic speed” for
at least 4 min to reach a VO2 steady state.

To define speeds, we asked participants: “What is your average speed for road races (marathon
distance) on flat terrain?” Then, three further speeds, 2, 4, and 6 km h−1 slower than average speed,
were performed randomly. This procedure allowed guaranteeing aerobic (RER < 1) and submaximal
speeds to each participant. Gear and arm cranking frequency were freely chosen. Each handbike was
equipped with a GNSS/GPS receiver (Edge 305, Garmin, Olathe, KS, USA) allowing participants to
control target speed as constant as possible [14]. A rest between trials was administered until oxygen
consumption returned to the pre-test value.
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2.4. Mechanical Tests

A deceleration method (i.e., coasting down) was used on athletics track with tartan surface to
calculate rolling resistance. Furthermore, each participant’s frontal picture was taken to calculate air
resistance. All tests were performed at same time of day and during an absence of wind (29 ± 4 ◦C air
temperature and 757 ± 4 mmHg atmospheric pressure).

2.5. Calculations

2.5.1. Bioenergetics Measurements

Handcycling C was obtained from the ratio of Metabolic Power, above resting, to the speed of
progression. Metabolic Power was calculated according to RER empirical function [15] to obtain VO2

metabolic equivalent:
.
E = VO2 (4.94×RER + 16.04)/60

2.5.2. Biomechanical Measurements

Level handcycling
.

Wext can be divided into two components: the power developed against rolling

resistance
.

(Wr) and the power developed against air resistance (
.

Wa). The total resistance (Rt, N)
opposing the handbiker’s level progression is the sum of the rolling resistance (Rr), due to friction
force as the wheels roll along the course, and air resistance (Ra). Therefore:

Rt = Rr + Ra

In its turn:
Rr = M×Cr × g

where M is the total athlete + handbike mass (kg), Cr is the rolling coefficient, and g is acceleration
due to gravity (i.e., 9.81 m s−2). The power developed against the rolling resistance was obtained
multiplying Rr by speed.

Coasting down is a simplified deceleration method used to calculate Cr [16]. A participant
mounted on the handbike just holding the handgrip without hand pedalling, was pushed until he/she
reached a speed of about 3 m s−1, and then was suddenly left by tester. The decreasing speed was
recorded at 1 Hz by means of the GPS receiver. The procedure was performed three times on an
athletics track. Decreasing speed data were fitted by a linear regression, where the slope (i.e., the
straight line angular coefficient) indicated deceleration due to rolling resistance. The average slope,
corresponding to Cr × g product, was divided by g to yield Cr.

Ra = 0.5× ρ×A×Ca × s2

where ρ is the air density, A is the projected frontal area, Ca is the aerodynamic coefficient, and s2 is
the squared average speed. The projected frontal area was obtained with each participant positioned
on his handbike beside a reference (0.8 m height) and 2 m away from a tripod topped by an 8.2 MP
digital photography camera (Kodak EASYSHARE C140, Kodak, Rochester, United States) using a
photographic method [17]. Frontal pictures were analyzed with Image J (NIH Image 1.62, USA),
During bioenergetic measurements, barometric pressure (P, mmHg) and air temperature (T, K) were
recorded with a portable telemetric gas analysis system unit for each test to calculate air density as:

ρ = ρ◦ (P / 760) × (273 / T)

where ρ◦ is the density of dry air at a standard temperature and pressure (1.239 m−3; [15]).
The aerodynamic coefficient was a constant depending on shape, position, and airflow conditions

related, in this case, to the athlete + handbike complex. The aerodynamic coefficient was calculated
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based on the measurements of one handbiker. The participant had a powermeter (SRM, Jülich,
Germany) mounted on his handbike, allowing

.
Wext to be recorded at vehicle level. The participant

rode his handbike at several speeds (from 5.0 to 7.7 m s−1) with both a freely chosen arm cranking
frequency and fixed arm cranking frequencies (60, 75, 90, and 105 RPM) to check for possible variations
in Ca. Assuming that

.
Wext was recorded at vehicle level, i.e., the power measured by means of the

powermeter (
.

WextSRM) were equivalent to
.

Wext as
.

Wr +
.

Wa, Ca could be determined according to
Capelli et al.’s approach [12]:

.
WextSRM =

(
0.5× ρ×A×Ca × s2 + Rr

)
× s

Handcycling Eff was calculated at each performed speed as a ratio of
.

Wext to
.
E.

2.6. Statistical Analysis

Data were checked for normality using the Shapiro–Wilk test and were presented as means ± SD.
The group mean differences for participants’ characteristics and all bioenergetics and biomechanical
variables were analyzed using independent sample t tests. Analysis was performed with IBM SPSS
Statistics 20 (IBM Corporation, Armonk, USA). The level of statistical significance was set at P < 0.05.
The effect size was computed using Cohen’s d, Hedges’g comparison of groups (with different sample
size).

3. Results

Age (ES 0.15; small), height (ES 0.17; small), body mass (ES 0.71; moderate), and the duration
of injury (ES 0.41; moderate) are shown in Table 1. There was no difference (P > 0.05) in
participants’ characteristics between tetraplegia and paraplegia. Despite different handbike adjustments,
investigated biomechanical variables (M, Cr, Rr, and A) did not differ between groups (P > 0.05, Table 2).
However, a large effect size was found in Mass (1.04) and the rolling coefficient (1.46), while a moderate
effect size was found in rolling resistance (0.41) and the project frontal area (0.5). Ca resulted 0.71 ± 0.07
with a low coefficient of variation of 9.5% over trials (i.e., over different speeds and different arm
cranking frequencies in one participant; Table 2). Figure 2 shows speed (ES 2.89; large),

.
E, (ES 2.39;

large),
.

Wext (ES 2.5; large), and Eff (ES 0.72; moderate) of athletes with tetraplegia and paraplegia riding
race handbikes. Handbikers with tetraplegia showed significantly (P = 0.001) lower values of speed
(−34%),

.
E (−48%), and

.
Wext (−52%) compared with handbikers with paraplegia. Eff, in its turn, did

not differ significantly between groups (P = 0.262) despite being lower (−57%) in handbikers with
tetraplegia. Both groups’ VO2 and C over speed are shown in Figure 3.

Figure 2. Speed (A), Metabolic Power (B), (external) Mechanical Power (C), and the (overall) Mechanical
Efficiency (D) of athletes with tetraplegia and paraplegia riding race handbikes.
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Table 2. Total mass (M) (athlete plus handbike), the rolling coefficient on the tartan surface (Cr), the
rolling resistance on the tartan surface (Rr), air density (ρ), and the projected frontal area (A) of athletes
and their handbikes.

M (kg) Cr Rr (N) A (m2) ρ (kg m−3) Ca

Tetraplegia
1 19 0.0097 9.13 0.36 1.15
2 17 0.0103 9.16 0.33 1.17
3 22 0.0075 6.99 0.49 1.19
4 17 0.0105 9.06 0.38 1.15
5 15 0.0095 5.77 0.33 1.14

Mean(SD) 18(2.4) 0.0095(0.0011) 8.02(1.40) 0.38(0.06) 1.16 (0.02)

Paraplegia
1 17 0.0074 5.56 0.40 1.15
2 19 0.0080 7.41 0.37 1.15
3 15 0.0086 6.77 0.37 1.19
4 15 0.0078 6.06 0.30 1.16
5 12 0.0085 5.78 0.30 1.14
6 14 0.0067 4.99 0.33 1.19 0.71
7 17 0.0086 9.48 0.53 1.17
8 16 0.0084 7.95 0.32 1.16
9 16 0.0107 9.44 0.32 1.15

10 16 0.0106 10.76 0.33 1.16
11 14 0.0074 5.75 0.32 1.20
12 19 0.0084 7.68 0.34 1.14

Mean(SD) 16(2.0) 0.008(0.001) 7.30(1.83) 0.35(0.06) 1.16(0.02)

Figure 3. Oxygen consumption (VO2) and metabolic cost (C) over speed in athletes with tetraplegia
165 (black circles) and paraplegia (empty circles). Exponential regression lines for graphical purposes
only: through values featuring athletes with tetraplegia, VO2 = 6.39 e0.189 speed; R2 = 0.54; n = 14)
and paraplegia 167 (VO2 = 8.79 e0.149 speed; R2 = 0.64; n = 39).
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4. Discussion

Study compared bioenergetics and biomechanical features between athletes with tetraplegia and
paraplegia riding race handbikes at submaximal speeds in ecological conditions. In confirmation of
our hypothesis, athletes with paraplegia showed higher speeds but similar economy.

According to Figoni [18], impairments of spinal cord injuries frequently result in two major
exercise-related problems: a reduced ability to voluntarily perform large muscle group aerobic exercise
and an inability to stimulate the cardiovascular system to support high rates of aerobic metabolism.
Our results are in line with such an explanation given that our athletes with tetraplegia rode their
handbikes at speeds 34% lower than athletes with paraplegia. Furthermore, differences in

.
E and

.
Wext

could also be explained by less active muscle mass, impaired muscle power, and impaired sympathetic
responses in athletes with complete tetraplegia [19]. An interrupted sympathetic response might lead
to bradycardia, lower ventilation, insufficient splanchnic blood outflow, and sweating disturbances in
tetraplegics compared to paraplegics [20]. On the other hand, individuals with an injury below T5
(i.e., paraplegics) have full supra-spinal sympathetic control of heart and upper body vasculature [21].

Regarding the functional limitations associated with tetraplegia, they may negatively impact on
handcycling economy, as well. Namely, we found speeds ranging from 2.8 m s−1 to 5.4 m s−1 and C of
0.96 ± 0.16 J k−1 m−1. In case of paraplegia, speed range was higher (4.5 m s−1 to 8.50 m s−1) causing air
resistance to be higher, but C remained around 1 J kg−1 m−1 (interestingly, still half of its value featuring
able-bodied walking, Ardigò et al. [22]). According to Fischer et al. [6], a C value of 1 J kg−1 m−1

(considering both aerobic and anaerobic contributions) was observed in athletes with paraplegia in a
simulated handcycling competition at around 8 m s−1. Therefore, our results’ interpretation is that
handbikers with tetraplegia rode their handbikes at lower speeds than those with paraplegia but with
a very similar amount of C.

Mechanical Efficiency was 17.4 ± 2% with tetraplegia and 19.25 ± 3% with paraplegia, but no
statistical differences were observed between them probably due to the limited sample size. Previous
studies [3,23,24] performed on attach-unit handbikes, which are usually used for rehabilitation
purposes, showed lower Eff values (from 5.6% to 12.2%). In contrast to this, our results agree with
values reported in studies performed with a modern handbike ergometer configuration (from 15.8% to
20.5% [25]) and trained handbikers (from 25.3% to 17.2% [13]). Our study is the first to show Eff values
considering different injury levels, which are reflected by different sport classes.

“Efficient” locomotion is one where most of metabolic energy input (i.e.,
.
E) is transformed into

mechanical energy output (i.e.,
.

Wext) available for propulsion [12]. For positive work [26], Eff cannot
exceed 25%–30%. This value can be considered a product of two main components: muscle efficiency
and transmission efficiency [27]. Indeed, the handbike device seems to maximize transmission efficiency
by means of synchronous propulsion. This could be explained mainly by: i) body weight support
by backrest, especially in recumbent models; ii) well-balanced muscle contraction; iii) an optimized
force/speed relationship due to wise gears use; iv) an increased base of support and lowered center of
mass (providing more stability); v) a reduced rolling resistance due to the use of light-weight materials
and the high quality of used hubs; and iv) a drastic reduction of Ca, especially with recumbent models.

We did not find any significant between-group differences in handbike biomechanical variables
(Table 2). Groen et al. [11] reported a lower Cr value (0.0039) while testing a racing handbike (Schmicking,
Holzwickede, Germany) on a synthetic smooth surface, which could explain such a finding. Cr was also
calculated for attach-unit handbike models showing values of 0.0131 [24] and 0.00794 [3]. However, Cr

different values should be compared to each other with caution, because they depend very much on
factors such as surface’s type, inflation pressure, the number of wheels [28], the diameter of the wheels,
and the tyre manufacture [29]. The projected frontal area was comparable to that measured with some
racing bicycles in a dropped posture [30], i.e., 0.34 m2 and a recumbent bike (Easy Racer, [29]), i.e.,
0.35 m2. Furthermore, since 2009 International Paralymic Committee has allowed back support angles
lower than 45◦, meaning that athletes are able to adopt more lying positions. Nevertheless, athlete
must still have—by UCI regulation—a clear sight, i.e., the horizontal of his eye-line must be above the
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crank set [7]. Complying with such a rule, most aerodynamic athlete/handbike evaluated in this study
showed an A value of 0.32 m2. Consequently, Ca (0.71) was similar to those calculated for two-wheeled
recumbent bikes (0.77, [29]). Groen et al. [11] reported values of Ca of 0.83 and A of 0.40 m2 while
testing a racing handbike model.

Some of the present study’s limitations need to be addressed. The fact that the study was
performed following an ecological approach made controlling the sample for homogeneity (i.e.,
participants’ training status, handbikes, and disability-causing injuries) very difficult. The study tried
to keep competitive handcycling in the ecological setting as much as possible. However, protocol was
performed on an unusual (for handbikers) athletics track. The tartan surface offered higher-than-usual
friction resistance, as reported by participants. High friction resistance could have biased investigate
performances. Additionally, the air resistance was calculated for each subject by using Ca measured on
only one subject riding a recumbent handbike. We believe that the above limitations do not excessively
weaken the relevance of the study, which provided, what we consider to be, important insights about
submaximal performance in athletes with tetraplegia and paraplegia during handcycling.

5. Conclusions

In conclusion, handbikers with tetraplegia showed lower aerobic performances but similar
metabolic costs compared with handbikers with paraplegia at submaximal speeds in ecological
conditions. A similar mechanical efficiency for both groups suggested that the handbike is an efficient
assisted locomotion device irrespective of the level of spinal cord injury.
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