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Abstract: This work applies the Buckingham Π theorem from dimensional analysis on superplastic
processes in order to obtain laws of behaviour in a simple way. For this reason, a mathematical
background is developed. The particular behaviour of superplastic materials makes it necessary to
adapt the way in which these are treated, modelling them by a viscosity function of the strain-rate.
Then, dimensional analysis is applied on a set of free-inflation tests in order to obtain a formula that
defines the forming time as single function of geometric and material variables. Dimensional analysis
allows us to reduce the number of variables to analyse from six to only three. Finally, two different
forming time estimators are compared to measure the accuracy of our method, showing a significant
improvement over previous methods.
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1. Introduction

Superplastic forming (SPF) is a manufacturing technique that allows us to form complex shape
parts in a single operation [1]. It is widely used in the automotive [2] and the aerospace [3,4]
industry, predominantly in applications using aluminium and titanium alloys as constitutive material.
Even biomedical applications such as dental prostheses [5] or skull implants [6] have been recently
added to the list of industrial solutions where SPF has been proven to be an excellent choice.
Certain alloys like Ti-6Al-4V allow us to combine superplastic forming with diffusion bonding [7],
producing monolithic parts at once, saving costs in terms of weight and time. For this reason,
this procedure has been successfully utilised to manufacture wing leading-edges [8] and compressor
blades [9]. The main downside to SPF is that it requires relatively slow strain-rates and high working
temperatures, making it a costly process. Despite that, SPF is an active topic of study, aiming to obtain
better material characterisations and process optimisation.

In this direction, the analysis of SPF processes has been usually supported by several tools such
as laboratory tests, mathematical models or finite element simulations, whose development has run
parallel to the progress of SPF itself [10].

The experimental tests at laboratory scale provided the fundamental basis for an extensive analysis
of the different aspects that encompass the SPF, including the evaluation of material behaviour [11],
the optimisation of pressure curves [12] or the studying of the deformation mechanisms [13].

Since the late 1960s, numerous mathematical studies provided deep insight into the importance
of the parameters involved during the SPF process, growing in complexity by incorporating new tools
into the models or avoiding the simplifications of previous works [14–18].

The emergence of computational methods allows for a much faster analysis and, for this reason,
great effort has been made to improve different aspects the finite element method applied to SPF:
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elements description [19], pressure control algorithms [20], internal formulation [21] or constitutive
relations [22].

More recently, Dimensional Analysis (DA) has been added to the list of techniques that can be
applied to SPF [23]. DA is a tool that is widely used in other branches of engineering like fluid
mechanics, with residual application in manufacturing engineering [24]. It allows us to obtain
general laws based on non-dimensional variables by minimising the number of the independent
variables and parameters needed to describe the process. In this work, our application of DA to free
inflation tests shows that this complex experimental setup can be successfully described by only three
dimensionless variables.

DA can be applied in two different ways. The first one pursues the standardisation of the
governing process equations [23]. A complementary approach makes use of the Buckingham Π
theorem to obtain general and useful laws of behaviour, as the relationship between forming times
and material and geometric characteristics for free-inflation tests [25]. Section 2 details the theoretical
development needed to apply the Buckingham Π theorem to SPF, particularly for free deformation
and constant pressure tests. After that, the set of tests to be analysed is specified, part of them new
and some of them obtained from literature. In Section 3, DA is applied by obtaining the values of the
non-dimensional variables of each test and tracing the law of the process, which allows us to estimate
the forming time. Finally, the set of conclusions on the work is developed in Section 4.

2. Materials and Methods

2.1. Dimensional Analysis

Dimensional analysis is a well known tool in many branches of science, being extensively used in
fluid mechanics in particular. It is based on the principle of dimensional homogeneity, which states that
two physical variables can not be compared if both are not measured in the same units [26]. For this
reason, the whole set of variables needed to describe a process is connected and their number reduced
due to the algebraic constraints this principle imposes. Specifically, if a physical process is described
by n variables, x1, x2, ..., xn, and if these variables are measured in k units, say mass, length and so,
the total number of independent variables needed to fully characterise the process is n− k. Usually,
k = 3 for most mechanical systems, as they are described by mass, length and time or a combination of
them. The Buckingham Π theorem is then used to find n− k combinations of adimensional variables
to fully describe the process under study. A detailed description of the methods of DA, including the
Buckingham Π theorem can be found in the bibliography, see [27] for example.

In the particular case of a general free-inflation test, the geometrical variables that describe the
process are represented in Figure 1. During this kind of experiment, a circular sample of material of
initial thickness so is let to deform freely, within a cylindrical cavity of radius lo, by the action of a
constant external pressure qo. The height at the central point, h(t), is tracked during the test. Also,
material parameters must be taken into account, as explained in the next paragraphs.

t=0

qo

t=to

lo

h(t)

so

Figure 1. Geometrical scheme of a free-inflation test.

The application of the Buckingham Π theorem lets us extract dimensionless variables and
parameters by analysing the dimensions of a set of variables that are involved in a process. With this
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procedure, the number of variables and parameters that describe SPF is reduced to a minimal set of
dimensionless variables, allowing us to simplify the mathematical description of the process without
compromising its complexity [28]. Here, it is assumed that the forming time variable is to, that is,
the time that fulfils the condition h(to) = lo, can be expressed as a function of the initial geometric
parameters, lo and so, the process parameter qo and some characteristic parameters of the material that,
in its simplest way, can be reduced to a pair of values, K and m, defined by the constitutive relation

σ = Kε̇m (1)

where the stress state can be related to the strain rate through a power law function where K and m
are the parameters of the function. Therefore, the application of the Buckingham Π theorem starts by
the assumption

to = f (lo, so, qo, K, m) (2)

However, it is important to note that the parameter K is measured in units that depend on m,
making the application of the Buckingham Π theorem harsh. For this reason, the power-law
constitutive equation is changed to an equivalent one where the material behaviour is described
in a fluid-like variable

σ = Kε̇m = µa(ε̇)ε̇ (3)

where µa is a strain-rate dependent variable called apparent viscosity. Observing the Equation (3) the
apparent viscosity can be related to the material parameters as

µa = Kε̇m−1 (4)

Substituting,
to = f (lo, so, qo, µa) (5)

Since the behaviour of the material is a function of the strain rate, and also the forming time
depends on this strain rate [29], the Buckingham Π theorem must be adapted to this type of problem
with non-Newtonian fluids where both the target variable and the material depend on the same
variable [30].

to(ε̇) = f (lo, so, qo, µa(ε̇)) (6)

Therefore, if a non-constant property of the material, such as µa, is part of the set of internal
variables on which a target variable to depends, the application of Buckingham Π theorem generates a
relationship between the different dimensionless variables through a functional of the dimensionless
function of the material

Π1 = ΦM(Π2, Π3, ..., Πn) (7)

where the subscript M refers to the functional dependence of Φ with the material properties, M. This is
explained in detail in the next paragraphs.

Let µa be an apparent viscosity function of the material that depends on the strain rate

ε̇ −→ µa(ε̇) (8)

A dimensionless material function M can be defined as

ν −→ M(ν) =
µa(ε̇)

µa(ε̇o)
(9)

where µa(ε̇o) refers to the apparent viscosity evaluated on a reference point ε̇o and ν is the dimensionless
argument of the dimensionless function.

At this point it seems that the dimensionless function of the material depends on the chosen
reference point. In other words, the dimensionless function of the process ΦM depends on the
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dimensionless function of the material and, in this way, on the selected reference point and how the
argument ν is defined. Therefore, the similarity of two models should meet both the similarity of
the process (same ΦM) and of the material (same M(ν)). To achieve the latter, a specific process of
dimensionlessness or standard dimensionlessness can be applied [30], which starts by defining the
argument ν as

ν = ao(ε̇− ε̇o) (10)

where ao is the slope of the dimensional function µa evaluated at ε̇o and divided by µa(ε̇o)

ao =
1

µa(ε̇o)

(
dµa(ε̇)

dε̇

)
ε̇=ε̇o

(11)

This dimensionlessness process assures that, at the reference point ε̇o, the dimensionless function
of the material M(ν) and its derivative M′(ν) are constant and equal to 1 regardless of the dimensional
function µa(ε̇). In particular, for a shear-thinning fluid-like behaviour

µa(ε̇) = Kε̇m−1 (12)

the dimensionless function remains

M(ν) =
µa(ε̇)

µa(ε̇o)
=

(
ε̇

ε̇o

)m−1
(13)

being its argument

ν = ao(ε̇− ε̇o) =
1

µa(ε̇o)

(
dµa(ε̇)

dε̇

)
ε̇=ε̇o

(ε̇− ε̇o) (14)

where (
dµa(ε̇)

dε̇

)
ε̇=ε̇o

= (m− 1)Kε̇m−2
o (15)

ao =
(m− 1)Kε̇m−2

o

Kε̇m−1
o

= (m− 1)ε̇−1
o (16)

and ν can relate to ε̇ and vice versa

ν = (m− 1)
(

ε̇− ε̇o

ε̇o

)
=⇒ ε̇ = ε̇o

(
1 +

ν

m− 1

)
(17)

Thus, the standard dimensionless function of a superplastic material, as well as its derivative,
can be expressed as

M(ν) =

(
1 +

ν

m− 1

)m−1
; M′(ν) =

(
1 +

ν

m− 1

)m−2
(18)

Furthermore, it can be proved that [30], if the dimensionless function of the material is described
by the general form

M(u) = (1 + βu)1/β (19)

as is that of the Equation (18), the graphical representation of M(u) is independent of the
chosen coordinate ε̇o, i.e., invariant to the chosen reference point. Thus if, by performing the
standard dimensionlessness process, equality was ensured in the range of ε̇o then, applying the
dimensionlessness to this type of material function, the equality will be extended for any value of ε̇o

by the invariance with respect to the reference point.
Therefore, the function to describe the process, represented in the Equation (5), has to be completed

by indicating any reference point at which to calculate µa(ε̇o) = µao, and by adding the dimensionless
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exponent of the function M(ν). For convenience, the reference point for calculating µao is taken with
the inverse of the forming time t−1

o

to = f (lo, so, qo, µao, m) (20)

summing up to a total of 6 dimensional variables. Considering that these variables are described by
a basis of three dimensions: time, length and mass, the Buckingham Π theorem states that there are
6− 3 = 3 dimensionless variables, which can be obtained by combining the original dimensional
variables. Finally, applying the Buckingham Π theorem to the Equation (20) leads to the relationship

toqo

µao
= Φ(AR, m) (21)

where the first dimensionless variable relates the forming time with the external pressure and the
behaviour of the material, the second one is defined as the Aspect Ratio (AR) and it is defined as
ratio between the die radius to the initial thickness, AR = l0/s0, and the third one is the sensitivity
parameter of the material.

2.2. Experimental Tests

The DA developed in the previous section was applied to a set of trials based on free-inflation
tests. Some data were extracted from the literature and several new experiments were performed.
Table 1 summarises the analysed tests set, classified by the type of material. For those tests that are
obtained from external works, the reference is included. Moreover, the constant external pressure,
as an input of the process, and the forming time as an output, are also shown. The last three columns
provide the values of the three dimensionless variables from the Equation (21) for each test, named Π1,
Π2 and Π3 henceforth.

Table 1. Tests data. Pressure values in square brackets correspond to new test.

Material Ref. Temp. (°C) Pressure (MPa) to(s) Π1 Π2 Π3

ZnAl22 [16] 270
0.4 365 0.04098 25 0.35
0.6 160 0.04082 25 0.35
0.8 87 0.04028 25 0.35

AA5083 [31] 450
0.29 1138 0.02276 41.67 0.5
0.56 142 0.02170 41.67 0.5
0.90 26 0.02105 41.67 0.5

PbSn60 [32] 50

0.06 122 0.00936 100 0.364
0.07 99 0.01011 100 0.364
0.08 69 0.01014 100 0.364
0.09 50 0.01013 100 0.364
0.10 45 0.01013 100 0.364

Alnovi-U [33]

450
[0.6] 1045 0.05778 16.67 0.439

[0.75] 603 0.05674 16.67 0.439
[0.9] 436 0.05902 16.67 0.439

500

0.3 2499 0.05764 16.67 0.5
0.4 1189 0.05519 16.67 0.5
0.5 668 0.05620 16.67 0.5

[0.6] 260 0.05052 16.67 0.642
[0.7] 199 0.04964 16.67 0.642
[0.8] 153 0.04798 16.67 0.642
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Table 1. Cont.

Material Ref. Temp. (°C) Pressure (MPa) to(s) Π1 Π2 Π3

AZ31 [12]

450

[0.2] 3407 0.02954 30 0.544
[0.25] 2435 0.03076 30 0.544
[0.35] 1185 0.02911 30 0.544
[0.5] 423 0.03107 30 0.391

520

[0.11] 2206 0.02553 30 0.723
[0.17] 1307 0.02703 30 0.723
0.16 809 0.02498 35 0.457
0.29 200 0.02392 35 0.457

Ti-6Al-4V

800
[1.25] 5878 0.04398 22.5 0.382
[1.5] 3671 0.04409 22.5 0.382

[1.75] 2924 0.04715 22.5 0.382

[34] 850
0.5 4597 0.03592 22.5 0.703
1.0 1815 0.03738 22.5 0.703
1.5 924 0.03488 22.5 0.703

[17] 900
0.5 1500 0.02832 35 0.43
0.7 678 0.02817 35 0.43
1.0 291 0.02799 35 0.43

The new experiments were implemented on an Instron universal testing machine specially
equipped for SPF tests at laboratory scale [33]. Tests were performed using a cylindrical die cavity
with a 22.5 mm die radius and a 3 mm entry radius. A thermocouple, combined with a transducer,
was used for measuring both the temperature and the dome height evolution during the test. The test
procedure started with a previously hotted die. When the objective temperature was reached, the die
was opened and the blank was placed between both dies. A constant external pressure was applied
after ensuring the clamping condition and reaching the forming temperature in the material.

In order to calculate the three dimensionless variables appearing in Equation (21), it was necessary
to collect the following data from each test:

• geometrical information such as the die radius lo and the initial sheet thickness so, that must be
joined into the second dimensionless variable AR.

• external pressure qo.
• information on the material behaviour based on the parameters K and m. The last one is directly

used as the third dimensionless variable.
• the forming time that is used in Π1 in a double way, in the numerator directly, and also its inverse

in the denominator as the reference point in which the apparent viscosity term is calculated.

3. Results and Discussion

The dimensionless law process (21) and the information in Table 1 can provide the estimation of
forming time. Therefore, the values of the three dimensionless variables allow to elaborate laws that
relate Π1 and Π2, by taking Π3 as a parameter, obtaining then a series of curves relating Π1 and Π2

according to the value of m. More concretely, two estimations of forming time are evaluated. First,
the influence of the parameter m is neglected

Π1 = Φ(Π2, Π3) −→ Π1 ≈ Φ∗(Π2) (22)

making use in the second estimation of the complete dimensionless law process (21) taking into account
the third dimensionless variable.

The first relationship is shown in Figure 2, where Π1 is related to Π2 through a power-law
function. From the expression of the latter function, the apparent viscosity (4), the definition of the
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reference point as the inverse of the forming time and (22), the first estimation of the forming time can
be written as

tI
o =

m

√
K
qo

0.858AR−0.984 (23)

20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.9840.858o o

ao

t q AR

1

2

Figure 2. Π1 vs. Π2. For each material and temperature, a mean value of Π1 is plotted. Fitting power
function is added.

For the second estimated forming time tI I
o , since the values of m are habitually distributed within

a range between 0.3 and 0.7, four groups are formed corresponding to values of the parameter close to
0.35, 0.45, 0.5 and 0.7, respectively. This way of operating is due to the fact that there are few trials that
can be associated to the same value of m. To this end, Table 2 shows the four groups including the
information of temperature and the exact value of m, according to the analysed tests from the Table 1.

Table 2. Sets of parameter m with materials and their test conditions.

m PbSn60 ZnAl22 AZ31 AA5083 Alnovi-U Ti-6Al-4V

0.35 50 °C 270 °C 450 °C 800 °C
(0.364) (0.35) (0.391) (0.382)

0.45 520 °C 450 °C 900 °C
(0.457) (0.439) (0.43)

0.5 450 °C 450 °C 500 °C
(0.544) (0.5) (0.5)

0.7 520 °C 850 °C
(0.723) (0.703)

Figure 3 shows the total amount of tests grouped in the four set of m values, plotting the regression
curves that better fit between the points by power law functions. These power law functions are:

m ≈ 0.35 =⇒ Π1 = 1.242Π−1.068
2 (24)

m ≈ 0.45 =⇒ Π1 = 1.051Π−1.063
2 (25)

m ≈ 0.5 =⇒ Π1 = 0.980Π−1.034
2 (26)
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m ≈ 0.7 =⇒ Π1 = 1.105Π−1.099
2 (27)

20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06  0.35
 0.35 adjustment
 0.45
 0.45 adjustment
 0.5
 0.5 adjustment
 0.7
 0.7 adjustment1

2

Figure 3. Π1 vs. Π2. Fitting power law functions are extracted for the four groups.

Based on these four expressions, the dimensionless function Φ can be generalised as

toqo

µao
= Φ(AR, m) = Ξ(m) · ARΨ(m) (28)

where the two functions Ξ(m) and Ψ(m), based on the coefficients of the Equations (24)–(27), can be
written as cubic polynomial functions

Ξ(m) = 1.269 + 3.487m− 15.242m2 + 14.146m3 (29)

Ψ(m) = −1.423 + 1.639m− 1.735m2 + 0.110m3 (30)

Thus, the Equation (28) can be applied to estimate the forming time as

to =
µao

qo
Ξ(m) · ARΨ(m) (31)

tI I
o = m

√
K
qo

Ξ(m) · ARΨ(m) (32)

This expression is consistent with the proposed forming time calculation t f by Enikeev and
Kruglov [17]

t f = 2Im
m

√
K
qo

2
AR

(33)

where Im refers to an integral, that can be calculated numerically, in which the upper bound is the
value of m. This latter expression was obtained on the basis of the membrane theory and applying
geometrical relationships, reporting a mean error of 15%.

The comparison of both estimated forming times is shown in Table 3. It can be seen that the
inclusion of the dependence with m in the process law allows us to obtain a significant improvement
in the results, from a mean error of 16% to a 10% when m is considered.
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Table 3. Results of estimated forming time using (23) and (32) compared to the experimental
forming time.

Material Temp. (°C) Pressure (MPa) tI
o(Φ∗) tI I

o (Φ) texp(s)

ZnAl22 270
0.4 255 362 365
0.6 113 161 160
0.8 64 91 87

AA5083 450
0.29 1059 998 1138
0.56 177 167 142
0.90 37 35 26

PbSn60 50

0.06 123 127 122
0.07 80 83 99
0.08 56 58 69
0.09 40 42 50
0.10 31 33 45

Alnovi-U

450
0.6 881 1079 1045

0.75 530 650 603
0.9 350 428 436

500

0.3 2157 2226 2499
0.4 1214 1252 1189
0.5 777 801 668
0.6 285 252 260
0.7 224 198 199
0.8 182 161 153

AZ31

450

0.2 3554 3153 3407
0.25 2358 2092 2435
0.35 1270 1127 1185
0.5 394 503 423

520

0.11 2786 2431 2206
0.17 1526 1331 1307
0.16 884 944 809
0.29 241 257 200

Ti-6Al-4V

800
1.25 4590 6291 5878
1.5 2848 2903 3671

1.75 1902 2607 2924

850
0.5 5361 4794 4597
1.0 2000 1788 1815
1.5 1123 1004 924

900
0.5 1232 1408 1500
0.7 563 644 678
1.0 246 281 291

This improvement is also shown in the Figure 4 where a histogram of the deviations of both
estimated forming times from the experimental value is represented. For tI

o, most of the values
of deviation are between 15% and 20%, while for tI I

o , most of the deviations are less than 5%.
This improvement is obtained regardless of the fact that the four fitting power functions are formed by
a few number of tests and, most of then condensed in a range of AR between 20 and 40. Despite that,
the DA procedure has been able to provide an expression of the forming time for any material
developing superplastic behaviour on a free-inflation test.

Within the set of test of the Table 1, those for Alnovi-U material at 500 °C between 0.6 and 0.8
MPa possesses a value of m that hinders its use in any of the four groups. However, the mean error
obtained for these tests is lower than 5%.

It is important to retain the exponents from both estimator time expressions (23) and (32),
−0.984 and Ψ(m) in our work, in order to maintain the mean error closer to 10%, even though
we could be tempted to approximate those two values to −1 in both cases.
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Larger deviations between experimental forming time and our estimations may have two main
sources of error. Firstly, it has to be reminded the way in which Ξ(m) and Ψ(m) are calculated,
setting groups of tests with similar values of m, and applying a range of AR between 20 and 40.
Consequently, a better estimation requires to get larger groups of experiments over a wider range
of AR in which the materials possess the same value of m. Secondly, the behaviour of the materials
for different pressures, i.e., different strain rates, have been approximated using a single power-law
constitutive equation with the expression (1). Therefore, it is normal to observe that the constitutive
equation diverges from the actual behaviour when the strain rates are close to the extremes of the
test range.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

 

 

C
ou

nt

Deviation (%)

 *
 

Figure 4. Histogram of the deviation of the estimated forming times from the experimental values.

4. Conclusions

The application of the DA and making use of the Buckingham Π theorem was introduced as
an accurate tool for the study of superplastic processes. A mathematical framework was developed,
specifying to the type of behaviour normally presented in superplasticity. This particularisation
requires to change the way in which the material is characterised by unifying its description into a
single strain-rate dependent variable called apparent viscosity. The DA was applied to free-inflation
tests in order to obtain the law process from which to write forming time estimator expressions.
The whole system was reduced from six dimensional variables to the study of only three dimensionless
variables. Therefore, the forming time can be expressed as a function of a geometric parameter, AR,
and a material parameter, m. From this relationship, two different forming time estimator are compared,
depending on whether the influence of the material parameter is neglected or not. For the former
estimator, a mean error of 16% is obtained, while this value is reduced to 10% when the influence of m
is taken into account. Other works from different authors provided similar expressions through the
mathematical development of the membrane theory equations, reporting a mean error of 15%.

Therefore, results show that DA opens the door not only to test SPF processes in down-scale
dimensions, but also to apply to different materials as long as the similarity principles for geometry,
process and material are fulfilled. For instance, parts formed superplastically from a titanium alloy
might be analysed studying a down-scale model on a different material like a magnesium alloy,
which thermal and mechanical requirements, as well as cost, are considerably lower.
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