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Abstract: The open die forging sequence design and optimization are usually performed by simulating
many different configurations corresponding to different forging strategies. Finite element analysis
(FEM) is a tool able to simulate the open die forging process. However, FEM is relatively slow and
therefore it is not suitable for the rapid design of online forging processes. A new approach is proposed
in this work in order to describe the plastic strain at the core of the piece. FEM takes into account
the plastic deformation at the core of the forged pieces. At the first stage, a thermomechanical FEM
model was implemented in the MSC.Marc commercial code in order to simulate the open die forging
process. Starting from the results obtained through FEM simulations, a set of equations describing the
plastic strain at the core of the piece have been identified depending on forging parameters (such as
length of the contact surface between tools and ingot, tool’s connection radius, and reduction of the
piece height after the forging pass). An Artificial Neural Network (ANN) was trained and tested in
order to correlate the equation coefficients with the forging to obtain the behavior of plastic strain at
the core of the piece.

Keywords: open die forging; artificial neural network; fast simulator; process optimization

1. Introduction

Forged steels represent a quite interesting material family, both from a scientific and commercial
point of view, following many applications they can be devoted to [1]. Moreover, it is essential to
deeply understand the relations between properties and microstructure and how to drive them by
process [2–6]. Such steels are widely applied in the machining and forming industry [7–9], in automotive
applications [10], and in other fields including aerospace, transport, and precision industries [11–13].
Moreover, along with the development of the energy industry and the growing power of power
engineering devices, the demand for large-sized hot-forged products has also increased. This includes
turbine shafts (water, gas, steam), rotors for wind, and gas power generators [14]. The forecast of
the Forging Industry Association (FIA) regarding the steady increase in demand for forgings used
in the power engineering and oil industries was confirmed at the 20th International Forgemasters
Meeting (IFM’2017) in Austria. Furthermore, based on data from EUROFORGE (an organization that
associates European production associations, including the Polish Forge Association), the volume of
forged products has been growing steadily, and in 2020 it will reach over 10 million tons. The global
forging market is likely to grow significantly at a compound annual growth rate (CAGR) of close to 8%,
reaching USD 111.1 billion by 2020, according to Technavio’s latest report [15].

Metals 2020, 10, 1397; doi:10.3390/met10101397 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-5222-903X
http://www.mdpi.com/2075-4701/10/10/1397?type=check_update&version=1
http://dx.doi.org/10.3390/met10101397
http://www.mdpi.com/journal/metals


Metals 2020, 10, 1397 2 of 14

In all the above applications, forgings are adopted following a requirement in terms of increasing
manufacturing economic efficiency and enhancing mechanical properties, such as high strength, wear
resistance, hardness, and toughness [16,17].

Free forging is the oldest forging method commonly adopted to forge heavy charge materials in
short production runs. High-pressure hydraulic forging presses are on the other hand used in open
die forging of heavy steel forgings (carbon, alloy, high-alloy, stainless and other steels). Open die
forging is an incremental forging process that is mainly used to produce large parts requiring high
mechanical properties and reliability of the forged parts [16]. In the steel industry, there is a need
to produce several large components characterized by high weight, which require high press loads.
Such components can be spindles, rolls for rolling mills as well large turbine shafts and nuclear reactor
vessels [18,19]. In the open die forging process, the workpiece is processed using dies, which can be flat
or shaped (e.g., concave or V-shape). The piece undergoes a plastic deformation at high temperature
when is pressed by a series of multiple strokes along the feed direction. In this way the piece changes
both its geometry and internal properties [20].

The forging process is able to reduce many defects induced by casting process (e.g., cavities,
porosities), thus allowing to manufacture almost defect free pieces by assuring a homogeneous plastic
strain in the workpiece [21,22]. The quality of the open die forging process depends on several
parameters such as die width, the shape of the die, die overlap, die stagger, ingot shape and dimensions,
temperature gradient, pass schedule, and so on [23]. In order to achieve the requirements in term
of geometric tolerance and internal quality, it is common practice to set up an appropriate pass
schedule which has to be verified using numerical simulations. In order to do that, in the case of
forging sequence design and optimization, it is necessary to simulate many different configuration
corresponding to different forging strategies in order to identify the best solution. FEM is one of the
most commonly adopted approach, anyway, it is reported that it requires significant efforts in terms of
both computational resources and time [24,25].

The second limitation of the FEM approach in designing the forging strategy: in fact, it is not
always possible to predict process conditions because the manufacturing processes are often quite
unpredictable if compared with pilot or laboratory process, as often adopted to validate the simulate.
For this reason, it is useful to develop fast calculation models of the open die forging process that allow
to perform a rapid calculation of material properties during the layout of the process as well for the
online monitoring of the process.

In the past, some authors dedicated to the development of fast models oriented to open die forging
process optimization [26–30]. The common idea at the base of the above works was to develop process
models able to combine data from online measurements and a simplified plasto-mechanical model
for the forecasting of the equivalent strain, strain rate, and the temperature in the core of the forged
piece. The final aim of such models is to optimize the stretching forging not only from a geometric
point of view but also in terms of final microstructure, internal quality (e.g., casting porosity closure),
working temperature to avoid phase transformation during the mechanical processing. Kim et al. [27]
developed forging pass schedule algorithms based on artificial neural networks (ANN) are mainly
oriented to calculate the optimum number of passes and reduction in each pass to economize power
and minimize the forging cycle time. The algorithms were trained on the experimental data from pilot
and full-scale industrial forging.

Starting from the approach reported in [28–30], a new formulation based on artificial neural
networks (ANN) [31,32] is proposed in this work to quickly (fraction of a second) and correctly evaluate
the plastic strain at the core of the piece. Starting from the coefficients for the new analytical model,
a neural network has been implemented and trained using analytic coefficients in order to obtain a
fast estimation of the plastic strain that is able to allow rapid and accurate evaluation of deformation
occurring during the forging process. The correct evaluation of plastic strain at the core fiber of the
forged product is a parameter to consider in a tool that aims at the internal integrity of the material or
the final microstructure optimization.
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2. Methods

2.1. FEM Model for Open-Die Forging of 42crmo4 Steel Grade

The open die forging of large products is a very complex process made of a sequence of several
forging operations like upsetting, cogging, drawing, also including the furnace soaking to reheat
the pieces between deformation steps. In order to fulfill the final requirements for the product,
the understanding and prediction of microstructures that develop during deformation processing
are necessary. In the stretching forging process, the pass sequence is roughly square or round to
octagon to round, where the reduction ratio only varies every second pass. In the considered pass
sequence, the round is forged to an oval section with a given height reduction, turned 90◦, and then
forged again with the same reduction and same bite ratio, producing a square cross-section. The newly
obtained square bar is then forged into an octagonal bar, which is an intermediate shape between
square and round. Finally, the round bar is produced in successive passes by deforming the octagonal
bar. The octagonal bar has a greater cross-sectional area than the final round bar. The round bar is
finished in a round-contoured die during the finishing passes. Figure 1 shows the overall forging
sequence from a square billet to a round bar.
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Figure 1. Schematic representation of the simulated forging process.

Simulation of the stretching forging process of a 42CrMo4 steel has been performed by an FE model
developed using the commercial code MSC.Marc. Such code is well known for being characterized by
a high accuracy tool for closed and open die forging process simulation [33–35]. The strokes start in
the central part of the piece and proceed until the 4th stroke as shown in Figure 1.

In order to have accurate predictions from the model it is important to adopt proper material
models to describe the flow stress. For this reason, laboratory compression tests are usually conducted at
the Gleeble on cylindrical specimens with different temperatures, strains, strains rates, post deformation
holding times to characterize the flow stress, static recrystallization and grain size evolution during
forging. The rheology has been modelled following the model in [36].

At a first stage, some forging relevant parameters have been chosen in order to simulate the
deformation process, such as: ingot diameter D, on contact die length Sb0, forged piece temperature,
percentage reduction. The chosen die has a flat shape, and the numerical values of the parameters
adopted to implement the FEM model are shown in Table 1, which corresponds to about 600 simulations
after Design of Experiment (DOE).

In Figure 2 it is possible to notice that the total equivalent plastic strain reaches the maximum
value below the right side of the flat die. This effect is mainly due to the presence of the manipulator
that, blocking the ingot as shown in Figure 1, causes a peak of plastic strain of about 1.02 (the amount
of the deformation depends on forging conditions). This effect is in common for every simulated case.
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Table 1. Parameters of FEM simulation for stretching forging process for round ingot.

Forging Parameter Minimum Value Maximum Value Step

Temperature [◦C] 800 1200 100
Sb0 [mm] 150 750 150

Reduction [%] 5.0 25.0 2.5
∆Sb0 [%] (Pitch [%] respect Sb0) 10 (90%) 50 (50%) (20%)

Ingot initial diameter [mm] 300 1500 300
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Figure 2. Effect of the presence of manipulator during forging process for a Sb0 of 300 mm.

An example of FEM 3D map results in terms of total equivalent plastic strain at the core of the piece
is reported in Figure 3. The model was implemented considering a double symmetry in longitudinal
and radial directions and a constraint as in Figure 1 in order to consider the presence of the manipulator
during the forging process. From a thermic point of view, the calculation was carried out considering
isothermal condition, without exchange between ingot and external environment and tools in order to
separate the thermal effect from the mechanical one on the plastic strain at the core of the ingot.
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Figure 3. Total equivalent plastic strain at the core of the piece for an ingot with a diameter of 300 mm,
25% reduction, for Sb0 of 300 mm and a ∆Sb0 of 10% at T = 1200 ◦C for the first series of strokes.

Figures 2 and 3 show the typical distribution of plastic deformation through the ingot radius and
longitudinal direction with the maximum value of deformation reached in the contact area between
tools and ingot closest to the manipulator. In the thickness, the deformation distribution takes on
the classic v-shape with the relative maximum on the core fiber [37] for the considered ratio between
contact die length and ingot diameters (Sb0/D).
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2.2. Analytical Model for Open Die Process Simulation

A prior analysis of FEM results in terms of plastic strain at the core of the forged piece (Figure 4)
has been carried out in order to represent the plastic strain at the center of the piece.
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piece in terms of plastic strain as a function of the length.

An example of output of the FEM thermo-mechanical simulation follows the evolution reported
in Figure 5 concerning the evolution of plastic strain as a function of length at 1200 ◦C, Sb0 = 300 mm,
reduction = 25%. As shown in Figure 5, the simulated forging process is characterized by a first stroke
characterized by a major contact zone due to the fact that during the first stroke the material is not yet
deformed. The last three strokes follow the same evolution.
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Figure 5. Evolution of plastic strain as a function of length at 1200 ◦C, Sb0 = 300 mm, reduction = 25%,
ingot diameter equal to 300 mm, pitch 90%.

In this work a separation of the strokes was performed in order to distinguish each one and apply
the analytical model and the neural network separately. Moreover, because the strokes following the
first follow similar behavior in terms of maximum plastic strain, only the first and the second strokes
could be considered in the analysis.

According to [37] the distance between the growth and decay phase of plastic strain on ingot core
fiber increases while the ratio Sb0/D decreases. This effect is showed in Figure 5: comparing the first
stroke (Sb0/D = 1.0) and the subsequent (Sb0/D = 0.9), it is possible to note that, with a pitch equal to
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90%, the Sb0 is reduced to 270 mm. A double sigmoidal function has been chosen to represent the
evolution of the core fiber plastic strain of a single stroke [38,39]. The sum of two hyperbolic tangents
(Equation (1)) has been implemented in order to better reproduce the plastic strain evolution at the
core of the forged piece along the ingot axis. The growth phase and decay phase of plastic strain are
represented by Equations (2) and (3). Equation (1) varies from 0 to 2 and is continuously derivable
and defined throughout the Real numbers domain, therefore it can be used without problems in an
optimization system.

ε
p
tot = M ∗

(
tan h

(
x− C1

D1

)
+ tan h

(
−

x− C2

D2

))
(1)

ε
p
1 = tan h

(
x− C1

D1

)
(2)

ε
p
2 = tan h

(
−

x− C2

D2

)
(3)

Coefficients in Equations (1)–(3) are respectively:

• C1 and C2 represent the middle points of growth and decay phase respectively. In order to identify
the inflection point for each sigmoidal branch, an analysis has been carried out on FEM results,
identifying the point with the 50% of the maximum plastic strain at the core fiber.

• D1 and D2 represent the slopes of the growth and decay branches of the function.
• M is a multiplier coefficient. The Equation (1) varies in a range between 0 and 2, thus the coefficients

M brings the maximum of double-sigmoidal curve to the maximum of plastic strain.

The coefficients C1, C2, D1, D2 and M have been obtained by fitting of double-sigmoidal
model on the FEM results in terms of total equivalent plastic strain along the core fiber for each
forging configuration considered in this analysis. The obtained coefficients do not have an identified
mathematical dependence by forging parameters. The fitting of mathematical model described by
Equation (1) to the individual conditions of the forging process could be carried out using a fragmented,
look-up table-based approach. This approach has disadvantages due to the required size for the look-up
tables and the lack of interpolation capability. The application of neural networks within the control
strategy, setup model, and optimization tool has significantly reduced such kind of problems [40].
The obtained coefficients were used to train the proposed neural network.

2.3. Forecasting Models Based on Artificial Neural Networks (ANNs)

The artificial neural networks (ANNs) can be considered nonlinear regressive models, realizing
the correlation between a set of independent variables and a set of dependent variables.

Neural networks are mathematical models able to learn from empirical data collected in some
problem domain by approximating sample of it in a data set, without any assumption about the physical
laws, systems inspired by biological neural networks that constitute brains of animals. This correlation
between variables is achieved through a training process during which a data set containing both
independent and dependent variables is used to iteratively adapt the internal structure of the neural
model to its purpose [41].

Because the functional relationship between causes and effect of the physical phenomena is
extracted from the samples, the performance provided by the ANN model is related to the range of
variability and accuracy of the data set. Such models are completely different from a Deterministic
Model that requires a priori knowledge of the relationships of a system, based on First Principles
typically derived from physical, chemical or biological principles. For this reason, high complexity of a
problem or the unsatisfactory performance of other techniques (e.g., deterministic model, Linear and
Not-Linear multiple regression) are condition for a suitable application of an ANN model. For this
reason, artificial neural network models are considered a sort of Black Boxes which do not account the
mathematical expression describing the physical phenomenon once the training procedure is finished.



Metals 2020, 10, 1397 7 of 14

The ANN performances are comparable to the correspondent Deterministic model, and are chosen for
a fast development of models due to the flexibility to codify relationships between any set of physical
variables (real, discrete and Boolean), and an easy integration with resident control system and SW.
The Requirement for a stochastic ANN model is mainly the Input/Output (I/O) functional relationship
between causes and effect and a set of process observation covering a wide enough range of variability
of the variables [31].

Artificial neural networks can be collected in families according to the learning and recall
algorithms. The network adopted in this work belongs to the multi-layer perceptron (MLP) family
whose learning algorithm is back propagation (BP) [42]. The back-propagation learning algorithm
provides the optimal configuration of the weights by calculating the error between the target and the
network response. The root mean squared (RMS) error has been adopted as index of performance both
for each single output variable and for the output as a whole.

Since these mathematical models are based on data observation, their performance is strongly
conditioned by the quality of the data itself. Because the data are provided by the calculation of a FE
model and simulations are defined by means of a DOE, no data duplication (similarities) or scattering
are present in the data. In this condition, no correction (elimination of similarities) or filtering action are
required [41,42]. Clustering analysis was carried out in order to define and identify the cluster, and then
for the definition of best neural network topology and number of neural networks. The independent
variables of ANN are the forging parameters in terms of workpiece temperature and diameter, Sb0,
fitch, reduction and stroke number while the output is in terms of the coefficients of double-sigmoidal
function that models total equivalent plastic strain. Input and output data have been normalized
within the range 0 and 1 with a linear function between the minimum and maximum value of each
quantities, Table 2.

Each node in ANN is fully connected to the nodes of the following layer (hidden or not) through
a sigmoidal transferring function and weights whose value is adapted during the learning phase to
encode on them the knowledge of the forging process described by the used dataset [42].

The implemented ANN is composed of 1 bias node and a single hidden layer characterized by
13 hidden nodes.

The initial data, that consisted in about 600 examples, has been divided into three groups:

• Training: about 400 examples;
• Validation: about 150 examples;
• Test: about 50 examples.

The examples have been subdivided considering the three main clusters identified during the
data analysis.

Table 2. Normalized values for artificial neural network.

Variable Min Value Max Value Min Normalized Value Max Normalized Value

Sb0 75 750 0.1 0.9
Temperature 800 1200 0.1 0.9

Reduction [%] 5 25 0.1 0.9
C1 −384 −28 0.1 0.9
D1 19 60 0.1 0.9
C2 9.5 350 0.1 0.9
D2 27 60 0.1 0.9
M 0 0.24 0.1 0.9

3. Results and Discussion

Figures 6–8 report the comparison between the coefficient of Equation (1) fitted on FE results and
calculated by ANN concerning the 50 examples used for the tests. The figures show that the data
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groups into the three identified cluster. The scatter plot related to the C1 and C2 coefficients used to
train the ANN coefficients, and the coefficients trained by ANN is reported in Figure 6a,b. Furthermore,
R2 is reported in such figures. Results are characterized by little dispersion and the good agreement
between the coefficient forecasted by ANN and fitting on FE results is confirmed. In fact, concerning
C1, the R2 is approximately 1. Looking at Figures 7 and 8, it is possible to notice that the R2 always
remains high, never falling below 0.997.
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In the following figures there is a comparison between FEM (black line), analytical model
(as obtained by fitting of FEM data, red dot line) and analytical model with coeffects predicted by ANN
(blue line) is reported in Figures 9–14 in terms of plastic strain dependence on arch length. The RMS
deviation (green line) between the neural network and the analytical model results is also reported.

The above comparison for the case corresponding to initial ingot diameter equal to 300 mm,
Sb0 = 150 mm, reduction = 5% at 800 ◦C and 1200 ◦C is reported in Figure 9a,b, respectively.
The proposed modeling approach provides the possibility to have two different slopes of the growth
and decay phase of plastic strain (e.g., different D1 and D2 coefficients). This allows to consider the
effect of the manipulator nevertheless it is possible to notice that the error peak is in correspondence of
the presence of the manipulator, therefore in the decay branch of the double-sigmoid model. This is
expected considering that the manipulator induces a small variation from the chosen sigmoidal shape,
shifting the inflection point towards 60–70% of the maximum strain value. However, the hybrid
approach prosed ANN plus analytic model is able to reproduce the FEM curve with a good accuracy
both temperature, 800 ◦C and 1200 ◦C (maximum RMS value = 0.07).
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A similar trend is shown in Figure 10, concerning the same initial ingot diameter and Sb0 = 150 mm,
but with higher reductions (equal to 25%). Also, in this case 800 ◦C and 1200 ◦C temperatures are
compared. Figures 9 and 10 show that for Sb0 equal to 150 mm temperature variation little affect the
maximum of plastic strain and shape of plastic strain on core fiber. Differences on maximum value
of plastic strain are equal to 1.4% and 4.4% for the reduction equal to 5% and 25%, respectively, with
a material softening from 800 ◦C to 1200 ◦C equal to 70% at strain = 0.3 and strain rate = 1 s−1 from
205 MPa to 62 MPa respectively, Figure 11 [43]. his so low influence of rheological behavior is certainly
due to of isothermal FE modeling of forging but leads to the conclusion that the proposed approach
can be considered independent of the material in the first approximation.

The same is shown in Figures 12 and 13, where plastic strain for first stroke of forging of ingot
with 300 mm of initial diameter of the higher reduction considered in this analysis is compared
for temperature of 800 ◦C and 1200 ◦C considering and Sb0 = 300 mm and 750 mm, respectively.
Increasing Sb0 the maximum plastic deformation value on core fiber increases. Moreover, a strong
shift away from the growth and decay branches of plastic strain is observed increasing the Sb0/D ratio,
as described before. Also, in this case of even larger size of the die, the ANN approach appears to be in
good agreement with FEM results, with minimal error.
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For the stroke subsequent the first the fitch, and the resulting overlapping of strokes, affects
directly the actual Sb0 reducing it. The comparison in Figure 14 shows as the stroke subsequent to
the first could be considered, in first approximation, equal to a first stroke with a lower value of Sb0.
However, the developed model has been differentiated for the first stroke and the subsequent ones in
order to take into account that in the stroke subsequent to the first there are parts of die initially not in
contact with the ingot. These will touch parts of ingot already deformed or partially deformed, e.g.,
deformed by die fillet radius in the previous stroke, upsetting it. This results in an improvement in the
performance of the model, e.g., a better agreement between the FEM results and the analytical model
with coefficients calculated with the ANN.

4. Conclusions

In this paper a hybrid approach is proposed, able to describe the plastic strain behavior at the core
fiber of an open die forged round shape component. Such a method takes into account the following
parameters: ingot diameter, die length Sb0, reduction for each stroke and forging temperature. The aim
of this approach is to provide a rapid tool faster than the commonly used FEM method but with the
same accuracy class, making therefore it suitable for the rapid design of online forging processes.
This was accomplished by means of a thermo-mechanical FEM model implemented in the MSC.Marc
commercial code in order to simulate the open die forging process.

Starting from the results obtained through FEM simulations, a set of equations describing the plastic
strain at the core fiber of the piece have been identified depending on forging parameters. An artificial
neural network has been trained to provide the double-sigmoid coefficients as function of forging
parameters. The maximum error by proposed model prediction is found at the peak deformation
and on the decay branch due to the presence of the manipulator. The results analysis showed the
low dependence of strain on core fiber on the material rheology. In the first approximation, therefore,
the material properties could be neglected, but this becomes fundamental when microstructural and
metallurgical effects are also considered in the optimization model of forging.

The described approach proposes therefore a rapid method aimed to design and optimize a
forging open die process, favoring its adoption in industrial applications.
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