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Abstract: The present work introduces the role of heterogeneous microstructure in enhancing the
nucleation density of reversed austenite. It was found that the novel pre-annealing produced a
heterogeneous microstructure consisting of alloying elements-enriched martensite and alloying-depleted
intercritical ferrite. The shape of the martensite at the prior austenite grain boundary was equiaxed and
acicular at inter-laths. The equiaxed reversed austenite had a K-S orientation with adjacent prior austenite
grain, and effectively refined the prior austenite grain that it grew into. The alloying elements-enriched
martensite provided additional nucleation sites to form equiaxed reversed austenite at both prior
austenite grain boundaries and intragranular inter-lath boundaries during re-austenitization. It was
revealed that prior austenite grain size was refined to ~12 µm by pre-annealing and quenching, while it
was ~30 µm by conventional quenching. This is a practical way of refining transformation products by
refining prior austenite grain size to improve the strength, ductility and low temperature toughness
of heavy-gage plate steel.

Keywords: alloying element enrichment; heterogeneous microstructure; nucleation site; grain
refinement

1. Introduction

Low carbon low alloy steels have been widely used in fields of marine engineering, engineering
machines, and other structural applications due to their high strength, excellent toughness, good
weldability and low cost [1–3]. With the structural components becoming large and the need for cost
effectiveness, there is a significant demand for heavy gauge plate steel. However, for low carbon
low alloy heavy-gage plate steel manufactured by thermomechanical controlling process (TMCP),
austenite grains in the center of the plate gradually become larger due to insufficient reduction in
thickness during controlled rolling. This leads to the deterioration of mechanical properties, especially
low-temperature toughness [4–6]. Therefore, a heat treatment process should be applied to optimize
the mechanical properties of heavy plate.

Austenite grain refinement is well recognized as being of great importance in enhancing mechanical
properties of high strength low alloy steels [7–9]. Several efforts have been made towards the refining
of austenite grain size. Grange [10] reported that the thermal cycling process between martensite
and austenite is helpful in refining austenite grain size by reversed transformation. The effect of the
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two-step quenching (TSQ) and one-step quenching (OSQ) heat treatment process on austenite grain
size was studied [11], and the results showed that the prior austenite grain size of TSQ heat-treated
specimen was 50% finer than OSQ heat treatment. Further studies [12–14] found two morphologies of
reversed austenite from martensite or bainite: equiaxed austenite and acicular austenite during thermal
cycling process and multi-step heat treatment process. In addition, the mechanism of prior austenite
grain refinement was attributed to the enhancement of nucleation density of equiaxed austenite by
thermally activated nucleation or static recrystallization [15].

There is a vast literature [13,14,16–21] reporting that reversed austenite nucleates at the prior
austenite grain boundary, intersection of multiple-grains, packet boundary, block boundary and
cementite. Miyamoto [22] pointed out that austenite preferentially nucleates at the high angle boundary
of pearlite-ferrite. Studies [23,24] on the crystallographic characteristics determined that acicular
austenite had Kurdjumov–Sachs (K-S) orientation relationship ((111)fcc//(011)bcc, [−101]fcc//[−1–11]bcc)
with the matrix, while equiaxed austenite nucleated at prior austenite grain boundaries grew into the
adjacent prior austenite grain at high angle misorientation [23]. This also suggested that the equiaxed
austenite was beneficial in refining austenite grain size. In addition, some literatures [25–28] published
that cementite was the core of austenite nucleation. However, in this study, the content of carbon is
0.08 wt. %, which was too low to grow to the core of austenite nucleation. In contrast, the cementite
was easily decomposed. In this study, a novel pre-annealing process prior to quenching was introduced
to increase nucleation density of equiaxed reversed austenite and refine austenite grain size in the
core of heavy plate. Microstructure evolution during heat treatment was studied to elucidate the
mechanism of austenite grain refinement by pre-annealing and quenching.

2. Experimental Material and Procedure

The chemical composition of experimental steel was C 0.08, Si 0.23, Mn 1.21, P 0.011, S 0.002, Ni
1.1, (Cu + Cr + Mo) < 2.0, Nb 0.022, B 0.0012 and Ti 0.014 in weight percent (wt. %). The AC1 and
AC3 temperatures were measured by dilatometry to be 715 and 863 ◦C, respectively. Three specimens
(denoted as 1#, 2#, 3#) with dimensions of 10 mm (rolling direction) × 3 mm (transverse direction) ×
10 mm (thickness) were cut from the center of the experimental plate steel which was hot rolled to 100 mm
by TMCP, because of inferior mechanical properties of center plate. Heat treatments were carried out as
shown in Figure 1. Specimen 1# was reheated to 900 ◦C for 30 min for complete re-austenitization, and
then quenched to room temperature (Figure 1a). To isolate the effect of intercritical annealing, specimen
2# was isothermally held for 30 min at 740 ◦C followed by water quenching to room temperature
(Figure 1b), to distinguish the microstructure after intercritical annealing. In the case of specimen 3#,
two-step heat treatment process: intercritical annealing at 740 ◦C for 30 min followed by quenching and
reheating to 900 ◦C for 30 min followed by quenching, was applied, as shown in Figure 1b.
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The microstructure was characterized by optical microscope (OM) (OLYMPUS, Beijing, China),
field emission scanning electron microscope (FEG-SEM; ULTRA 55) and electron backscatter diffraction
(EBSD, Oxford Instruments, England, UK). For OM, the specimens were metallographically polished
and etched by Picric acid (China electron microscope scientific instrument, China) consisting of 10 mL
detergent (Diao Pai made in Nice Group), 2 mL CCl4, 0.2 g NaCl, 4.5 g picric acid and 60 mL deionized
water in 50–55 ◦C water bath in order to observe the equiaxed austenite grain size. The specimens were
etched by 4% nital for SEM observation. The local chemical composition in specimen 2# was examined
by energy dispersive x-ray spectrometer (EDS) facility available with transmission electron microscope.
The austenite transformation vs temperature during reheating was simulated by dilatometer at a
heating rate of 0.1 ◦C/s for the one-step and two-step processes. The specimens for EBSD analysis were
ground and electrolytically polished in an electrolyte of 10% perchloric acid, 5% glycerol and 85%
ethanol at 15 V for 30 s. The EBSD measurements were performed at a voltage of 20 kv with a step size
of 0.1 µm.

3. Results and Discussion

3.1. Refining Prior Austenite Grain

Figure 2 shows the effect of two-step heat treatment on the refinement of austenite grain size
in the core of heavy-gage plate processed by TMCP. The austenite grain size of hot rolled specimen
was ~105 µm in the core, as presented in Figure 2a, because the cooling rate was lower in the core of
the hot rolled plate; the microstructure was composed of bainite with large martensite and austenite
constituents (M/A). After conventional one-step quenching of hot rolled plate (specimen 1#), the prior
austenite grain was inhomogeneous, the large austenite grain (γb: ~78 µm) was surrounded by small
austenite grain (γa: ~29 µm), as shown in Figure 2b. For the specimen 2# (intercritical annealed at
740 ◦C for 30 min), as shown in Figure 2c, where it can be seen that austenite grain size was as large as
that of the hot rolled sample (~106 µm), but there was fresh martensite formed at the prior austenite
grain boundary (G-M) and the inter-lath (L-M). The microstructure of specimen 2# was composed
of G-M, L-M and intercritical ferrite (I-F); as indicated in Figure 2c, G-M and L-M was transformed
from equiaxed reversed austenite (ERA) and distributed at the prior austenite grain boundary, and
acicular reversed austenite (ARA) was present at bainite-lath. However, after the two-step heat
treatment (specimen 3#), fine and uniform austenite grains were obtained, as shown in Figure 2d. The
average grain size was ~12 µm, which was twice as fine as specimen 1#. It can be seen that the novel
pre-annealing heat treatment process enhanced the nucleation of reversed austenite and refined the
coarse prior austenite grains.
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Figure 2. SEM images of hot rolled plate steel (a) and specimen 2# (c) by nital etching; optical
microscope images of specimen 1# (b) and specimen 3# (d) by picric etching; M/A: martensite and
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3.2. Crystallographic Characteristics of Pre-Annealed Microstructure

The pre-annealed specimen (2#) was investigated by EBSD in order to analyze the crystallographic
orientation of fresh martensite at prior austenite grain boundary, as presented in Figure 3. A typical
fresh martensite ‘b’ between two prior austenite grains γ-A and γ–B was selected, as shown in Figure 3a.
From the pole figures, Figure 3b–d, it was found that the position of “one” particular Bain group of
selected fresh martensite in the (100) pole figure was identical to “one” Bain group of prior austenite
grain γ–B, which indicated that the selected fresh martensite held the K-S orientation relationship
with the prior austenite grain γ-B, but no orientation relationship with the prior austenite grain γ-A.
In addition, from the pole figures, Figure 3b,c, it was found that the fresh martensite between inter-laths
had the same Bain groups with intercritical annealed ferrite, which suggested that the fresh martensite
kept the K-S orientation relationship with the prior austenite grain. The fresh martensite between
the inter-laths was formed by acicular reversed austenite when cooling to room temperature. This
illustrated that the acicular reversed austenite held the K-S orientation relationship with the prior
austenite grain. Sadovskii [29] showed that it is possible to reconstruct the prior austenite by growth
and impingement of acicular austenite during austenitization.
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Table 1. Concentration of alloying elements in M for specimen 3#. 

Position Mn Ni Cu Cr 
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3.4. Role of Heterogeneous Microstructure 

The role of the heterogeneous microstructure in phase transformation of austenite was studied 
by thermal simulation (dilatometer) experiments, as shown in Figure 5. The start temperature and 
finish temperature of austenite transformation were 718 °C and 877 °C, respectively, for the one-step 
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austenite grain γ-A and γ-B in image (a); pole figures (d) corresponding to the selected sections of ‘b’ in
image (a).

3.3. Enrichment of Alloying Elements

The distribution of alloying elements in specimen 2# was examined, as presented in Figure 4.
From intercritical ferrite to martensite to intercritical ferrite on the other side, line scanning of alloying
elements (Figure 4a) showed that the contents of alloying elements, Mn, Ni, Cu and Cr increased
in martensite and decreased in intercritical ferrite (I-F), as shown in Figure 4b. Five-line scanning
results are shown in Table 1. It can be seen that the concentration of alloying elements Mn, Ni,
Cu and Cr was significantly higher in contrast to their nominal compositions, which formed the
heterogeneous microstructure of alloying element enriched martensite and depleted intercritical ferrite.
In combination with the image of Figure 2d, the heterogeneous microstructure is related to fine and
uniform austenite grains obtained by the two-step heat treatment.
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Table 1. Concentration of alloying elements in M for specimen 3#.

Position Mn Ni Cu Cr

1# 1.89 1.59 0.68 0.51
2# 2.08 1.67 0.85 0.68
3# 1.81 1.56 0.72 0.56
4# 1.95 1.57 0.79 0.59
5# 2.09 1.74 0.82 0.65

Mean 1.96 1.63 0.77 0.60

3.4. Role of Heterogeneous Microstructure

The role of the heterogeneous microstructure in phase transformation of austenite was studied
by thermal simulation (dilatometer) experiments, as shown in Figure 5. The start temperature
and finish temperature of austenite transformation were 718 ◦C and 877 ◦C, respectively, for the
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one-step heat treatment specimen, and for the two-step heat treatment specimen, they were 695 ◦C
and 881 ◦C, respectively, as presented in Figure 5a,c. We can see that from the plot of the rate of
austenite transformation and heating temperature, there was only a peak transformation rate for the
one-step heat treatment specimen (Figure 5b), and there were two peak rates for the two-step heat
treatment specimen (Figure 5d). This indicated that the alloying elements-enriched fresh martensite
had lower transformation temperature and alloying elements-depleted intercritical ferrite had higher
transformation temperature.
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The austenite nucleation during reheating for intercritically annealed specimen can be discussed
from the viewpoint of thermodynamics. As is well known, the thermal activated nucleation needs to
overcome the energy barrier before the formation of embryo. According to the nucleation theory [30],
under ideal state, the relationship of the nucleation energy barrier, interface energy and intrinsic energy
difference of fcc phase and bcc phase can be expressed by:

4G0 = 16πγ3/(3*(4g)2) (1)

where ∆G0 is nucleation energy barrier, γ is interface energy, ∆g is intrinsic energy difference of fcc
phase and bcc phase when bcc phase transformed into fcc phase. The nucleation energy barrier is
decreased when the interface energy is low (in our case, the interface energy was low because of
alloying elements enriched at the interface) and the intrinsic energy difference of fcc phase and bcc
phase increased. Thus, the necessary driving energy for nucleation was small, which enhanced the
nucleation rate of reversed austenite via thermally activated nucleation.

∆g = gfcc − gbcc (2)

where gfcc or gbcc represent intrinsic energy of α phase or γ phase, respectively, at a temperature and at
a given chemical composition.
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The composition of G-M/L-M and I-F after intercritical annealing at 740 ◦C was calculated by
Thermo-calc 3.0 based on TCFE 7.0 according to the nominal composition (NC). The alloying element
contents in G-M/L-M and I-F were 0.15C-0.21Si-2.03Mn-1.87Ni-0.52Cr-0.36Mo-0.80Cu (wt. %) and
0.05C-0.24Si-0.79Mn-0.74Ni-0.43Cr-0.48Mo-0.35Cu (wt. %), respectively. Figure 6 shows the intrinsic
energy difference of fcc phase and bcc phase for the nominal composition, martensite (G-M/L-M) and
I-F, respectively, during reheating. It can be seen that the intrinsic energy difference of G-M/L-M
was higher than NC when the temperature was below 763 ◦C, and the intrinsic energy difference
of I-F was greater than NC as the temperature was greater than 815 ◦C. Thus, the heterogeneous
microstructure can reduce the energy barrier and driving energy for nucleation, and enhance the
nucleation of equiaxed reversed austenite.
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3.5. Nucleation Rate of Reversed Austenite

The effect of heterogeneous microstructure on reaustenitization during reheating was studied
via step by step experiments. Experiments were designed every 20 ◦C in the temperature range of
720–860 ◦C for one-step and two-step heat treatment processes, and the results are shown in Figure 7.
Two optical microscope images show the distribution of equiaxed reversed austenite grain (Figure 7a,b)
for the one-step and two-step heat treatment processes. It can be seen that the equiaxed reversed
austenite grain was large and mainly distributed at prior austenite grain boundary for one-step heat
treatment specimen (Figure 7a); however, the fine equiaxed reversed austenite grain obtained by
two-step heat treatment was present at the prior austenite grain boundary and intragranular (Figure 7b).
The results in Figure 7b showed the heterogeneous microstructure can enhance the nucleation of
equiaxed reversed austenite. The number of equiaxed reversed austenite grains for different intercritical
annealing temperature were counted, as shown in Figure 7c (note: the statistical grain size was for an
area greater than 2 square micro-meters; for the two-step experimental specimens, the grain below
820 ◦C was too small to count). The austenite grain number for the two-step specimen was higher
than for the one-step specimen for every intercritical annealing temperature, which indicated that
the nucleation density of equiaxed grain for two-step specimen was higher in contrast to that of the
one-step specimen.
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Figure 7. The optical microscope images of one-step (a) and two-step (b) at 820 ◦C holding 1 min;
(c) the number of statistically equiaxed reversed austenite grain (within the size of 165 × 114 square
micro meter).

In a summary, a schematic image of austenitized behavior during one-step and two-step
austenitization is proposed, as shown in Figure 8. For the one-step heat treatment specimen, the
equiaxed reversed austenite (ERA) grains only occurred at the prior austenite grain boundary and grew
fast during austenitization (Figure 8b) to form the austenite grain γa (Figure 8c), the acicular reversed
austenite (ARA) grew and impinged to reconstitute the prior austenite γb (Figure 8c), as presented
in Figure 2b. For the two-step specimen, the heterogeneous microstructure of alloying elements
enriched fresh martensite (including G-M and L-M) and depleted intercritical ferrite was obtained after
intercritical annealing (Figure 8d), which enhanced the equiaxed reversed austenite grain nucleated at
the intragranular and prior austenite grain boundary during reaustenitization (Figure 8e). Finally, fine
and uniform austenite grain size was obtained after complete austenitization, (Figures 8f and 2d).
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4. Conclusions

In this study, coarse prior austenite grains in the core of heavy plate processed by TMCP were
studied by two-step heat treatment, and the conclusions are concluded as follows:

• The heterogeneous microstructures of alloying elements-enriched fresh martensite and -depleted
intercritical ferrite were obtained after intercritical annealing. The fresh martensite was distributed
at prior austenite grain boundary (G-M) and inter-lath (L-M). G-M was transformed by equiaxed
reversed austenite and the L-M was formed by acicular reversed austenite, when the reversed
austenite obtained during intercritical annealing was quenched to room temperature.

• The heterogeneous microstructure increased the intrinsic energy difference of fcc phase and bcc
phase below 763 ◦C or above 815 ◦C, and the interface energy decreased because of alloying
element enrichment at the interface, which reduces the nucleation energy barrier according to the
nucleation theory under ideal state. Therefore, the nucleation driving energy of equiaxed reversed
austenite is less. The heterogeneous microstructure can enhance the equiaxed reversed austenite
nucleation at intragranular and prior austenite grain boundary during reheating, which effectively
refined the coarse prior austenite grains in the core of hot rolled heavy plate processed by TMCP.

• The prior austenite grains in the core of heavy plate processed by TMCP was very large (~105
µm). The austenite grains were inhomogeneous when the hot rolled specimen was reheated
by one-step heat treatment process. However, for the two-step heat treatment process, fine and
uniform austenite grain size (~12 µm) was obtained, which was two times finer compared to the
one-step heat treatment. An effective way of improving strength, ductility and low temperature
toughness in alloy steel is to refine the prior austenite grain size. This study provides a possible
way of effectively refining prior austenite grain size.

Author Contributions: S.Y.: conceptualization, data curation, formal analysis, investigation, writing—original
draft; Z.X.: review & editing; J.W.: formal analysis, review & editing; L.Z.: data curation; L.Y.: dcuration; C.S.:
conceptualization, funding acquisition, supervision, review & editing; R.D.K.M.: review & editing. All authors
have read and agree to the published version of the manuscript.
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