
metals

Editorial

Failure Mechanisms in Alloys

George A. Pantazopoulos

ELKEME Hellenic Research Centre for Metals S.A., 61st km Athens—Lamia National Road, 32011 Oinofyta,
Greece; gpantaz@elkeme.vionet.gr; Tel.: +30-2262-60-4463

Received: 6 January 2020; Accepted: 10 January 2020; Published: 13 January 2020
����������
�������

1. Introduction and Scope

The era of lean production and excellence in manufacturing, while advancing with sustainable
development, demands the rational utilization of raw materials and energy resources, adopting cleaner
and environmentally friendly industrial processes. In view of the new industrial revolution (through
digital transformation), the exploitation of smart and sophisticated materials systems, the need for
minimizing scrap and increasing efficiency, reliability, and lifetime, on the one hand, and the pursuit of
fuel economy and the limitation of the carbon footprint, on the other hand, are absolute necessary
conditions for the imminent growth in a globalized and highly competitive economy. These parameters
require the development and fabrication of high-resistance metals and alloys and the explicit knowledge
of their potential damage and degradation processes, in order to ensure long-lasting service, avoiding
undesired, costly, and catastrophic failures.

The occurrence of unexpected failures in critical industrial and transportation sectors could
lead to serious accidents or even to catastrophes, having a crucial impact on infrastructure and
society in general. Profound knowledge about failure mechanisms in metals and alloys is an absolute
prerequisite, which leads to the understanding and determination of the root source of the failure(s)
and to their successful prevention. Together with failure mechanisms, the recognition of service
conditions (temperature, type or nature of the environmental parameters, loading conditions, assembly
parameters, and interactions with neighboring components) and the information pertaining to the
industrial production processes involved in the fabrication of the metal component are of critical
significance in order to put all the failure “puzzle pieces” in a meaningful and reasonable order.
The “reconstruction” of a failure event is mainly focused on the interpretation of its natural complexity
and the unfolding of the logical sequence of the events involved. These failure-linking stages, which
occurred concurrently, intermittently, or successively, gave rise to the final ultimate failure, in a
“backward-thinking” procedure. The organization of a failure investigation is a multi-step, structured,
and disciplined process that must be limited in time and budget, according to the requirements and the
project objectives. The collection of the “pieces” and “clues” during a failure investigation is a diligent
and multi-tasking process. In the real world, missing pieces disrupt the continuity and clarity of the
“cause-and-effect” chain relationships, converting them from deterministic to fuzzy or stochastic.

Failure analysis is an interdisciplinary scientific topic, reflecting the opinions and interpretations
coming from a systematic evidence-gathering procedure, embracing various important sectors,
imparting knowledge, and substantiating improvement practices. The deep understanding of a
material or component’s role and properties is of central importance for “fitness for purpose” in certain
industrial processes and applications. The “scheme” presenting the interaction loci of the failure
analysis area can be simply presented as the “knowledge triangle”, illustrated in Figure 1.
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Figure 1. The failure analysis “knowledge triangle”, presenting the interaction areas and the central
role of the understanding of a material or component’s role and properties.

2. Contributions

The Special Issue “Failure Mechanisms in Alloys” contains in total twenty-seven (27) research
articles [1–27], with two review papers among them (see [9] and [24]). The contents of this collection
cover a wide spectrum of the cross-disciplinary fields of the entire domain of failure analysis, providing
valuable contributions in diverse and challenging topics exhibiting interests in the investigation of
failure mechanism, industrial processes, and approach methods (Figures 2–4). Moreover, different
groups of materials are involved in the presented studies (Table 1).

Almost the complete range of the general types of failure mechanisms has been addressed in
the published works gathered in this Special Issue. Instant overload as well as progressive failure
modes are included (Figure 2a). More specifically, the broad category of static overload includes more
generic subjects also from the field of manufacturing-related topics, where the effect of deformation
and fracture was studied as an important and undetached ingredient of the fabrication process per
se (e.g., hot and cold working, machining). Therefore, the mostly “intense area” (Overload/Static)
comprises studies concerning general deformation and fracture phenomena, as the result of instant
loading/testing conditions [4,9,10,14,15,19] and studies related to manufacturing and production
processes [6,7,12,13,16,20,22,25,26]. Testing and modeling procedures addressing the evolution of
deformation and fracture during forming [7,13,26], the impact toughness, [4] and certain production
process characteristics [25] are also included. Nevertheless, shear fracture processes that emerged in
machining and chip formation are also part of this broader group of studies, relevant to manufacturing
topics (see [12,16,20]).
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Figure 2. (a) Categorization of the subject “Failure Mechanism”, as it was addressed by the studies 

contained in this Special Issue; (b) distribution graph presenting the number of papers focused on the 

various failure mechanisms, which were ad hoc considered herein for simplicity purposes. 

“Progressive” or “delayed modes of failure” possess exceptional interest in various industrial 

sectors, such as the chemical, mechanical, and manufacturing industries and in plant machinery. Four 

basic categories can be distinguished (Figure 2a): 

a. Creep and Creep Fatigue failure modes [2,9,17,23]; 

Figure 2. (a) Categorization of the subject “Failure Mechanism”, as it was addressed by the studies
contained in this Special Issue; (b) distribution graph presenting the number of papers focused on the
various failure mechanisms, which were ad hoc considered herein for simplicity purposes.

“Progressive” or “delayed modes of failure” possess exceptional interest in various industrial
sectors, such as the chemical, mechanical, and manufacturing industries and in plant machinery.
Four basic categories can be distinguished (Figure 2a):
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a. Creep and Creep Fatigue failure modes [2,9,17,23];
b. Fatigue and Cyclic Loading [8,9,18];
c. Corrosion and Environmentally Assisted Cracking [3,5,11,21];
d. Wear and Surface Degradation [1,24,27].

The relevant number of studies’ distribution graph is presented in Figure 2b.
It can be seen from Figure 2b that manufacturing-related topics occupy a significant percentage of

the content, reflecting the importance of failure assessment and the emergence of failure and damage
prognosis and prevention, as the basic component of the knowledge and learning processes required
for quality improvement in industry.

Considering the “Process/Industry” as a classification criterion, the published studies are relevant
with certain industries or processes involved as far as the observed failure mechanism is concerned
(Figure 3). More specifically, the main industrial processes involved are presented as follows:

(i) Casting and Metal Forming [6,7,11,13,15,19,24–26]
(ii) Machining [12,16,20]
(iii) Chemical/Petrochemical [3,17,21,23]
(iv) Heat Treatment [22]
(v) General Plant Machinery [1,9,18,24]
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The metal component manufacturing industry (casting, metal forming, and machining) seems to
be highly involved, as one of the primary industrial component production sectors, in highlighting the
efforts in understanding material behavior and taking actions for failure prediction and prevention.

Based on the “Investigation Method/Approach”, several broad categories can be distinguished
(Figure 4):

1. Phenomenological and Experimental [1–9,11–27]
2. Numerical Modeling [6,7,10,12,13,15,25,26]
3. Statistical and Stochastic [8,16,20,22,25]
4. Systems or Quality [9]
5. Combined (experimental, analytical, numerical model, etc.) [3,6–8,12–16,18–20,22,25,26]

As can be readily observed, the experimental and empirical approach is the dominant methodology
of failure investigation. In addition, the emergence of numerical simulation, using finite element
modeling (FEM), tends to be very popular in the prediction of material behavior and potential failure
prevention. The contribution of quality and organization systems is very promising in the case of
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complex processes, where teamwork in process planning, risk assessment, resource allocation, and
implementation of improvement actions is a key concept in modern quality assurance and management.
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A broad range of materials was covered in the present studies (see Table 1). Ferrous metals
(structural steels, stainless steels, and special resistance steels) are more frequently investigated,
indicating the importance of this material type in engineering constructions and in severe
process environments.

Table 1. Representative types of engineering material types of investigation.

Material Type Reference

Structural and pipeline steels [1,5,9,13,16,20,22,27]
Cast iron [14,19]

Special resistance and stainless steels [3,4,9,11,17,18,21,23,24]
Wear resistant coatings and surface layers [24,27]

Ti, Ti alloys [7,12]
Al alloys [13,25,26]
Mg alloy [13]

Cu, Cu alloys [6,9,10]
Nanomaterials [10]

W–Cu composite [15]

3. Conclusions

The present collection of studies reflects the profound interest in the specific field of research,
covering a wide range of failure mechanisms, processes, and investigation methodologies. The majority
of the studies followed a phenomenological and experimental approach, while it seems that there was a
general contribution tendency toward numerical simulation, to further enrich the value of the research
results and broaden the application perspectives, especially in the case of larger-scale metal-forming
and manufacturing processes. Ferrous alloys (structural, special purpose or resistance, stainless steels,
cast irons) constitute the majority of the studied materials, since they are considered one of the principal
sources of construction components and are used in various industrial sectors.

On a final note, it is hoped and strongly believed that the accumulation of additional knowledge in
the field of failure mechanisms and the adoption of the principles, philosophy, and deep understanding
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of the failure analysis process approach will strongly promote the learning concept as a continuously
evolving process, leading to personal and social progress and prosperity.
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