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Abstract: The use of titanium bone fixation plates is considered the standard of care for skeletal
reconstructive surgery. Highly stiff titanium bone fixation plates provide immobilization immediately
after the surgery. However, after the bone healing stage, they may cause stress shielding and lead to
bone resorption and failure of the surgery. Stiffness-modulated or stiffness-matched Nitinol bone
fixation plates that are fabricated via additive manufacturing (AM) have been recently introduced
by our group as a long-lasting solution for minimizing the stress shielding and the follow-on bone
resorption. Up to this point, we have modeled the performance of Nitinol bone fixation plates in
mandibular reconstruction surgery and investigated the possibility of fabricating these implants.
In this study, for the first time the realistic design of stiffness-modulated Nitinol bone fixation plates
is presented. Plates with different levels of stiffness were fabricated, mechanically tested, and used
for verifying the design approach. Followed by the design verification, to achieve superelastic bone
fixation plates we proposed the use of Ni-rich Nitinol powder for the AM process and updated the
models based on that. Superelastic Nitinol bone fixation plates with the extreme level of porosity
were fabricated, and a chemical polishing procedure used to remove the un-melted powder was
developed using SEM analysis. Thermomechanical evaluation of the polished bone fixation plates
verified the desired superelasticity based on finite element (FE) simulations, and the chemical analysis
showed good agreement with the ASTM standard.

Keywords: Nitinol; additive manufacturing; patient specific implant; bone fixation plate; porous
structure; stiffness-modulation

1. Introduction

Oral cancer, infection, tumors, and trauma may lead to structural defects in the mandible either
aesthetically or functionally, which needs to be treated through reconstructive surgery. In this surgery,
the defective bone is removed and replaced with a bone graft using bone fixation plates and screws.
Graft mispositioning causes serious problems and so the reconstruction of segmental bony defects
needs to be accurate to provide facial contour with proper height and width of the bone and restore
jaw continuity [1]. To this end, fixation plates, most commonly made of Ti-6AL-4V (Ti64), or generally
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known as titanium), are used to provide stabilization and immobilization of the bone graft. Although
Ti64 bone fixation plates provide a high level of immobilization immediately after the surgery, they
may lead to stress shielding (bone resorption) or stress concentrations (device failure). Due to the
stiffness-mismatch between the Ti64 bone plates and the bone, stress shielding occurs on the adjacent
bone tissue, based on the bone remodeling theory, which leads to bone resorption. Followed by
continuous bone resorption on the adjacent bone, the stress levels on the bone plates increase and this
may lead to the failure of the plate, bone, and the surgery.

As a solution, our group has proposed and introduced a new generation of bone fixation plates
that are stiffness matched to the bone tissue and are fabricated via additive manufacturing [2–7].
Stiffness modulation and the matching is achieved via replacing the Ti64 with Nitinol, as well as
incorporating engineered porosity to the bone fixation plates. Nitinol (NiTi), is a biocompatible, low
stiffness, shape memory alloy, which benefits from interesting features such as superelasticity and
shape memory. Nitinol has been already used in many industrial applications as well as biomedical
applications [8–14]. In addition to the inherent low stiffness, NiTi superelastic behavior can be made
to be very similar to bone tissue. This makes it a great candidate for bone fixation and other skeletal
reconstruction applications. Although NiTi has a relatively lower level of stiffness, it still provides
a higher level of stiffness in comparison to the bone tissue. We have shown that by introducing an
engineered level and type of porosity to a bone fixation plate, one is able to further reduce the stiffness
of NiTi bone fixation plates and reach the level of bone tissue [15,16]. We have also shown that the
additive manufacturing method, in the form of selective laser melting (SLM), can be used for the
fabrication of porous NiTi bone fixation plates [17,18]. Although we have shown successful results in
different sections of this novel approach, in this article with a focus on the fabrication approach (i.e.,
additive manufacturing), we characterized the fabricated parts and updated the design methodology
based on that.

Advances in AM techniques and process development, we have been encouraged by many
researchers to study the specific fabrication of biomedical components, which were hard or impossible
to fabricate by conventional methods (e.g., machining, forging, etc.) in some cases. The use of
AM allows many opportunities not open to conventional methods, such as patient-specific implants
with tailorable properties [19–22], complex geometries [16], and better accuracies [23]. Rana et al.
fabricated a titanium patient-specific implant for reconstruction of the unilateral orbital fracture using
selective laser melting and compared it with a pre-bent titanium mesh, which was manually bent
to the desired shape. The results of 34 cases showed a higher degree of accuracy of reconstruction
in the case of SLM fabricated implants [23]. A custom made SLM titanium implant used in [24]
to treat post-traumatic zygomatic deficiency showed no sign of infection after one year with good
integration, suggesting SLM implants are an effective approach for alloplastic craniomaxillofacial bone
reconstruction. A clinical study of ten patients who used 3D-printed patient-specific Ti plates showed
facilitation in jaw reconstructive surgery as well as higher accuracies [25]. Most of the research in this
area has been conducted on Ti-6AL-4V plates and/or implants. In recent years, additive manufacturing
of NiTi alloys are getting more attention for the fabrication of complex shapes and geometries [26–30].
This is mostly due to the freedom of fabrication and the superior properties of NiTi, as mentioned
earlier. However, most of the research is fundamental, aimed at finding optimal fabrication process
parameters and their effects on the part’s properties [31], lattice structures [18], corrosion behavior [3],
modeling [32], and biocompatibility [33]. It should also be noted that all the SLM fabricated porous
structures in the literature have been evaluated only in compression mode and no study, as far as we
know, has been done on a realistic stiffness-matched porous bone fixation plate, which is under tension.

In this paper, standard-shaped 4-hole bone fixation plates with modulated levels of stiffness were
modeled and simulated in a finite element (FE) model. To validate the design and modeling procedure,
designed bone fixation plates with different levels of porosity were fabricated via selective laser melting
using Ni50.1Ti powder and mechanically tested under tension. After validation of the modeling
procedure, to achieve superelastic behavior, Ni-rich Ni50.8Ti powder was used for the fabrication of
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the second generation of the bone fixation plates. Thermomechanical and composition analysis of the
superelastic stiffness-matched porous bone fixation plates were discussed and a proper methodology
for polishing and removing the un-melted powder is then proposed.

2. Materials and Methods

In order to test the bone fixation plates using a standard tensile setup, a straight (not curved)
standard 4-hole bone fixation plate geometry, as shown in Figure 1a, was used for the fabrication of the
bone fixation plates in this paper. For the first series of fabrication, bone fixation plates with a 3-mm
thickness profile were designed and fabricated. At the second stage of the project, after validating
the FE model, to characterize the bone fixation plates with the critical level of porosity and the most
complex geometry, bone fixation plates with 1.5 mm thickness were fabricated. In order to impose
porosity on the bone fixation plates, a cubic pore cell as shown in Figure 1b, was used. The cube was
1 mm and by changing the thickness of the sides, the level of porosity was modulated. A thin 0.5 mm
cover as shown in Figure 1 was also designed to cover the bone fixation plate and provide the required
support for screws.
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Figure 1. (a) Overall geometry of the fabricated bone fixation plates and (b) unit pore cell used for
creating the porous bone fixation plates.

Two batches of Ni50.1Ti (at. %) and Ni50.8Ti (at. %) ingot were gas atomized using an electrode
induction-melting gas atomization (EIGA) by TLS Technik GmbH (Bitterfeld, Germany) to make
powder. The powder was sieved to produce particle sizes from 20 to 75 µm. The components of NiTi
were produced using an SLM machine (Phenix Systems PXM, [3D Systems], Rock Hill, SC, USA).
Our PXM SLM machine has a 300 W Ytterbium fiber laser with a wavelength of 1070 nm and a spot
diameter of 80 µm that yields a Gaussian (TEM00) profile. To lessen the impurities in the manufactured
samples, the oxygen level in the fabrication chamber was controlled to be less than 800 ppm. There are
two series of SLM fabrication process parameters, which are shown in Table 1. The standard dog-bone
samples of Ni50.8Ti with the gauge length of 20 mm, gauge the width of 3 mm, and thickness of 2 mm
were fabricated for capturing the mechanical properties of as-fabricated SLM parts.

Table 1. The process parameters (PPs) of two series of selective laser melting (SLM) fabrication.

ID Powder Laser Power
(P; W)

Scanning Speed
(V; mm/s)

Hatch Spacing
(H; µm)

Layer Thickness
(t; µm)

#1 Ni50.1Ti 250 1250 120 30
#2 Ni50.8Ti 250 1250 80 30
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A Perkin-Elmer (Waltham, MA, USA) Pyris 1 differential scanning calorimetry (DSC) was used
to identify the transformation temperatures (TTs) from −90 to 100 ◦C with a heating/cooling rate of
10 ◦C /min in a nitrogen atmosphere by separating small portions of samples ranging from 30 to
45 mg. The standard tensile samples were tested with 25 kN TestResources 910 Series Servohydraulic
fatigue test machine (TestResources, Shakopee, MN, USA). A BOSE ElectroForce 3330 machine (TA
Instruments, New Castle, DE, USA) was employed to test the bone fixation plates. All samples were
loaded with a strain rate of 10−4 (s−1) to make sure of isothermal condition. All tests were performed
at room temperature (RT). A 2D digital image correlation (DIC) system (correlated solutions, Irmo, SC,
USA) by Correlated Solutions, which uses a 5-megapixel camera, a Tonika 100 mm lens, and VIC_2D
software was employed to measure the strain. The samples were painted with black and white speckle
pattern for DIC measurement. The chemical analyses were performed on the SLM bone fixation plates
according to ASTM 2063 standards (Table 2). Two different etching solutions (Table 3) and three
different exposing times (2, 4, and 6 min) were utilized to chemically polish the superelastic porous
bone fixation plates [34–36]. To evaluate the polishing procedure a FEI Quanta 3D FEG scanning
electron microscopy (SEM, Thermo Scientific, Waltham, MA, USA) was used.

Table 2. ASTM 2063 test method description.

Test Method Description

ASTM E1409-13 Inert gas fusion for oxygen and nitrogen
ASTM R146-83 Vacuum hot extraction for hydrogen
ASRM E1941-16 Combustion infrared detection for carbon
ASTM E1097-12 Direct current plasma emission spectroscopy for all other elements

Table 3. The chemical composition of two etching solutions used for chemical polishing.

Etching Solution Chemical Composition Ratio (HF:HNO3:H2O)

Solution 1 HF (10%), HNO3 (40%), H2O (50%) 1:4:5
Solution 2 HF (5%), HNO3 (50%), H2O (45%) 1:10:9

3. Modeling

The bone fixation plates that we prepared were 3 mm thick with five different levels of porosity
(bulk (0%), 17%, 20%, 24%, 27%, and 30%) were designed based on the methodology explained in the
methods section. The STL file of designed bone fixation plates was re-meshed and proper volume
meshes (10-node tetrahedral elements (C3D10)) were created and verified in a mesh convergence study.
The final volume meshes were exported as INP files and imported to Abaqus (V2019, Dassault Systems;
Providence, RI, the USA for finite element modeling). An Abaqus user-defined material subroutine
(UMAT) developed based on the micro-plane theory [37–39] was used for capturing the mechanical
behavior of the NiTi bone fixation plates. The UMAT is capable of simulating both superelastic and
shape memory effects of shape memory alloys under multiaxial loading conditions [15] and requires
the thermomechanical properties of the standard coupons (e.g., Young’s modulus for austenite and
martensite, transformation temperatures, critical stresses, etc.) as the input. More details on the utilized
UMAT can be found elsewhere [40].

Thermomechanical properties of Ni50.1Ti from [41] were used for tuning the UMAT mentioned
above. Followed by preparing the FE model, the uniaxial tensile test of the bone fixation plates
was simulated. The load-displacement response of the bone fixation plates under tensile loading
is summarized in Figure 2. As it is seen in Figure 2, adding different levels of porosity to the bone
fixation plates alters the stiffness of the plates and can be used for achieving engineered levels of
stiffness. As the next step, the simulated bone fixation plates were fabricated and used for validating
the FE simulations.
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Figure 2. The load–displacement response of simulated plates with different levels of porosity.

4. Mechanical Evaluation

To validate the simulation results, a series of uniaxial tensile mechanical testing on the first
series of bone fixation plates with different levels of porosity was performed. All the parts were
fabricated horizontally and on a support structure. As shown in Figure 3, the same trend was observed
for the load-displacement response of the fabricated bone fixation plates, so that the stiffness of the
plate decreased as the level of porosity goes up. For making a comparison between experimental
and simulation data, the results of two extreme conditions (bulk bone fixation plate, 30% porosity)
were plotted in Figure 4, and as it can be seen, the simulation results are in good agreement with
experimental data.
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Figure 4. Comparison of experimental and simulation results of (a) bulk plate (0% of porosity) and
(b) the plate with the porosity of 30%.

As was shown in the previous sections, the stiffness of the bone fixation plates, regardless of their
overall geometry, can be modulated and tuned to a specific level based on the stiffness of the bone to
which it will be attached. However, based on our reading of the clinical literature, it would be useful
to be able to create superelastic bone fixation plates in order to recover a larger level of deformation
and insure compression between adjacent bone segments that are healing. The superelasticity of
bone fixation plates could also act as a shock absorber to prevent failure of the implant in case of
short term high impact forces or extreme, but unusual, loading conditions (i.e., failsafe). In addition,
it is sometimes useful to apply constant pressure where the bone fixation plates are used. Contact
pressure (compression) created by the bone fixation plate should improve the healing procedure
and reduce the micromotions that would rip apart the healing region. However, as it can be seen
in the load-displacement response (Figures 3 and 4), the fabricated bone fixation plates did not
exhibit superelasticity and a noticeable level of recoverable strain. Therefore, after validation of the
design, modeling, and fabrication procedure, we replaced the Ni50.1Ti powder used for the SLM
procedure with a more Ni-rich powder (Ni50.8Ti) to reduce the transformation temperatures and create
superelastic bone fixation plates. The next section discussed the details of the transition to superelastic
bone fixation plates.

5. Superelastic Stiffness-Modulated Bone Fixation Plates

In order to investigate the superelastic response of bone fixation plates, only bone fixation plates
with the most complex geometry (minimum thickness = 1.5 mm) and an extreme level of porosity (i.e.,
46%) was considered. To create a realistic geometry for the bone fixation plate, a 4-hole 1.5 mm thick
bone fixation plate as shown in Figure 5a was provided by Stryker (Kalamazoo, MI, USA). The plate
was then scanned using a micro computed tomography (micro-CT), and its CAD model was created
(Figure 5b). Using the same methodology explained earlier, the porosity (0.6 mm pore cells) and a
covering thin-wall structure (0.2 mm) added to the CAD model (Figure 5c,d). After creating the final
CAD model for the porous plate, by following the previous procedure, an FE model for simulating
the tensile behavior as well as an STL file for the SLM fabrications was created. In order to accurately
characterize the tensile behavior of the Ni50.8Ti bone fixation plates, standard tensile samples were
also designed and prepared for fabrication in addition to the bone fixation plates. Figure 6 shows the
fabricated bone fixation plates immediately after fabrication and before the support removal procedure.
Localized and overall thermomechanical behavior of the standard tensile coupon as well as the bone
fixation plates, is discussed in the next section.
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5.1. Thermomechanical Behavior

DSC results, as well as the transformation temperatures of Ni-rich porous bone fixation plates,
standard dog-bone samples, and powder particles, are shown and reported in Figure 7 and Table 4,
respectively. For the porous plate, the DSC samples were cut from three different regions as shown
in Figure 6. Based on the location that the DSC samples were cut from, different transformation
temperatures were achieved. The transformation temperatures (TTs) variation can be explained by
the nature of the SLM process and the complex shape of the porous plates that resulted in different
thermal histories. The effect of different thermal histories during the SLM process can be compared
to different heat treatment procedures, which are performed on the final parts. As different heat
treatment procedures lead to different TTs, for instance, different thermal histories also can lead to
non-homogeneous microstructure [42] as a result, different TTs. This non-homogeneity and variation
in TTs variation indicate the necessity of the heat treatment as a post-processing procedure for the
as-fabricated samples for creating a homogeneous part. In this study, we did not optimize the heat
treatment procedure for the bone fixation plates. That will be studied at a later time.

Table 4. The transformation temperatures (TTs) of powder, dog-bone, and the porous samples.

Sample Ms (◦C) Mf (◦C) As (◦C) Af (◦C)

Powder 10.2 −46.6 −16.9 33.1
Porous #1 12.89 −57.08 −15.82 33.85
Porous #2 0.62 −56.09 −15.53 22.35
Porous #3 2.34 −54.36 −18.72 17.74
Dog-bone 2.14 −60.06 −15.10 26.96
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To measure the material properties of the fabricated Ni-rich bone fixation plates and updating the
FE model, two standard tensile samples were tested, and the results are shown in Figure 8. The first
sample was loaded up to the failure with a low strain rate (0.0001 S−1) to maintain the isothermal
condition. Based on the stress-strain plot of the first sample, a loading-unloading test on the second
sample was designed. The second sample was loaded up to the end of the plateau region (3% strain)
and then unloaded to zero loads. The transformation strain of 2.6% (81% of total strain) was achieved
for the as-fabricated part under tension. The material showed around 0.6% of irrecoverable strain that
could be a result of permanent strain (slip) or the locked-in detwinned martensite and can be recovered
by heating [43].
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Figure 8. Stress–strain response of SLM dog-bone samples.

The mechanical properties of the as-fabricated material were reported in Table 5. The austenite
(EA) and martensite (EM) modulus of elasticity were captured from loading and unloading plots,
respectively. Followed by obtaining the material properties from the tensile samples, the Ni-rich bone
fixation plate was simulated under tensile loading and unloading. The as-fabricated Ni-rich bone
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fixation plates were then mechanically tested under the same boundary conditions. Figure 9 shows the
simulations as well as mechanical testing of the Ni-rich bone fixation plate.

Table 5. The mechanical properties of the standard tensile sample fabricated via SLM.

EA (GPa) EM (GPa) Critical Stress Start (MPa) Critical Stress Finish (MPa)

54 36 350 430
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After inspection of the fabricated Ni-rich bone fixation plates, we observed a relative geometrical
difference between the fabricated part and the CAD model. The size had increased in comparison with
the previous case (i.e., the first series of bone fixation plates with larger dimensions). As reported by
others [27], as-fabricated SLM fabricated parts could exhibit a geometrical expansion that is related
to the laser width, melt pool diameter, and the fact that the part is surrounded by loose powder.
The geometrical expansion of SLM-fabricated parts has a more significant effect when the parts include
fine details that are close to the laser width. In the case of fabricating Ni-rich bone fixation plates
with the extreme geometrical features, the geometrical expansion led to a higher difference with
the simulations and the expected behavior. In addition, because of the fine features of the Ni-rich
bone fixation plates, a higher amount of un-melted powder was trapped in the pore cells that affect
the mechanical response and could affect their biocompatibility. Therefore, we have investigated a
chemical polishing method to remove the un-melted powder particles attached to the parts, while not
disturbing the fine geometries. This procedure is discussed in the next section. Eventually, the polished
bone fixation plate that showed 23% mass loss was mechanically tested, and the load–displacement
response is shown in Figure 9.

5.2. Chemical Polishing

Using the selective laser melting process, the complex geometries required for the bone fixation
plates can be accurately fabricated. However, the SLM process often results in un-melted powders
and other undesirable features that remain fused to the fabricated product. In order to remove the
un-melted powder and to add a smooth finish to the part to improve performance (e.g., mechanical,
cleaning, and sterilization reliability), a finishing process is required. Due to the complex geometries
and fine porous structure of Ni-rich implants, current mechanical finishing processes are not efficient.
They may damage the components and cannot reach fine internal features. Therefore, a chemical
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etching process was opted for. The chemical etching and finishing processes of additively manufactured
nickel–titanium components is not well researched. Therefore, a series of tests were undertaken in
order to better optimize the etching solution used for the bone fixation plates.

The tests consisted of two different etching solutions and three different times for submerging the
components within those solutions (Table 3). The samples were cleaned in water using an ultrasonic
bath for 5 min both before and after the chemical finishing process. Both solutions were composed of
hydrofluoric acid (HF), nitric acid (HNO3), and purified distilled water (H2O). It is known that the HF
in the etching solution act as a dissolvent while the HNO3 behaves as a passivator [44]. The distilled
water is used to dilute the solution in order to prevent excessively rapid corrosion/material loss.
The samples were submerged for 2 min, 4 min, and 6 min.

Figure 10 shows the results of the chemical etching process on the mass loss of the samples etched
the two trialed solutions. Three bone-plate was etched within the etching solution 1 while three others
were etched within the solution 2. The mass loss increased proportionally with the time for both
solutions. The results show that the second solution with reduced HF and increased HNO3, removed
material at nearly twice the rate of solution 1.
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The effect of the etching procedure on the geometry, as well as the surface finish of the samples,
is reflected in the SEM images in Figure 11. As it can be seen in the “As-built” sample, excessive
un-melted powder is attached to the surface of the as-built sample and almost entirely covered the
pores. S1-2, S1-4, and S1-6 show the SEM images of samples etched with solution 1 with the different
durations of 2, 4, and 6 min. The un-melted powder was partially removed on S1-2. S1-4 and S1-6 that
were submerged for a long time showed the best result of the chemical polishing. In order to make
a more accurate comparison on the effect of chemical polishing, the distance between the pores was
measured and compared with the original distance on the CAD file. Based on this comparison, the size
and geometry of S1-2 had the most consistency with the original CAD model, and therefore it was
reported as the optimized polishing procedure. The polishing by solution 2 for 2 min (S2-2) was almost
good but still more than required. While the polishing with solution 2 for 4 and 6 min (S2-4 and S2-6)
was too aggressive and caused excessive degradation of the pore structures.
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5.3. Chemical Composition Analysis

Understanding the chemical composition of bone fixation plates is critical. Since this is a medical
implant, strict controls are required to ensure biocompatibility (i.e., lack of toxicity). Analyzing and
accounting for any precipitates or ion formation due to the additive manufacturing process is, therefore,
a necessity. The results for our chemical analysis of these bone fixation plates is displayed in Table 6.
The elements analyzed were carbon (C), hydrogen (H), oxygen (O), nitrogen (N), nickel (Ni), cobalt
(Co), copper (Cu), chromium (Cr), iron (Fe), niobium (Nb), and titanium (Ti). The composition analysis
is compared with the allowable values of nickel–titanium shape memory alloys for medical devices
and surgical implants, as described in ASTM F 2063 [45]. The results show that the AM Nitinol
compositions were within expected parameters with respect to total weight percentage. However,
the nitrogen plus oxygen level was slightly above the acceptable ASTM requirement at this stage in
our work. The cobalt, copper, chromium, nitrogen, carbon, hydrogen, and niobium were not present in
a quantity sufficient to alter the predicted mechanical performance. Ratios of iron and oxygen were
also low and do not present an obstacle to the performance and safety of these bone fixation plates.
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Table 6. The results of the chemical composition analysis.

Element. Composition (wt. %) ASTM F-2063 Composition Requirements (wt. %)

Nickel 56.0 54.5–57.0
Carbon 0.002 <0.050
Cobalt <0.0005 <0.050
Copper <0.0005 <0.010

Chromium <0.0005 <0.010
Hydrogen 0.0004 <0.005

Iron 0.016 <0.050
Niobium <0.002 <0.025
Oxygen 0.058 -

Nitrogen <0.005 -
Nitrogen + Oxygen <0.063 <0.050

Titanium Balance Balance

6. Conclusions

The porous stiffness-modulated NiTi bone fixation plates with different levels of stiffness were
designed and modeled via a FE analysis. It was shown that specific levels of stiffness could be achieved
by introducing engineered levels of porosity to the bulk plate, and the mechanical properties can be
captured using the properties of standard coupons. Due to the complex geometry of porous bone
fixation plates, the SLM technique was employed to fabricate the NiTi plate. This methodology can
be applied to complex geometries and plates as thin as 1.5 mm. The as-fabricated parts were tested
mechanically, and the experimental results were in a good agreement with the FE model. After
modeling verification and confirming the design methodology, Ni-rich bone fixation plates were
fabricated to achieve superelastic behavior. The DSC results of the porous Ni-rich bone fixation plate
showed a small variation in TTs of different locations of the plates. Various thermal histories that
the parts experienced during the SLM process were the main reason for the variation in TTs. Two
tensile samples using Ni-rich powder were fabricated along with Ni-rich bone fixation plates and
tested to measure the mechanical properties used for FE modeling. The as-fabricated porous Ni-rich
bone-plate fixation was tested and the predicted superelastic behavior was achieved. In order to test
methods to remove un-melted powder particles from the surface following AM, the bone-plates were
chemically polished under six different conditions. SEM analysis revealed that an etching solution
with a composition of HF (10%), HNO3 (40%), H2O (50%), and the effective time of 4 min, was the
optimal etching solution to remove un-melted powder particles. The chemical composition analysis of
our Ni-rich SLM bone fixation plates confirmed that the composition was in a good agreement with
the ASTM 2063 requirements.
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