
metals

Article

Recovery of Lead and Zinc from Zinc Plant Leach
Residues by Concurrent Dissolution-Cementation
Using Zero-Valent Aluminum in Chloride Medium

Marthias Silwamba 1,2,* , Mayumi Ito 3, Naoki Hiroyoshi 3, Carlito Baltazar Tabelin 4,
Ryota Hashizume 1, Tomoki Fukushima 1, Ilhwan Park 3, Sanghee Jeon 3, Toshifumi Igarashi 3,
Tsutomu Sato 3, Meki Chirwa 5, Kawawa Banda 5 , Imasiku Nyambe 5, Hokuto Nakata 6,
Shouta Nakayama 6 and Mayumi Ishizuka 6

1 Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University,
Sapporo 060-8628, Japan

2 Department of Metallurgy and Mineral Processing, School of Mines, The University of Zambia,
Lusaka P.O. Box 32379, Zambia

3 Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University,
Sapporo 060-8628, Japan

4 School of Minerals and Energy Resources Engineering, The University of New South Wales,
Sydney NSW 2052, Australia

5 IWRM Centre/Geology Department, School of Mines, The University of Zambia,
Lusaka P.O. Box 32379, Zambia

6 Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo 060-0818, Japan
* Correspondence: smarthias11@gmail.com or marthias.silwamba@unza.zm; Tel.: +81-80-8745-1805

Received: 2 April 2020; Accepted: 18 April 2020; Published: 20 April 2020
����������
�������

Abstract: Zinc plant leach residues (ZPLRs) contain significant amounts of metal compounds of lead
(Pb), zinc (Zn), iron (Fe), etc., hence, they are considered as a secondary source of metals. On the
other hand, ZPLRs are regarded as hazardous materials because they contain heavy metals that
pollute the environment. Resources and environmental concerns of ZPLRs were addressed in this
study by removing/recovering Pb and Zn using a concurrent dissolution and cementation technique.
To cement the dissolved Pb and Zn in leaching pulp, zero-valent aluminum (ZVAl) was added during
ZPLRs leaching in the hydrochloric (HCl)–sodium chloride (NaCl) solution. The resulting cemented
metals were agglomerated and separated by sieving. Lead removal increased with increasing both
NaCl and HCl concentrations. However, when ZVAl was added, significant Pb removal was achieved
at a low concentration. Zinc was not cemented out of the pulp using ZVAl and its recovery from
ZPLRs was dependent on the HCl concentration only. By applying a concurrent dissolution and
cementation technique, both Pb and Zn were removed using a low concentration of NaCl, and most
importantly Pb—the most toxic metal in ZPLRs—was captured and separated before the solid-liquid
separation, hence, eliminating the need for extensive washing of the generated residues to remove
the inherent residual solution.

Keywords: lead; zinc; zinc plant leach residues; zero-valent aluminum; leaching; cementation

1. Introduction

Explosive population growth and its associated economic activities such as massive construction
projects to modernize and improve communication, transportation, and agricultural sectors have in
recent years led to high demands for metals [1–4]. To keep up with demands, mining and metals
production have also increased at unprecedented levels. Enormous amounts of solid wastes are also

Metals 2020, 10, 531; doi:10.3390/met10040531 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-6179-5201
https://orcid.org/0000-0001-7083-3014
http://dx.doi.org/10.3390/met10040531
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/10/4/531?type=check_update&version=2


Metals 2020, 10, 531 2 of 15

generated as a result of more extensive mining, mineral processing, and metal extraction operations
by metallurgical processes [5–7]. For example, zinc (Zn) metal production via hydrometallurgical
processes (i.e., leaching of calcine or zinc oxide minerals followed by electrowinning of Zn) generates
huge amounts of zinc plant leach residues (ZPLRs) [8,9], which are stockpiled and often abandoned
after closure of mining/processing operations.

With the rapid depletion of high-grade ores, ZPLRs are now considered as secondary resources
because they still contain substantial amounts of residual Zn, copper (Cu), lead (Pb), and iron
(Fe) [10–13]. From an environmental point of view, ZPLRs are considered hazardous wastes because
they contain hazardous heavy metals such as Pb, Cu, and Zn. Pb, for example, is extremely toxic
to babies and children and is known to cause various disorders of the reproductive organs, central
nervous system, and kidneys [14–16]. Therefore, the reprocessing of ZPLRs for metal removal/recovery
could address both environmental and resource concerns associated with these waste materials.

Pyrometallurgical [17,18] and hydrometallurgical [19,20] techniques can be employed to recover
valuable metals from ZPLRs. When appropriate, the latter approach is preferred because it is less
energy-intensive and generates wastes (e.g., solid residues) that may cause less or no secondary
environmental pollution. Numerous studies have been published to process metallurgical wastes using
conventional hydrometallurgical processes that follow the sequence of leaching, solid-liquid separation,
and recovery of dissolved metals (usually Cu, Pb, and Zn) from pregnant leach solutions [9,11,20–23].
Although effective, there are two serious drawbacks of conventional approaches for Pb and Zn
extraction-recovery from ZPLRs. Firstly, leaching approaches require highly concentrated reagents
to extract the target metals [10,20]. Secondly, leaching residues contain a heavy metal-rich residual
solution due to difficulties and inherently incomplete solid-liquid separation partly exacerbated by silica
gel formation and the presence of very fine particles in ZPLRs [24,25]. To remove residual solutions
from generated solid residues after solid-liquid separation, extensive washing or stabilization before
disposal should be carried out, requiring complex treatment processes that increase operating costs.

To address these limitations of conventional hydrometallurgical techniques for Pb and Zn recovery
from ZPLRs, this study used a technique combining Pb and Zn dissolution from ZPLRs with the
recovery of these metals directly in one reaction reactor without solid-liquid separation (i.e., concurrent
dissolution-cementation). Since dissolved metals are sequestered (i.e., recovered) in the leaching
pulp, it follows that a low concentrated solution can be used to achieve high removal/recovery as the
solution would not be saturated with dissolved metals. Additionally, heavy metals are removed before
solid-liquid separation, so the need for extensive washing to remove the residual heavy metal-rich
solution is eliminated.

In this study, concurrent dissolution-cementation was applied to extract and recover Pb and
Zn removal from historic abandoned ZPLRs obtained from Kabwe, Zambia. To dissolve Pb and
Zn from ZPLRs, acidified chloride (HCl–NaCl) solutions of various concentrations were used.
The chloride solution was used due to the complexation capability of chloride with Pb. The dissolved
amounts Pb and Zn were quantified by inductively coupled plasma atomic emission spectroscopy
(ICP-AES). The recovery of dissolved Pb and Zn from leaching pulp was achieved by cementation
using the zero-valent aluminum (ZVAl) powder. Cementation products were characterized by the
scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy (SEM-EDX)
and X-ray powder diffraction (XRD). To evaluate whether the solid residues generated by concurrent
dissolution-cementation meets environmental standards, the toxicity characteristic leaching procedure
(TCLP) was carried out.

2. Materials and Methods

2.1. Materials

ZPLR samples were collected from the historic dumpsite of Pb-Zn mine wastes in Kabwe, Zambia
(Figure 1). The samples were air-dried for 30 days in the laboratory, lightly pulverized with an agate
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mortar and pestle, and then dry-sieved using stainless steel sieves to obtain sample with particles
passing 106 µm fraction. Chemical characterization of the ZPLR samples was carried out using both
X-ray fluorescence spectroscopy (XRF, EDXL 300, Rigaku Corporation, Tokyo, Japan) and ICP-AES
(ICPE-9820, Shimadzu Corporation, Kyoto, Japan) after aqua regia (3 HCl:1 HNO3 v/v) digestion
in a microwave-assisted acid digestion system (Ethos Advanced Microwave Lab station, Milestone
Inc., Sorisole, Italy). The amounts of Pb and Zn in ZPLR samples were as high as 6.19% and 2.53%,
respectively (Table 1). ZPLR samples also contained significant amounts of other elements such as
Si, Fe, Ca, S, Cu, and other elements, as shown in Table 1. The mineralogical composition of ZPLRs
was determined by XRD (MultiFlex, Rigaku Corporation, Tokyo, Japan) and crystalline minerals
were identified using a full package of the Crystallography Open Database (COD) and MATCH 3.4.
The crystalline Pb and Zn minerals in ZPLRs that were detected included anglesite (PbSO4), cerussite
(PbCO3), esperite (PbCa2Zn3(SiO4)3), and zinkosite (ZnSO4), as illustrated in Figure 2. Other minerals
detected in the samples are quartz (SiO2), gypsum (CaSO4·2H2O), hematite (Fe2O3), and goethite
(FeOOH). The particle size distributions of lightly pulverized ZPLRs were analyzed using Laser
diffraction (Microtrac® MT3300SX, Nikkiso Co. Ltd., Osaka, Japan) and were found to have a median
size (D50) of around 9.6 µm (Figure 3a).
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Figure 1. Schematic geographic map of Zambia superimposed with the location of Kabwe and historic
Pb-Zn mine wastes.

Table 1. Chemical composition of zinc plant leach residues from Pb-Zn mine wastes from Kabwe, Zambia.

Elements/Oxides Pb * Zn * Fe * Cu * CaO SiO2 Al2O3 SO3 V2O5 MnO Others

Mass % 6.2 2.5 17.0 0.2 10.6 31.4 2.9 18.2 0.7 0.3 1.1

* Elemental composition was determined by the inductively coupled plasma atomic emission spectroscopy (ICP-AES)
after aqua regia digestion. Elemental oxides were determined by XRF.

Reagent grade NaCl and HCl (Wako Pure Chemical Industries, Ltd., Osaka, Japan) were used to
prepare the leaching solutions of different concentrations by dissolution and dilution using deionized
(DI) water (18 MΩ·cm, Milli-Q® Integral Water Purification System, Merck Millipore, Burlington,
Vermont, USA). To simultaneously precipitate reductively (cement) the dissolved Pb2+ and Zn2+ in
leaching pulp, ultra-pure ZVAl powder (>99.99%, 50–150 µm, Wako Pure Chemical Industries, Ltd.,
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Osaka, Japan) was used (the median particle size (D50) of ZVAl was 126.8 µm). The particle size
distribution is shown in Figure 3b. A stainless steel sieve with 150 µm aperture size was used to
separate cemented and agglomerated Pb and Zn from the leaching pulp. The sieve size was selected by
taking into consideration the particles size ranges of both ZPLRs and ZVAl. In other words, this sieve
could only retain cemented and agglomerated particles while passing particles of unreacted ZVAl and
particles of undissolved minerals particles of ZPLRs.
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2.2. Methods

2.2.1. Leaching-Cementation Experiments in Chloride Solution

Batch leaching experiments for the extraction of Pb and Zn from ZPLRs with and without ZVAl
additions were conducted using a 200-mL Erlenmeyer flask. The volume of the leaching solution was
at 50 mL for all experiments. Concentrations of NaCl (0–3 M) were varied and acidified with different
HCl concentrations (0–0.1 M) to obtain required leaching solutions. Fifty milliliters (50 mL) of leaching
solution of a given concentration was initially poured in an Erlenmeyer flask and nitrogen (N2) was
purged for 10 min to remove dissolved oxygen (DO). Nitrogen gas (N2) purging was again carried out
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for 2 min after the addition of 2.5 g ZPLRs with and without 0.1 g ZVAl that were added before sealing
the flask using silicon stoppers and parafilm®. The flask was then shaken at 4 cm amplitude and
120 min−1 shaking frequency in a water-bath shaker maintained at 25 ◦C for a predetermined length of
time. At the end of the predetermined shaking time, the leaching pulp was carefully collected, and
solid-liquid separation was carried out by filtering the collected leaching pulp using a syringe-driven
membrane filter—pore size of 0.20 µm— (LMS Co., Ltd. Tokyo, Japan). The filtrate was then analyzed
for dissolved Pb and Zn using ICP-AES. In the case where ZVAl was added during ZPLR leaching,
additional steps—the separation of cemented and agglomerated product from the leaching pulp by
screening using a sieve of aperture size of 150 µm—were carried out. The +150 µm particles (cemented
and agglomerated) were thoroughly washed with deionized (DI) water before drying in a vacuum oven
at 40 ◦C for 24 h. Dried +150 µm particles were then digested in aqua regia using a microwave-assisted
acid digestion system and the leachate was analyzed for Pb and Zn using ICP-EAS. Furthermore, the
+150 µm particles obtained were examined by both XRD and SEM-EDX (JSM-IT200, JEOL Ltd., Tokyo,
Japan). All the experimental tests were carried out twice and the average was reported here.

The Pb and Zn removal (RPb,Zn) from ZPLRs without and with ZVAl were quantified using
Equations (1) and (2), respectively.

RPb,Zn =
V ∗CPb,Zn

WS ∗ Ms
∗ 100 (1)

RPb,Zn =

(
V ∗CPb,Zn

)
+
(
Wcg ∗Mcg

)
WS ∗ Ms

∗ 100 (2)

where CPb,Zn is the concentration (g/L) of Pb and Zn, V is the volume (L) of leaching solution, WS is
the weight percent (%) of either Pb and Zn, Ms is the mass (g) of leached ZPLRs, Mcg is the mass
(g) of cemented and agglomerated particles, and Wcg is the weight percent (%) of cemented and
agglomerated particles calculated based on the digested fraction of Mcg in aqua regia and analysis of
the solution by ICP-AES.

2.2.2. Leachability of Lead and Zinc after Concurrent Dissolution-Cementation

To evaluate the leachability of Pb and Zn from before and after concurrent dissolution-cementation,
leachability experiments were conducted according to the toxicity characteristic leaching procedure
(TCLP) [26]. For TCLP, 1 g of vacuum-dried treated and untreated residues were equilibrated with
20 mL of acetic acid solution (pH 2.89) in a centrifuge tube shaken at 30 rpm on a rotary tumbler for
18 h. After the predetermined leaching time, the leachate was filtered through 0.20 µm syringe-driven
membrane filters and the filtrate was analyzed for dissolved Pb and Zn using ICP-AES.

3. Results and Discussion

3.1. Concurrent Dissolution-Cementation of Pb and Zn from Zinc Plant Leach Residues

The concentrations of Pb and Zn as a function of time when 2.5 g of ZPLRs were leached in
a solution composed of 3 M NaCl and 0.05 M HCl with and without the addition of 0.1 g ZVAl is
shown in Figure 4a,b. The concentration of Pb when ZPLRs were leached without ZVAl reached
an apparent equilibrium of around 8.5 mM (which represents 59% of total Pb) after just 15 min
(Figure 4a). Pb dissolution from ZPLRs involves the formation of lead-chloride complexes as explained
by Equations (3) and (4) [20,27–29]:

PbSO4+xCl−= PbCl(2−x)
x + SO2−

4 (3)

PbCO3 + 2H++xCl−= PbCl(2−x)
x + CO2 + H2O (4)
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where PbCl(2−x)
x and x are lead-chloride complex(es) and integers from 1 to 4, respectively, all of which

depended on the chloride concentration.
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when zinc plant leach residues (ZPLRs) were leached without and with zero-valent aluminum (ZVAl).

The concentration of dissolved Pb when ZVAl was added was 10-fold lower than when only ZPLRs
were leached in the same solution. The dissolved concentration of Pb decreased further with increasing
the treatment time and reached below 0.048 mM (i.e., 0.1 mg/L) with ZVAl after 4 h. The dramatically
lower dissolved concentration of Pb after 15 min and its continued decrease to below 0.1 mg/L with
ZVAl could be attributed to its sequestration from the solution via cementation. In other words,
an additional chemical reaction—cementation described by the overall reaction (Equation (7)) which
is the sum of two half-reactions (i.e., Equations (5) and (6))—occurred concurrently with dissolution
reactions, as previously described.

Al3+ + 3e− = Al0E0 = −1.66 V (5)

Pb2+ + 2e− = Pb0 E0 = −0.126 V (6)

3Pb2+ + 2Al0 = 3Pb0 + 2Al3+ (7)

The overall reaction potential, ∆E0, is calculated by subtracting the standard electrode potential
of Equation (5) from Equation (6), that is, ∆E0

− 0.126− (−1.66) = 1.534 V. The standard Gibbs free
energy change, ∆G0 (i.e., ∆G0 = −nF∆E0, n number of electrons transferred, F is Faraday’s constant,
and ∆E0 is the galvanic cell potential), of Equation (7) is negative (−888.047 kJ/mol) because ∆E0 is
positive indicating that cementation of dissolved Pb2+ from ZPLRs by ZVAl is thermodynamically
spontaneous. In addition, the Al2O3 layer which was inherently present on the surface of ZVAl and
passivated the cementation is removed at the acidified chloride solution [30,31]. Hence, simultaneous
cementation of dissolved Pb2+ from ZPLRs occurred, which could explain why Pb2+ was comparatively
lower and was even below 0.1 mg/L with ZVAl during ZPLRs leaching.

Meanwhile, the concentration of dissolved Zn reached an apparent equilibrium after 15 min at
around 10.3 mM (i.e., equivalent to around 52% of total Zn) for without and with ZVAl (Figure 4b).
This implied that dissolved Zn from ZPLRs was not cemented on ZVAl as described by Equation (10)
(i.e., the summation of two half-cell reactions Equations (8) and (9)) though it is thermodynamically
feasible due to negative ∆G0 (i.e., −519.282 kJ/mol).

Al3+ + 3e− = Al0 E0 = −1.660 V (8)
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Zn2+ + 2e− = Zn0 E0 = −0.763 V (9)

3Zn2+ + 2Al0 = 3Zn0 + 2Al3+ (10)

The cementation product that was obtained as +150 µm particles were characterized by SEM-EDX
and XRD. Figure 5 shows that Pb was cemented on ZVAl and agglomerated. However, Zn was not
detected, which confirms that dissolved Zn was not cemented by ZVAl. Further characterization of
the cementation product by XRD (Figure 6) showed that cemented Pb was mainly in a zero-valent Pb
(metallic Pb) form and a small amount of oxidized metallic Pb as PbO, which supports the chemical
reaction expressed in Equation (7).

Metals 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Meanwhile, the concentration of dissolved Zn reached an apparent equilibrium after 15 min at 

around 10.3 mM (i.e., equivalent to around 52% of total Zn) for without and with ZVAl (Figure 4b). 

This implied that dissolved Zn from ZPLRs was not cemented on ZVAl as described by Equation (10) 

(i.e., the summation of two half-cell reactions Equations (8) and (9)) though it is thermodynamically 

feasible due to negative ∆𝐺0 (i.e., −519.282 kJ/mol).  

Al3+ + 3𝑒- =  Al0            𝐸0 = -1.660 𝑉 (8) 

Zn2+ + 2𝑒- =  Zn0            𝐸0 = -0.763 𝑉 (9) 

3Zn2+ + 2Al0 =  3Zn0 +  2Al3+ (10) 

The cementation product that was obtained as +150 µm particles were characterized by SEM-

EDX and XRD. Figure 5 shows that Pb was cemented on ZVAl and agglomerated. However, Zn was 

not detected, which confirms that dissolved Zn was not cemented by ZVAl. Further characterization 

of the cementation product by XRD (Figure 6) showed that cemented Pb was mainly in a zero-valent 

Pb (metallic Pb) form and a small amount of oxidized metallic Pb as PbO, which supports the 

chemical reaction expressed in Equation (7). 

 

Figure 5. SEM-EDX of ZVAl “coated” with Pb from the +150 µm particles obtained after sieving the 

leaching pulp when ZVAl was added during leaching of ZPLRs: (a) SEM image of +150 µm particles, 

(b) zoomed SEM image, EDX elemental mapping of (c) Al and (d) Pb, as well as (e) EDX spectra. 

Figure 5. SEM-EDX of ZVAl “coated” with Pb from the +150 µm particles obtained after sieving the
leaching pulp when ZVAl was added during leaching of ZPLRs: (a) SEM image of +150 µm particles,
(b) zoomed SEM image, EDX elemental mapping of (c) Al and (d) Pb, as well as (e) EDX spectra.Metals 2020, 10, x FOR PEER REVIEW 8 of 16 

 

 

Figure 6. XRD pattern of the +150 µm fraction obtained after sieving the leaching residue in the 

experiments with ZVAl. 

The explanation to why Zn could not be cemented by ZVAl in the leaching solution could be (a) 

the dissolution of cemented Zn by the proton (H+) (Equation (11)) and (b) the reduction of H+ to H2 

on ZVAl, which competes with the reduction of Zn2+ to Zn0 (Equation (12)). 

6 H+ + 3Zn → 3H2 + 3Zn2+ (11) 

6 H+ + 2Al → 3H2 + 2Al3+ (12) 

In an acidic region, the redox potential of H+/H2 redox pair is higher than that of Zn2+/Zn redox 

pair, indicating that the reaction in Equation (11) (∆𝐺0 = −6121.203 kJ/mol) occurs, and Zn once 

cemented on the ZVAl surface would be dissolved [32]. Similarly, since the redox potential of H+/H2 

redox pair is higher than that of Al3+/Al redox pair, the reaction as shown in Equation (12) (∆𝐺0 =

 −8168.614 kJ/mol) also takes place. This reaction consumes the electron supplied from ZVAl and 

competes with Zn2+ reduction to Zn (Equation (10)). As a result, these reactions suppress the Zn 

cementation on ZVAl. The rates and equilibrium of these reactions (Equations (11) and (12)) depend 

on the H+ concentration, hence, suppression of Zn cementation on ZVAl would decrease at higher 

pH. 

To investigate the effects of H+ concentration on cementation of Zn2+ from the solution using 

ZVAl, simulated (model) acidic and alkaline solutions containing both 8 mM Pb2+ and 10 mM Zn2+, 

and to mimic the composition similar to what would be obtained by leaching ZPLRs, were prepared 

by dissolving ZnCl2 and PbCl2 (Wako Pure Chemical Industries, Ltd., Japan) in an acidified chloride 

solution (3 M NaCl and 0.05 M HCl, initial pH = 0.82) and alkaline solution (3 M NaOH, initial pH = 

14.5), respectively. To cement both Pb and Zn, 0.15 g of ZVAl was added after N2 purging.  

Figure 7a shows the percentage of cemented Pb and Zn from the simulated acidified chloride 

solution. Only Pb (around 99.7% after 30 min) was cemented out leaving Zn in the solution, which is 

in line with the results obtained when ZVAl was added during ZPLRs leaching. However, in the 

alkaline solution around 99.8% of both Pb and Zn were cemented out of the solution (Figure 7b). The 

SEM-EDX analysis and mapping results showed that both Pb and Zn were deposited on the ZVAl 

surface (Figure 8). The results confirm the suppression of Zn cementation, which depends on pH. In 

the acidic region, Zn cementation is strongly suppressed by the reactions shown in Equations (11) 

and (12), while in the alkaline region the suppressive effects become negligible because of low H+ 

concentrations. 

Figure 6. XRD pattern of the +150 µm fraction obtained after sieving the leaching residue in the
experiments with ZVAl.



Metals 2020, 10, 531 8 of 15

The explanation to why Zn could not be cemented by ZVAl in the leaching solution could be (a)
the dissolution of cemented Zn by the proton (H+) (Equation (11)) and (b) the reduction of H+ to H2 on
ZVAl, which competes with the reduction of Zn2+ to Zn0 (Equation (12)).

6 H+ + 3Zn → 3H2 + 3Zn2+ (11)

6 H+ + 2Al → 3H2 + 2Al3+ (12)

In an acidic region, the redox potential of H+/H2 redox pair is higher than that of Zn2+/Zn
redox pair, indicating that the reaction in Equation (11) (∆G0 = −6121.203 kJ/mol) occurs, and Zn
once cemented on the ZVAl surface would be dissolved [32]. Similarly, since the redox potential of
H+/H2 redox pair is higher than that of Al3+/Al redox pair, the reaction as shown in Equation (12)
(∆G0 = −8168.614 kJ/mol) also takes place. This reaction consumes the electron supplied from ZVAl
and competes with Zn2+ reduction to Zn (Equation (10)). As a result, these reactions suppress the Zn
cementation on ZVAl. The rates and equilibrium of these reactions (Equations (11) and (12)) depend
on the H+ concentration, hence, suppression of Zn cementation on ZVAl would decrease at higher pH.

To investigate the effects of H+ concentration on cementation of Zn2+ from the solution using
ZVAl, simulated (model) acidic and alkaline solutions containing both 8 mM Pb2+ and 10 mM Zn2+,
and to mimic the composition similar to what would be obtained by leaching ZPLRs, were prepared
by dissolving ZnCl2 and PbCl2 (Wako Pure Chemical Industries, Ltd., Japan) in an acidified chloride
solution (3 M NaCl and 0.05 M HCl, initial pH = 0.82) and alkaline solution (3 M NaOH, initial
pH = 14.5), respectively. To cement both Pb and Zn, 0.15 g of ZVAl was added after N2 purging.

Figure 7a shows the percentage of cemented Pb and Zn from the simulated acidified chloride
solution. Only Pb (around 99.7% after 30 min) was cemented out leaving Zn in the solution, which
is in line with the results obtained when ZVAl was added during ZPLRs leaching. However, in the
alkaline solution around 99.8% of both Pb and Zn were cemented out of the solution (Figure 7b).
The SEM-EDX analysis and mapping results showed that both Pb and Zn were deposited on the
ZVAl surface (Figure 8). The results confirm the suppression of Zn cementation, which depends on
pH. In the acidic region, Zn cementation is strongly suppressed by the reactions shown in Equations
(11) and (12), while in the alkaline region the suppressive effects become negligible because of low
H+ concentrations.Metals 2020, 10, x FOR PEER REVIEW 9 of 16 
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3.2. Effects of Solution Composition on Pb and Zn Removal from Zinc Plant Leach Residues

Lead and Zn removal from ZPLRs was evaluated for different solution compositions and compared
with the removal efficiencies when ZPLRs was leached with and without ZVAl addition. When ZVAl
was added during ZPLRs leaching, Pb was extracted into a leaching solution and concurrently cemented
and agglomerated. The Pb distribution among the solution (i.e., extracted but uncemented Pb), +150
µm particles (i.e., cementation and agglomerated product), and −150 µm particles (unextracted Pb in
residues). Since the amount of Pb that remained in the solution was negligible (in most cases below
0.1 mg/L), Pb removal in a case when ZVAl was added during ZPLRs leaching is referred to as Pb
that was extracted, cemented, and separated as +150 µm particles. However, in the case when ZPLRs
were leached without the addition of ZVAl, Pb removal is referred to as the Pb that was extracted
into a leaching solution. The same definition was also applied to Zn removal with and without ZVAl
addition since it was not cemented from the leaching solution, as discussed previously.

Lead removal when ZPLRs were leached without the addition of ZVAl increased with increasing
both HCl and NaCl concentrations, as shown in Figure 9. Pb removal steadily increased from around
0% to 28%, 0.5% to 58%, and 0.5% to 72% for 0.01, 0.05, and 0.1 M HCl, respectively, when NaCl
increased from 0 to 3 M, respectively. Lead dissolution from anglesite (PbSO4) depends on (1) Cl−

concentration, (2) SO4
2− concentration, and (3) solution pH (Figure 10). For example, for a 1:1 ratio of

Pb concentration to SO4
2− concentration (i.e., assuming the source of SO4

2− in the leaching system
is from PbSO4) Pb dissolution depends on the Cl− concentration only to form Pb-Cl complexes and
not on pH (Equation (3)) (Figure 10a,b). However, even in this case, some Pb from PbSO4 would
remain in solid form as PbCl2(s) depending on the Cl− concentration. The sample used in our study
contains CaSO4·2H2O and ZnSO4 and these minerals contribute SO4

2− in the system. At high SO4
2−

concentration, Pb dissolution from PbSO4 depends on pH (Figure 10c). As the pH increases (i.e., H+

concentration decreases) HSO4
− speciates to form SO4

2−, which then reacts with dissolved lead in
the leaching system to form PbSO4 (Figure 10c,d). Meaning at high SO4

2− concentration, the PbSO4

dissolution is limited at high pH. Meanwhile, the release of Pb from other Pb-minerals such as cerussite
(PbCO3) in ZPLRs requires an H+ attack in addition to the Cl− concentration, as previously described
in Equation (4) (Supplementary Information, Figure S1). This is the possible reason why Pb removal
increased when NaCl and HCl concentrations were increased. The semi-quantitative analysis of the
residues obtained after treating ZPLRs in a 3 M NaCl and 0.05 M HCl solution with the addition of
ZVAl by XRD show the disappearance/decrease of peaks of anglesite, cerussite, gypsum, and other
minerals (Supplementary Figure S2).
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Figure 10. Thermodynamic calculation of dissolution of PbSO4, speciation of Pb-Cl complexes, and
SO4

2− at (a) Pb2+ = 8 mM, SO4
2− = 8 mM, pH = 1, (b) Pb2+ = 8 mM, SO4

2− = 8 mM, Cl− = 3 M,
(c) Pb2+ = 8 mM, SO4

2− = 24 mM, Cl− = 3 M, and (d) Pb2+ = 8 mM, SO4
2− = 12 mM, Cl− = 3 M (created

using the MEDUSA Ver. 1 software [33]).

The addition of ZVAl during leaching of ZPLRs significantly increased the Pb removal even at
low NaCl concentration especially when HCl was increased from 0.01 to 0.05 and 0.1 M (Figure 9).
For example, while maintaining HCl at 0.05 M, the addition of ZVAl during ZPLRs leaching increased
the Pb removal from 2.5% to 35.5% and 8% to 57% for 0.5 and 1 M NaCl concentration, respectively.
Meanwhile, for 0.1 M HCl, the addition of ZVAl during ZPLRs leaching increased the Pb removal from
3% to 69% and 9% to 72% for 0.5 and 1 M NaCl concentration, respectively. The dramatic increase of
Pb removal at low NaCl concentration is attributed to the leaching solution not attaining saturated
with dissolved Pb2+ and Pb-Cl complexes. In other words, when ZVAl was added during ZPLRs
leaching, dissolved soluble Pb2+ and Pb-Cl complexes were simultaneously sequestered from the
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solution by cementation, hence, more Pb could dissolve from the host minerals (e.g., PbSO4), as well as
the conversion of intermediate sparingly soluble solid, PbCl2, to more Pb-Cl complexes (Figure 11a,b).Metals 2020, 10, x FOR PEER REVIEW 12 of 16 

 

 

Figure 11. Effects of Pb2+ concentration on solubility and speciation of Pb2+ and Pb-Cl complexes in 

the lead-chloride-sulfate-water system under the condition (a) Pb2+ = 8 mM, SO42− = 8 mM, pH = 1, and 

(b) Pb2+ = 1 mM, SO42− = 8 mM, pH = 1. 

Zinc removal was, however, independent of the increase of NaCl concentration, as well as the 

addition of ZVAl but it increased when the HCl concentration increased, as shown in Figure 12. When 

HCl increased from 0.01 to 0.05 and 0.1 M, Zn removal increased from around 27% to 60% and 70%, 

respectively. Increasing HCl concentration increased the H+ concentration, which in turn increased 

Zn solubilization from minerals in ZPLRs by an H+ attack mechanism (e.g., dissolution of Zn 

associated with amorphous iron oxyhydroxide phase fraction as determined elsewhere [34]). Zinc 

removal was not affected by the NaCl concentration. Unlike Pb that forms an intermediate solid 

(PbCl2) at low chloride concentration and dissolves as the chloride concentration increases, Zn does 

form solid Zn-Cl species, and it does not complex strongly with chloride. Additionally, Zn removal 

was not affected by the addition of ZVAl because it was not sequestered (remained in solution) from 

the solution, as previously discussed. Since Zn was not be recovered by cementation using ZVAl from 

the leaching pulp, methods such as precipitation as ZnS [35] or electrowinning [36] can be employed 

to recover Zn from the solution. Unfortunately, these methods are beyond the scope of this study. 

 

Figure 12. Effects of solution compositions on Zn removal from ZPLRs with and without ZVAl 

addition: (a) 0.01 M HCl and 0–3 M NaCl, (b) 0.05 M HCl and 0–3 M NaCl, and (c) 0.1 M HCl and 0–

3 M NaCl. 

3.3. Leachability of Lead and Zinc after Concurrent Dissolution-Cementation 

Figure 11. Effects of Pb2+ concentration on solubility and speciation of Pb2+ and Pb-Cl complexes in
the lead-chloride-sulfate-water system under the condition (a) Pb2+ = 8 mM, SO4

2− = 8 mM, pH = 1,
and (b) Pb2+ = 1 mM, SO4

2− = 8 mM, pH = 1.

Zinc removal was, however, independent of the increase of NaCl concentration, as well as the
addition of ZVAl but it increased when the HCl concentration increased, as shown in Figure 12.
When HCl increased from 0.01 to 0.05 and 0.1 M, Zn removal increased from around 27% to 60%
and 70%, respectively. Increasing HCl concentration increased the H+ concentration, which in turn
increased Zn solubilization from minerals in ZPLRs by an H+ attack mechanism (e.g., dissolution
of Zn associated with amorphous iron oxyhydroxide phase fraction as determined elsewhere [34]).
Zinc removal was not affected by the NaCl concentration. Unlike Pb that forms an intermediate solid
(PbCl2) at low chloride concentration and dissolves as the chloride concentration increases, Zn does
form solid Zn-Cl species, and it does not complex strongly with chloride. Additionally, Zn removal
was not affected by the addition of ZVAl because it was not sequestered (remained in solution) from
the solution, as previously discussed. Since Zn was not be recovered by cementation using ZVAl from
the leaching pulp, methods such as precipitation as ZnS [35] or electrowinning [36] can be employed
to recover Zn from the solution. Unfortunately, these methods are beyond the scope of this study.
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3.3. Leachability of Lead and Zinc after Concurrent Dissolution-Cementation

To evaluate if the solid residues generated after treatment by concurrent dissolution-cementation
meet environmental standards, the leachability of Pb and Zn using TCLP was examined out.
The amounts of Pb and Zn leached before (untreated ZPLRs) and after treatment (treated by combined
dissolution-cementation technique under the conditions 0.1 M HCl, 2 M NaCl, and 0.1 g ZVAl) were
compared with the regulatory thresholds. As illustrated in Table 2, the levels of Pb and Zn that
leached from untreated ZPLRs were substantially high: Pb was higher than environmental standards.
In contrast, the amounts of Pb and Zn that leached from the residues after treatment by the concurrent
dissolution-cementation method were dramatically lower. Leachable Pb (which was about 0.12 mg/L)
was lower than the regulatory threshold, which entails the detoxification of ZPLRs.

Table 2. Toxicity characteristic leaching procedure (TCLP) leachability tests of untreated ZPLRs and
treated residues after concurrent dissolution and cementation treatment.

Element Untreated ZPLRs Treated Residues Threshold (USEPA)

Pb 12.95 mg/L 0.12 mg/L 5 mg/L
Zn 473.5 mg/L 21.5 mg/L –*

* No Zn TCLP regulatory threshold.

3.4. Conceptual Flowsheet

Based on the results obtained in this study, the conceptual flowsheet for ZPLRs treatment by a
concurrent dissolution-cementation technique to remove/recover Pb and Zn by using the HCl–NaCl
solution with ZVAl is proposed (Figure 13). The flowsheet involves the removal of Pb—more toxic
heavy metal to human beings than Zn—by cementation using ZVAl before solid-liquid separation.
The Zn that remains in a solution can be recovered by precipitation or electrowinning. High removal
of Pb and Zn can be achieved using a less concentrated NaCl (even as low as 1 M) solution acidified
with 0.1 M HCl by the addition of ZVAl. The generated solid residues may not necessarily need to be
washed because the most toxic metal that remains in the solution as a result of the inherent incomplete
solid-liquid separation is negligible. In addition, this approach shortens and simplifies the treatment of
ZPLRs compared to the conventional approach (i.e., leach, solid-liquid separation, and finally recovery
of dissolved metals).
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4. Conclusions

This study investigated Pb and Zn removal from ZPLRs using a concurrent dissolution-cementation
technique in acidified chloride solution. The following is a summary of the findings:

1. Zinc removal from ZPLRs increased with increasing the HCl concentration (i.e., increased
from 27% to 60% and 70% when the HCl concentration increased from 0.01 to 0.05 and 0.1 M,
respectively) but it was neither affected by the increase of NaCl concentration nor the addition of
ZVAl during leaching;

2. Zinc was not to be sequestered from the acidified chloride leaching pulp by cementation using
ZVAl and was attributed to the dissolution of cemented Zn or preferential reduction of H+ to H2

by ZVAl over Zn2+ to Zn;
3. Lead removal from ZPLRs without the addition of ZVAl increased with increasing NaCl and

HCl concentrations. Pb removal steadily increased from around 0% to 28%, 0.5% to 58%, and
0.5% to 72% for 0.01, 0.05, and 0.1 M HCl, respectively, when NaCl increased from 0 to 3 M,
respectively. The increase of Pb removal with HCl concentration was attributed to an H+

attack to dissolve Pb from carbonates, as well as fixing free SO4
2− as HSO4

−, thereby, limiting
the precipitation/formation of solid PbSO4. Meanwhile, Pb removal increased at higher NaCl
concentrations because of the formation of more soluble Pb-Cl complexes;

4. The addition of ZVAl during ZPLRs leaching (concurrent dissolution-cementation technique)
dramatically increased the Pb removal even at low chloride concentration. Pb removal at 0.05 M
HCl increased from 2.5% to 35.5% and 8% to 57% for 0.5 and 1 M NaCl concentration, respectively.
Meanwhile, for 0.1 M HCl, the addition of ZVAl during ZPLRs leaching increased the Pb removal
from 3% to 69% and 9% to 72% for 0.5 and 1 M NaCl concentration, respectively. The increase
was attributed to shifting the equilibrium as the result of sequestration of dissolved Pb, thereby,
enhancing dissolution of lead host minerals and dissolution of intermediate sparling soluble
solid, PbCl2; and

5. The most toxic metal, Pb, from ZPLRs was recovered and separated before solid-liquid separation,
which simplifies the treatment flowsheet, as well as eliminates the need for extensive washing of
the solid residues generated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/10/4/531/s1,
Figure S1: log–log activity of Pb2+ and Cl− at 25 ◦C, 1.013 bars, and CO3

2− = 10−5 M for (a) pH 4, (b) pH 2, and
(c) pH 1 for 0.01, 0.05, and 0.1 M HCl (created using the Geochemist’s Workbench® with the MINTEQ database).
Figure S2: XRD pattern of (a) ZPLRs before being treated and (b) the residues obtained after treating ZPLRs by the
concurrent dissolution-cementation technique in the solution composed of 3 M NaCl and 0.05 M HCl.
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