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Abstract: The aim of our study is to determine the first (LTP1) and the second (LTP2) lactate turn
points during an incremental bicep curl test and to verify these turn points by ventilatory turn points
(VT1 and VT2) and constant-load exercise tests. Twelve subjects performed a one-arm incremental
bicep curl exercise (IET) after a one repetition maximum (1RM) test to calculate the step rate for the
incremental exercise (1RM/45). Workload was increased every min at a rate of 30 reps/min until maximum.
To verify LTPs, VT1 and VT2 were determined from spirometric data, and 30 min constant-load tests
(CL) were performed at 5% Pmax below and above turn points. Peak load in IET was 5.3 ± 0.9 kg
(Lamax: 2.20 ± 0.40 mmol·L−1; HRmax: 135 ± 15 b·min−1; VO2max: 1.15 ± 0.30 L·min−1). LTP1 was
detected at 1.9 ± 0.6 kg (La: 0.86 ± 0.36 mmol·L−1; HR 90 ± 13 b·min−1; VO2: 0.50 ± 0.05 L·min−1)
and LTP2 at 3.8 ± 0.7 kg (La: 1.38 ± 0.37 mmol·L−1; 106 ± 10 b·min−1; VO2: 0.62 ± 0.11 L·min−1).
Constant-load tests showed a lactate steady-state in all tests except above LTP2, with early termination
after 16.5 ± 9.1 min. LTP1 and LTP2 could be determined in IET, which were not significantly different
from VT1/VT2. Constant-load exercise validated the three-phase concept, and a steady-state was
found at resting values below VT1 and in all other tests except above LTP2. It is suggested that the
three-phase model is also applicable to small muscle group exercise.

Keywords: maximal lactate steady-state; biceps curl exercise; incremental exercise; constant-load
exercise; lactate shuttle theory

1. Introduction

The lactate shuttle theory [1–3] and the triphasic model of energy supply [4] have been extensively
prescribed and were proven to be valid for cycle ergometer exercise [5], but has not been implemented
yet in sports accordingly [6]. In short, the theory prescribes three phases, usually prescribed as aerobic,
aerobic–anaerobic transition, and anaerobic phases, separated by to thresholds, although the terms
aerobic and anaerobic are misleading [7]. Several authors have, therefore, proposed to use the terms
first and second threshold or turn point [5,8] to avoid misunderstanding. The main principle is the
balance between lactate production and oxidation/elimination, the lactate shuttle theory [1–3]. For a
better understanding of the interplay between local muscle and whole-body metabolism in small
muscle incremental exercise, we, therefore, employed the lactate turn point concept [4,8–10].

This concept [4,8–10] defines a metabolically balanced phase on local muscle level (phase I) below
the first threshold, a systemically balanced metabolic phase (phase II) between thresholds 1 and 2
and a phase with no metabolically balanced situation (phase III) above threshold 2 [11]. Regarding
Brooks [3], lactate is also produced under systemic aerobic conditions but is metabolized locally in the
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muscle cells and thereby cannot be measured systemically. It follows that such a three-phase energy
supply cannot be strictly limited to aerobic and anaerobic areas, but a mixing ratio always occurs [7].

The question arises if the same patterns and principles, as shown for large muscle group cycling
exercise [4,8,12], may also be verified for very small muscle group incremental exercise. Therefore,
we investigated metabolic and cardiorespiratory parameters during unilateral biceps curl exercise.

Some recent articles investigated the phenomenon for incremental and continuous resistance
exercise and their physiological patterns [13–26]. These studies focused on resistance exercise of lower
limbs, like leg press or half-squat exercise. Initially, a one repetition maximum (1RM) test was conducted,
which served as the basis for the intensity of the incremental resistance exercise. All incremental
resistance exercise tests were performed discontinuously, with resting sets in between effort intervals.
Several authors have evaluated the responses that occur after a resistance training session at lactate
threshold (LT) intensity [14,17–20,25]. LT occurred at exercise intensities ranging from 27% to 36% of
1RM [16], a value that can be attributed to physiological and hemodynamic mechanisms [14]. Heart
rate, lactate progression, and ventilatory parameters (VO2, VCO2, VE) stabilized during constant-load
exercises at LT intensity, equivalent to lactate turn point 2 (LTP2) intensity, although there was no
consistent definition of threshold intensities applied. The terms LT [13–15,17–21,23,26] and anaerobic
threshold (AT) [24,25] were used synonymously. Blood lactate concentrations and heart rate values
during constant-load exercise were higher in half-squat than reported in leg press exercise [16].

Although the principal pattern has been prescribed, including threshold determination, validation
of the concept of applying steady-state exercise has not been shown yet. Our study is the first to display
lactate turn point 1 (LTP1) and ventilatory threshold 1 (VT1) determination during incremental small
muscle exercise by means of systemic measures. For this reason, the aim of this study is to determine
the first (LTP1) and the second (LTP2) lactate turn points during an incremental biceps curl test and
to verify these turn points by ventilatory turn points (VT1 and VT2) and constant-load exercise tests.
We hypothesize no significant difference between lactate and ventilation derived thresholds in small
muscle group exercise and that these thresholds can be verified by lactate steady-state tests.

This specific type of performance diagnostic could provide a new perspective on a more generalized
model of training prescription, although additional studies, including different muscle groups, are still
needed. The answer to this question is of considerable importance in the field of work physiology,
as local muscle performance diagnostics functions as a tool to avoid overloading workers and prevent
reduced performance levels associated with physical/mental damage [27].

2. Materials and Methods

The study included a total of 12 healthy sports students (10 men, 2 women; age: 24.8 ± 3.1 years;
height: 181.4 ± 7.3 cm; body mass: 76.0 ± 8.1 kg, cycle ergometer VO2max: 51.05 ± 5.90 mL·kg·min−1;
1RM: 14.46 ± 3.77 kg) (Table 1). The subjects performed an incremental and four constant-load biceps
curl tests. The number of subjects required to make a statistically relevant statement was determined
using G * Power Data Analysis Examples program [28]. All subjects gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the University of
Graz (GZ 39/48/63 ex 2015/16). All data were collected in the laboratory under standardized conditions.
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Table 1. Main characteristics of subjects.

Subjects Sex Age (years) Height (cm) Weight (kg) BMI 1RM (kg) VO2max (Cycle)
(mL·kg·min−1)

1 F 22.0 175.3 62.4 20.3 7.5 53.17
2 F 25.0 170.1 78.9 27.3 9.0 37.03
3 M 24.0 187.6 84.0 23.9 15.0 50.11
4 M 22.0 174.6 64.3 21.1 12.5 60.19
5 M 26.0 193.0 90.0 24.2 19.0 54.22
6 M 25.0 174.5 69.8 22.9 15.0 *
7 M 31.0 178.0 78.0 24.6 18.5 49.23
8 M 25.0 177.0 75.4 24.1 14.0 51.33
9 M 22.0 184.8 72.2 21.1 14.5 55.50

10 M 23.0 189.0 85.0 23.8 20.0 49.70
11 M 22.0 187.7 75.3 21.4 12.5 54.45
12 M 30.0 184.7 76.4 22.4 16.0 47.25

F: female; M: male; cm: centimeters; kg: kilograms; BMI: body mass index; VO2max: maximum oxygen uptake;
mL·kg·min−1: milliliters per kilogram per minute; * no VO2max measures were available for the cycle test.

2.1. Used Devices and Measuring Methods

The small muscle group exercise measurements were carried out on an adjustable weight training
bench. The adjustable part of the bench functioned as a supportive surface for the upper arm,
in order to perform an isolated strain on the m. biceps. All tests were done with the dominant arm.
All participants were instructed to keep their non-dominant arm in an inactive hanging position to
avoid interference with the dominant arm. Subjects completed the tests seated, and a height-adjustable
seat was individually accommodated (Levels 1–15). Free weights (dumbbells) were used for the tests,
and the weights were symmetrically attached. Lactate was determined from the arterialized capillary
blood of the ear. The first drop of blood was removed. The samples taken were evaluated immediately
after each test with a Biosen S_line device (EKF Diagnostics GmbH, Barleben, Germany) to determine
blood lactate and blood glucose concentrations. The determination of individual turn points from
blood lactate values was carried out by means of linear regression breakpoint analysis using proSport
performance diagnostics software [29].

The mobile device Cortex MetaMax 3B (Cortex Biophysik GmbH, Leipzig, Germany) was used to
measure gas exchange variables. Before each use, the measurement device was calibrated according to
the manufacturer’s instructions. Initially, the data were collected using the program Cortex Metamax
3B Version MBX 3B2.1, Metasoft 3.9, and then merged with proSport to determine VT1 and VT2 similar
to LTP1 and LTP2.

2.2. Data Analysis and Turn Point Determination

All data were evaluated by means of Microsoft Excel (Microsoft, Redmond, WA, USA), in which
the individual measured parameters of the different tests were assigned to the subjects’ identification
number. Thus, the mean values and standard deviations (±SD) could be calculated for random times.
During the incremental-step tests and the constant-load tests, heart rate was recorded continuously
and stored in five-second intervals using a standard heart rate monitor (Polar Electro, S810i, Kempele,
Finland). The heart rate data were transmitted and evaluated via an infrared interface to the performance
diagnostics software proSport, as prescribed earlier [29]. The turn points obtained from the incremental
biceps curl test were used to set the intensity of the subsequent constant-load tests. First (LTP1) and
second lactate turn points (LTP2) were identified by a linear regression breakpoint analysis. Each LTP1

and LTP2 was determined as the intersection points between two regression lines within defined
regions of interest, such as between first load step and 60% of maximal power during incremental biceps
curl test (Pmax) and between first turn point and Pmax. Additionally, the first (VT1) and the second (VT2)
ventilatory thresholds were determined by applying the same linear regression breakpoint analysis [29]
using the proSport performance diagnostics software.
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2.3. Test Procedures

2.3.1. One Repetition Maximum (1RM)

Before the incremental and the constant-load tests, a determination of the one repetition maximum
(1RM) was carried out for all subjects. The range of motion of the bicep curl was set at maximum
extension in the elbow joint (180◦) and flexion of 90◦ so that permanent muscle tension was given.
Prior to the maximum load, an extensive warm-up of the working muscle at 50% of the expected
maximum with ten repetitions took place. Following the warm-up, another submaximal set of 70–80%
of the expected maximum was performed to accustom the muscle to the one-repetition-maximum test.
Based on the previous experience of the subject or at the discretion of the test leader, a corresponding
weight was chosen. If it could be performed properly, the load was increased in order to determine
the 1RM with a maximum of six attempts. There was a five-minute break between each attempt for
optimal recovery. The 1RM was used to determine the expected maximum for the incremental test,
as well as the load increments. During the 1RM determination, only the load (in kg) was determined,
and no physiological measures were performed.

2.3.2. Incremental Bicep Curl Test

The expected maximum of the gradually increasing load was suggested approximately between
30% and 40% of the 1RM, according to the literature [14,25].

As for the subsequent lactate turn point determination, about 15 samples were required;
the individually achieved 1RM was divided by 3, and this calculated maximum for the incremental
test was again divided by 15 to obtain the corresponding load increments. At the beginning of the test,
the volunteers sat quietly without exercising for three minutes. Thus, the first measure reflects resting
conditions for all variables. After the resting phase, a three-minute warm-up started with a weight
that was chosen based on the result of the 1RM. Different increments were applied dependent on 1RM
performance to guarantee the same overall test duration to reach maximal performance and a similar
number of lactate measures to determine thresholds. Workload was increased every minute by 0.2, 0.3,
or 0.4 kg until termination due to fatigue (Figure 1a). Adjustable dumbbells were prepared with exact
load increments and were supported every minute to guarantee a non-paused exercise. The execution
speed was two seconds (1 s for flexion, 1 s for extension of the forearm, 30 repetitions/min). Termination
criteria were an incorrect execution of the movement, non-compliance with the execution speed, or
inability (total fatigue) to continue the exercise. After termination of exercise, a cool-down phase
was initiated where exercise was continued for another 3 min with the initial weight. The last lactate
measurement took place after a further resting phase of 3 min. Lactate concentration was measured
after each load step (1 min intervals) and immediately after termination of exercise. Heart rate and
spirometric data were measured continuously. There were no resting intervals during the incremental
step test.

2.3.3. Constant-Load Tests

A total of four constant-load tests in randomized order were completed. The intensity specification
of the tests was carried out using the lactate turn point model [4]. Constant-load tests were performed
5% of Pmax below and above each turn point (LTP1, LTP2). These tests were performed in the same
way as the incremental step test until the target load was reached and then kept constant for 30 min
(Figure 1b). Heart rate (HR), blood lactate concentration (La), and gas exchange variables were
measured. The tests were conducted without resting intervals.
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Figure 1. (a) Schematic illustration of incremental bicep curl test (IET) and (b) constant-load bicep curl
tests. CL1—5% Pmax < LTP1; CL2—5% Pmax > LTP1; CL3—5% Pmax < LTP2; CL4—5% Pmax > LTP2.

2.3.4. Statistical Analysis

Mean values ± standard deviation (± SD) were calculated for all individual parameters.
After screening the data for Gaussian distribution (Kolmogorov–Smirnov test), a t-test for dependent
samples was conducted. For non-normally distributed data, the Wilcoxon test was used. The relationship
between the two variables was determined by linear regression analysis. The significance limit was
assumed to be p ≤ 0.05. Statistical evaluation and the graphical representation were issued by the
program GraphPad Prism 5 (Graph Pad Software, San Diego, CA, USA).

3. Results

3.1. Incremental Bicep Curl Test

It was possible to detect a three-phase energy supply pattern and thus to determine submaximal
parameters [4]. Figure 2 shows heart rate and blood lactate concentration (A), as well as oxygen uptake
(VO2) and carbon dioxide output (VCO2) (B), ventilation (VE) (C) and breathing frequency (Bf) (D)
during the incremental biceps curl test. Heart rate showed an inverted deflection of the heart rate
performance curve [14,30].

LTP1 was determined at a load of 1.87 ± 0.57 kg and LTP2 at a load of 3.84 ± 0.71 kg. Compared
to the 1RM (14.68 ± 3.52 kg), LTP1 was 12.74% of 1RM, LTP2 26.16% 1RM, and Pmax 36.17% of
1RM. In terms of the maximum power delivered in the incremental bicep curl test (5.31 ± 0.86 kg),
the percentages of LTP1 and LTP2 were calculated at 35.22% of Pmax (LTP1) and 72.32% of Pmax (LTP2).

Ventilation (VE) (C) and breathing frequency (Bf) (D) showed an expected pattern which allowed
to determine the ventilatory thresholds VT1 and VT2. From the first threshold (VT1) at 1.90 ± 0.56 kg
(12.94% 1RM), the first increase in ventilation can be observed, and VT2 was determined at 25.20%
of the 1RM and a load of 3.70 ± 0.57 kg. Maximal lactate concentration at the termination of the test
was found at 2.25 ± 0.41 mmol·L−1. Both LTP1 and VT1 (r = 0.673; p < 0.001) as well as LTP2 and VT2

(r = 0.931; p < 0.001) were significantly related and a t-test revealed no significant differences between
LTP1 and VT1 (p > 0.05) and LTP2 and VT2 (p > 0.05).

3.2. Constant-Load Bicep Curl Tests

Heart rate during constant-load tests 5% of Pmax below/above LTP1 differed only marginally,
and both represent a steady state of the heart rate. Constant-load test 5% of Pmax below LTP2 gave a
heart rate increase of about 10 beats during the 30 min continuous load. The constant-load test 5% of
Pmax above LTP2 had to be terminated already at 16.83 ± 8.77 min of workout, reaching HRmax from
the IET (Figure 3A).
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Figure 2. All data are presented as mean ± SD, calculated from all participants. Selected variables
(HR—heart rate; La—blood lactate concentration; VO2—oxygen uptake; VCO2—carbon dioxide output;
VE—ventilation; Bf—breathing frequency) during an incremental bicep exercise test. Sub-maximal
markers are the first and second lactate turn point. Exercise intensities for constant-load tests ((A)—5%
of Pmax < LTP1; (B)—5% of Pmax > LTP1; (C)—5% of Pmax < LTP2; (D)—5% of Pmax > LTP2) and
distinct phases (Phases I–II–III) are shown. Phase I: no increase in blood lactate concentration above
baseline during constant-load exercise. Phase II: slight increase in blood lactate concentration. Phase III:
strong increase of blood lactate concentration up to termination of exercise.

Blood lactate concentration showed a lactate steady-state in all tests below LTP2 intensity, but a
continuous increase in lactate and an early termination after 16.83 ± 8.77 min was found for a workload
above LTP2. Small increases in systemic lactate concentrations from baseline were found such as delta
lactate values of −0.17 ± 0.27 mmol·L−1 (<LTP1), 0.13 ± 0.41 mmol·L−1 (>LTP1), 0.79 ± 0.72 mmol·L−1

(<LTP2) and La increased by 1.36± 0.63 mmol·L−1 at a workload > LTP2 already within 16.83 ± 8.77 min
(Figure 3B).

Figure 3C,D shows oxygen uptake and carbon dioxide output during the four constant load
tests. Oxygen uptake and VCO2 remain at resting values during the whole constant-load exercise,
and no respiratory compensation was identifiable for the exercise below LTP1. A workload above
LTP1 initially increased VO2 and VCO2 but continued in a steady-state similar to the workload below
LTP2, where VO2 and VCO2 slightly increased, but VO2 was higher than VCO2 during the entire test
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duration. Above LTP2, VCO2 concentration finally reached the same value as the VO2, and constant
load exercise had to be stopped.

Figure 3. All data are presented as mean ± SD, calculated from all participants. Selected variables
during constant-load exercise at 5% of Pmax < LTP1, 5% of Pmax > LTP1, 5% of Pmax < LTP2, and 5% of
Pmax > LTP2 showing distinct phases (Phases I–II–III) of energy supply. Phase I: no relevant increase
of blood lactate concentration above baseline during constant-load exercise, Phase 2: increased but
steady-state blood lactate concentration during constant-load exercise, and Phase 3: continuous increase
of blood lactate concentration leading to early termination of exercise. (HR—heart rate (A); La—blood
lactate concentration (B); VO2—oxygen uptake (C); VCO2—carbon dioxide output (D); VE—ventilation
(E); Bf—breathing frequency (F)).

Depending on the level of intensity of the constant-load exercise, ventilation (Figure 3E) and
breathing frequency (Figure 3F) showed an initial increase with a steady-state pattern until termination.
The constant-load exercise above LTP2 had to be terminated early, and VE and Bf showed a rapid
increase with maximum values of 38.36 ± 24.73 L·min−1 (VE) and 25.31 ± 12.63 min−1 (Bf).
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4. Discussion

The major findings of this study were that it was possible to verify a three-phase energy supply
model in our small muscle group incremental biceps exercise tests, to determine submaximal markers
for lactate (LTP1, LTP2) and ventilation (VT1, VT2) [4,8], and to validate these markers by means
of lactate steady-state tests. The turn points for La and VE were significantly related and not
significantly different. All workloads below LTP2 gave a clear steady-state for lactate, but La increased
significantly, and workload had to be terminated early for exercise above LTP2 validating the applied
threshold concept.

LTP1 and the LTP2 were determined at 13.14% ± 4.15% 1RM, and 26.83% ± 5.26% 1RM which is
comparable to former work with leg press exercise at LTP2 intensity (LT, AT) at 27.8%± 3.6% of 1RM [13],
27.1% ± 3.7% of 1RM [14], 31.0% ± 5.3% of 1RM [21], 28.0% ± 4.0% of 1RM [25], 29.0% ± 6.0% of
1RM [24], and 30.0% ± 6.2% of 1RM [23]. Several authors detected also thresholds (LT, AT) comparable
to our LTP2 intensity in incremental half-squat exercise at 23.35% ± 4.32% of 1RM [17,18], 22.8% ± 3.54%
of 1RM [17,18], 24.8% ± 4.8% of 1RM [19], and 24.8% ± 4.8% of 1 RM [20]. These small differences are
suggested to be related to the involved muscle mass (biceps curl vs. leg press/half-squat), respectively,
to continuous vs. discontinuous exercise or the use of different increments. However, the absolute
systemic lactate levels (biceps curl) differ from similar work [17–20] due to the greater dilution of the
lower absolute amount of lactate produced by the small biceps muscle mass compared to larger muscles
such as shown for leg exercise [31]. Muscle biopsies or tracer techniques could give a more detailed
analysis of the muscle to system interaction for the different muscle masses involved (e.g., biceps vs.
leg press). We suggest, however, that independent from muscle mass, the same methodological
approach, as shown here, should be applied to guarantee an accurate comparison of data. In recent
work regarding leg press [13,14,21,23–25], higher intensities as a % of 1RM during the incremental
tests were applied than for half-squat exercise [17–20]. Leg press reached up to maximal incremental
intensities of 60% of 1RM and half-squat exercise up to 40% of 1RM [16]. However, no comparable
results similar to our LTP1 intensity could be found.

LTP2 was found at 26.83 ± 5.26% 1RM, which is at the lower range prescribed in previous
studies [13,14,21,23–25]. Beside limits in the oxidative capacity of the muscle, local hemodynamic
constraints may limit the working muscles. Due to increasing intramuscular pressure from a load
of approximately 25% of the 1RM, blood flow is suggested to be reduced significantly, limiting the
oxygen supply. It was shown that there is no total occlusion in conduit arteries, but blood flow in the
capillary bed was highly reduced at 20% of maximum voluntary contraction (MVC) [32]. Additionally,
it was pointed out that intramuscular pressure rose with increases in contraction force [33] and was
found to restrict blood flow during contractions above 25% of MVC [34,35]. The energy supply is thus
increasingly anaerobic, and the exertion had to be terminated [13,14,21,36].

Pmax in our study was found at 37.21 ± 6.29% 1RM, which is close to the prescribed values from
earlier work [13,14,21,25]. In terms of the maximum power delivered in the incremental test (5.38 ± 0.91 kg;
37.21% ± 6.29% 1RM), the percentages of LTP1 (35.32% ± 11.15%) and LTP2 (72.12% ± 14.13%) are
comparable to results from incremental cycle ergometer tests [30,37], indicating some general patterns
of metabolic regulation during incremental exercise.

Both ventilatory thresholds VT1 and VT2 could be determined, although there were systemic
ventilatory limits. Previous research revealed similar results for VT2 intensity with 24.37% ± 4.5% of
1RM [19] or 30.3% ± 7.9% of 1RM [14]. The rapid increase of breathing frequency (Bf) and ventilation
(VE) above LTP2 could be an attempt of respiratory compensation, failing due to a lack of venous return.
It needs to be mentioned that terms and definitions of thresholds are unequivocal and sometimes
mixed, which is misleading for the reader. Therefore, careful threshold definitions are warranted.
For instance, two authors [13,20] used the term VT1 although all signs indicate a second threshold
intensity. However, the overall pattern is comparable between their studies and our results.

Considering the pattern of the mean heart rate, an inverted deflection of the heart rate curve can
be found [30,37], which was similar to other studies [14,21,25]. This pattern may be explained by a local
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muscular occlusion of blood supply altering venous return to the heart [32,36] as well as sympathetic
drive [38]. If the load above LTP2 is continued, blood cannot be delivered and removed adequately
from the muscle. Concomitant with this vascular occlusion, the heart attempts to compensate for the
ongoing stress, but the increase in stroke volume indicated by the left ventricular ejection fraction
(LVEF) is blunted because of the reduced venous return. This lack of preload of the heart is compensated
by a marked increase in heart rate [29,36,39,40]. It is therefore suggested that even a load above LTP2

intensity, which in our case was just about 25% of the 1RM, already decreases blood supply to the
working muscle limiting continuous exercise [14,36].

The subsequent results of the constant-load tests below and above LTP1 and LTP2 validated the
concept of a lactate steady-state [4,8]. All tests below LTP2 demonstrated clear lactate steady-state
but not above LTP2. We need to mention that the usual definition of a lactate steady-state of an
increase of lactate concentration less than 1 mmol·L−1 during the last 20 min of a 30-min constant-load
exercise [41,42] is difficult to apply in small muscle group exercise. Systemic lactate concentration
is associated with working muscle mass involved. As shown in our study, small muscle exercise
leads to low systemic lactate concentrations. The amount of produced lactate is distributed over the
same blood volume as compared to exercise with larger muscle mass engaged [43]. We, therefore,
adapted the definition of a lactate steady-state such as a maximal change of lactate concentration of
no more than 0.2 mmol·L−1 during the last 20 min of a 30-min constant-load exercise was accepted.
The mentioned definition of a lactate steady-state refers to higher maximal lactate concentrations
reached during cycling loads (8–15 mmol·L−1). The idea was to create a more adequate ratio between
lactate concentration fluctuation during the bicep curl constant-load exercise and maximal lactate
concentration (2–3 mmol−1). During constant-load exercise below LTP2, a lactate steady state could be
identified in all subjects by this definition; however, exercise just 5% of Pmax above the LTP2 had to
be terminated due to muscular failure within a short period of time, and no steady-state as defined
was present.

Heart rate during constant-load exercise below and above LTP1 was slightly above resting values,
differed only marginally (p > 0.05), and both represented a steady-state of the heart rate. Besides the
consequent application of a three-phase model for incremental and constant-load exercise, no data
regarding small muscle group constant-load exercise below and above LTP1 intensity have been
presented yet. In the constant-load exercise, just below the LTP2 heart rate increased by about 10 beats
during the 30-min continuous load. A similar increase of about 6–8 heartbeats has been documented
for steady-state cycle ergometer exercise below LTP2 [14,17]. This increase in HR even in small muscle
group exercise is suggested to be caused by increasing body temperature, chronotropic effects such as an
increased sympathetic drive [38], a baroreceptor mediated increase and/or a reduced parasympathetic
tone [44–46]. An intensity above LTP2 could not be carried out for the full 30 min and was already
terminated after about 16 min due to local muscle fatigue. However, the mentioned studies showed a
different methodological approach, such as applied breaks between the exercise increments and added
higher incremental load intensities (maximal intensity of 60% of 1RM). Furthermore, the repetitions per
minute were in a range between 12 to 30 reps·min−1, and there was no measurement of LTP1 [13–25].
The higher incremental load intensities require resting intervals in between the sets, which indicates
a typical resistance type exercise definition. To our knowledge, our study is the first to focus on the
triphasic model of energy supply in small muscle exercise and the validation of LTP1 and LTP2 by
means of constant-load exercise.

During the constant-load test below LTP1, VO2 and VCO2 remained at resting values for the
entire 30 min of exercise. Such a low intensity of exercise below LTP1 did not show any signs of
respiratory compensation, indicating that only the local muscular metabolism and the blood supply
limit performance without reaching any systemic limits for ventilation. Above LTP1 VO2 and VCO2

settle after an initial rise and progress in a steady-state similar to exercise below LTP2. During exercise
above LTP2, VCO2 concentration finally reached the VO2 (RER = 1), indicating an increasing local
muscular anaerobic metabolism [47,48].
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Measures of local metabolism and muscle recruitment need to be included in further studies
as these measures provide additional, more accurate results and interpretations of the local muscle
energetics and related hemodynamic processes [22]. As the percentages of 1RM were comparable with
the literature, 1RM testing may be an easy tool not only to prescribe resistance exercise but also to
prescribe constant-load endurance-type exercise such as investigated in our study. A more generalized
view on training intensity prescription may be established in the future.

5. Conclusions

Our study is the first to show that the three-phase model of energy supply can even be applied and
validated in a very small muscle mass incremental and constant-load bicep curl exercise. Both lactate
turn points (LTP1/LTP2) and ventilatory thresholds (VT1/VT2) could be determined systemically during
the incremental bicep curl exercise and constant-load exercise below and above these turn points,
validating the concept of three-phase cardiorespiratory and metabolic response. The study showed
that the three-phase model of energy supply [4] and the underlying lactate shuttle theory [2] are also
indirectly applicable to small muscle mass exercise.

Thus, the lactate turn point concept [4], such as examined in our study, showed its applicability to
and may serve as a basis for a more generalized model of training prescription, although additional
studies including different muscle groups are still needed. Especially in the field of work physiology,
this local muscular performance diagnostics could find a useful application. It helps to avoid
overloading employees who are exposed to vigorous long term physical work and to set the balance
between workload and resting intervals precisely. Another aspect is to prevent reduced performance
levels at work and subsequent physical and/or mental health constraints.
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