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Abstract: Conventionally, plastic anisotropy is calibrated by using standard uniaxial tensile and
biaxial test results. Alternatively, heterogeneous strain field specimens in combination with full-field
measurements can be used for this purpose. As reported by the literature, such an approach reduces
the number of required tests enormously, but it is challenging to obtain reliable results. This paper
presents an alternative methodology, which represents a compromise between the conventional and
heterogeneous strain field calibration technique. The idea of the method is to use simple tests, which
can be conducted on the uniaxial testing machine, and to avoid the use of advanced measuring
equipment. The procedure is accomplished by conducting standard tensile tests, which are simple
and reliable, and by a novel heterogeneous strain field tensile test, to calibrate the biaxial stress state.
Moreover, only two of the parameters required for full characterisation need to be inversely identified
from the test response; the other parameters are directly determined from the uniaxial tensile test
results. This way, a dimension of optimization space is reduced substantially, which increases the
robustness and effectiveness of the optimization algorithm.

Keywords: plasticity; biaxial testing; numerical simulation; identification; full-field measurement;
YLD2000-2d

1. Introduction

In sheet metal forming processes, mechanical behaviour usually depends on the extent of plastic
anisotropy. To accurately predict the behaviour, advanced yield criteria have been introduced [1].
The accuracy of the predictions depends on the flexibility of the yield function, which is correlated
to a set of parameters that have to be calibrated against experimental data. Following a standard
identification procedure [2], this is achieved by utilizing the inputs of three uniaxial tensile tests [3], i.e.,
one in the parallel direction (0◦), one in the transverse direction (90◦) and one in the diagonal direction
(45◦) measured from the rolling direction. During the testing procedure, normalized flow stresses and
width-to-thickness strain ratio (R-values) [4] are measured. Additionally, to characterize biaxial flow
stress and biaxial R-value, a bulge test [5], through-thickness disk compression test [6,7] or a cruciform
specimen test [8–10] needs to be conducted. However, such intricate experimental procedures require
specific testing equipment, which may not always be available in industrial labs.

Recently, an attractive alternative has been proposed by a merger of full-field measurement
techniques like the Digital Image Correlation (DIC) and inverse identification methods, even for
advanced material models [11] and a large number of material parameters. The approach relies
upon conducting a test with a heterogeneous strain–stress field, from which a larger quantity of
different experimental data can be measured [12]. This way, the number of required tests for full
anisotropy calibration can be reduced to a single test. Within this proposition, two research areas
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developed spontaneously: the development of heterogeneous strain–stress field test specimens and
the development of inverse identification methods.

The key feature of the former is the design of a testing procedure that enables reliable parameter
identification, which is achieved by the increased heterogeneity of the resulting strain–stress state.
In other words, the design strives for the maximum number of possible states that alter within the
test sample. Moreover, a strong correlation between the measured strain state and sought parameters
should be ensured.

As for the latter—with the full-field experimental techniques available, associated identification
methods have also developed. Among them, the finite element model updating method (FEMU) [13,14],
constitutive equation gap method (CEGM) [15], virtual fields method (VFM) [16,17], equilibrium gap
method (EGM) [18] and others, e.g., [19,20], are well established. A complete overview of the methods
can be found in Avril et al. [21].

There have been many attempts to undertake the concept of full-field identification of anisotropy
parameters from only a single test. Meuwissen et al. [22] made an early attempt to identify the
Hill48 model parameters by utilizing a heterogeneous strain field specimen for use on a uniaxial
tensile-testing machine. In their study, they employed the FEMU method to identify anisotropy and
hardening behaviour, and they reported that the Hill48 model provides a better fit to experimental
data in comparison to the isotropic von Mises model. Their specimen served as the basis for later test
improvements to achieve higher plastic strains. In particular, Haddadi and Belhabib [23] enhanced the
heterogeneous strain state tensile test to achieve improved strain heterogeneity, strain-path variety
and sensitivity to hardening parameters. Moreover, Robert et al. [24] compared the Haddadi and
Meuwissen specimen geometries and concluded that specimen geometry has a crucial influence on
the identified parameters. According to the study, Haddadi’s geometry is more suitable, owing to a
more uniform heterogeneous strain distribution. By contrast, Meuwissen’s geometry yields high strain
gradients that are spatially very localized.

A similar test to that of Haddadi and Belhabib [23] was conducted by Güner et al. [25] for
YLD2000-2d model calibration. In the study, they found that the employed specimen is insufficient
for biaxial stress state calibration and that additional biaxial test is needed. The reason for such an
approach originates from the specimen’s shape. The shape is similar to that used in a uniaxial tensile
test, with a neck introduced in the middle section. Hence, during loading, only stress states between
uniaxial tension and plane strain emerge. This impediment was also exposed by Kim et al. [26].
As reported, they were unable to identify anisotropy and hardening parameters from the notched
specimen since the specimen does not provide sufficient information for each parameter. Therefore,
the geometry alone is unsuited to the simultaneous identification of all anisotropy parameters. Based
on the finding, they conducted tests using three specimen designs: a notched specimen with two
diametrically arranged holes, a butterfly-shaped tensile specimen with four holes and a Σ-shaped
specimen. By analysing the stress state heterogeneity, they showed that the Σ-shaped specimen has the
highest degree of heterogeneity and that all stress states, from shear to biaxial tension, are present.
They exposed that high strain field magnitudes could result in poor identification results if they are
located where it is difficult to obtain reliable measurements (i.e., free edges).

The objective of the design is to develop a heterogeneous strain field specimen whose shape
clearly expresses the information relevant to the sought parameters. However, this is not sufficient
for an identification procedure to be effective. In particular, the effectiveness also depends on the
non-linearity of the material model and the number of sought parameters. As exposed by Kowalewski
and Gajewski [27], this is a significant disadvantage of FEMU-based identification schemes, where
the number of required iterations to reach convergence can be high. Convergence is affected by the
optimization algorithm being employed. Furthermore, the algorithms do not guarantee that the
optimum parameters are always found for different initial values [28,29].
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To address these drawbacks, an alternative VFM was developed. Its main advantage is that it
does not need to use finite element calculations. As reported by Martins et al. [30], the weakness of the
method is the choice of virtual fields, especially in non-linear cases.

Advantageous for this method is that it incorporates complete strain field information [31], while
on the other hand, full-field experimental data over an entire domain is required in the identification
process [30]. If the material does not follow the assumed plasticity model, the method returns the
parameters that best fit the experimental behaviour. However, Rossi et al. [32] exposed that the higher
the heterogeneity, the more difficult it is to find a good compromise. In that case, a single test is no
longer sufficient to identify the parameters. In addition to the Hill48 model, they also identified the
parameters of the YLD2000-2d model, but validation was beyond their scope.

Recently, Lattanzi et al. [33] introduced a novel VFM-based inverse identification methodology for
large-strain applications to identify YLD2000-2D yield function parameters by using a deep-notched
tensile specimen at three different orientations. The values of the parameters lead to a reasonable
reproduction of the anisotropy, but the experimental effort required for the calibration of such an
advanced material model was reduced to three tests. As exposed, one heterogeneous strain field test is
insufficient for complete anisotropy calibration.

This paper presents an alternative methodology, which represents a compromise between the
conventional anisotropy calibration procedure as described in [34] and full-field measurement-based
approaches, as outlined above. Conventionally, the uniaxial yield stress Y0, Y90, Y45, the biaxial yield
stress YB and corresponding R-values R0, R90, R45 and RB are first expressed with the model’s
parameters. Secondly, these expressions are equalised with corresponding experimental values, and
finally, the system of equations is solved. As mentioned, such an approach requires a bulge, disk
compression or cruciform specimen test, which demands special testing equipment. Alternatively, to
avoid intricate biaxial testing, a heterogeneous strain field tensile specimen can be employed, but this
approach usually forgoes the use of simple and reliable standard uniaxial tensile tests. Moreover, the
large number of parameters hinders the identification procedure, owing to the high dimensionality of
parametric hyperspace.

Herein we present an identification procedure for the calibration of the YLD2000-2d model.
The method combines a heterogeneous strain field tensile test and a standard uniaxial tensile test
but avoids both the use of special equipment needed for biaxial testing and a large number of
identification parameters. Moreover, a FEMU-based inverse identification procedure is applied for the
identification of two parameters, whereas other parameters are calculated from the standard uniaxial
tests data directly.

Importantly, to avoid a large number of parameters in the identification procedure, and to simplify
the identification procedure, the parameters of the employed YLD2000-2d model α1, α2, . . . ,α8 are
firstly expressed as parameters with physical meaning Y0, Y90, Y45, YB, R0, R90, R45, by using a
conversion procedure as described in [35]. As exposed by Marek et al. [36,37], the lack of physical
explanation has a significant impact on the identification procedure outcome, which is driven by the
compound action of all parameters.

Based on this concept, the parameters α1, α2, . . . ,α8 are first expressed with normalized flow
stresses Y0, Y90, Y45, YB and R-ratios, R0, R90, R45 and RB. Moreover, with the uniaxial testing
machine being available, it is reasonable to determine six out of eight parameters by using uniaxial test
data in three directions. The measured flow stresses Y0, Y90, Y45 and width-to-thickness strain ratios
R0, R90, R45 can be used directly as the model inputs.

In such a way, we (i) take advantage of standard uniaxial tensile tests which are simple, accurate
and easy to perform, and (ii) reduce the number of sought parameters from eight to two, namely, YB

and RB The latter results in a reduction of the dimensionality of the parametric hyperspace and simplify
the FEMU procedure substantially. For the identification of parameters YB and RB, we designed a
heterogeneous strain field specimen for use on a uniaxial tensile machine. Thus, we avoided additional
testing equipment. The geometry is designed to manifest a pronounced biaxial stress state at the
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centre of the heterogeneous strain field specimen. Finally, the parameters are identified by minimizing
the discrepancy between measured and simulated strain fields at the centre of the test specimen.
The identified parameters, and consequently the proposed methodology, are verified by conducting a
standard bulge test according to ISO 16808 [5].

2. Materials and Methods

2.1. The YLD2000-2d Model

The proposed methodology is applied to the widely accepted YLD2000-2d plastic anisotropy
model, which is briefly outlined below. For a detailed description, the reader is referred to the works
of Barlat et al. [6,34,35].

The anisotropic yield function of the model is defined by two linear transformations of the
deviatoric part of the Cauchy stress tensor s. The yield function reads:

Φ(s, Y) =
∣∣∣X′1 −X′2

∣∣∣a + ∣∣∣2X′′1 + X′′2
∣∣∣a + ∣∣∣2X′′2 + X′′1

∣∣∣a = 2Ya, (1)

where X′1, X′2, X′′1 and X′′2 are the principal values of two transformed stress deviator tensors X′ and X′′ ,
defined by linear transformations X′ = C′.s = C′.T.σ = L′.σ and X′′ = C′′ .s = C′′ .T.σ = L′′ .σ. The
parameter a controls the curvature of the yield surface and usually depends on the crystal structure of
the material, whereas the parameter Y presents the reference flow stress, dependent on the amount of
accumulated equivalent plastic strain.

When considering a planar anisotropy, the transformation of the stress state σ yields only 10
nonzero coefficients in L′ and L′′ , which are related to 8 independent parameters α1,α2, . . . ,α8:

L′11
L′12
L′21
L′22
L′66


=

1
3


2 0 0
−1 0 0
0 −1 0
0 2 0
0 0 3



α1

α2

α7

, . . . . . .


L′′11
L′′12
L′′21
L′′22
L′′66


=

1
9


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9




α3

α4

α5

α6

α8


. (2)

Conventionally, the parameters α1,α2, . . . ,α8 are calibrated from the uniaxial test in three directions
and the results of one biaxial test.

2.2. Conversion Between the Normalized Flow Stresses, R-Values and αi Parameters

For the employed anisotropy model, the parameters α1,α2, . . . ,α8 can be determined from the
normalized uniaxial flow stresses Y0, Y90, Y45, YB, and R-values R0, R90, R45, RB by solving the
following set of nonlinear equations:

|A1|
a + |B2|

a + |C3|
a = 2

(
3

Y0

)a

, (3)

|A3|
a + |B1|

a + |C2|
a = 2

(
3

Y90

)a

, (4)

|A2|
a + |B3|

a + |C1|
a = 2

( 3
YB

)a
, (5)

2aVa/2 + |W2|
a + |W1|

a = 2
(

12
Y45

)a

, (6)

− (R0A2 + A3)A1|A1|
a−2 + (R0B3 + B1)B2|B2|

a−2 + (R0C1 −C2)C3|C3|
a−2 = 0, (7)

(R90A2 + A1)A3|A3|
a−2
− (R90B3 + B2)B1|B1|

a−2 + (R90C1 + C3)C2|C2|
a−2 = 0, (8)
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A1(1 + RB)A2|A2|
a−2 + (RBB2 − B1)B3|B3|

a−2 + (RBC3 + C2)C1|C1|
a−2 = 0, (9)(

(C1 − B3)
2 + K(C1 + B3)

)
W2

(
|W1|

a−2
− |W2|

a−2
)
= K

(2
3

)a( (2/Y45)
a

1 + R45
−

(A2

3

)2
V−

a
2−1

)
, (10)

where A1 = 2α1 + α2, A2 = α2 − α1, A3 = α1 + 2α2, B1 = 4α4 − α3, B2 = 2α3 − 2α4, B3 = α3 + 2α4,

C1 = 2α5 + α6, C2 = 2α5 − 2α6, C3 = 4α5 − α6, K =

√
(C1 − B3)

2 + (6α8)
2, W1,2 = C1 + B3 ± K and

V = A2
2 + (6α7)

2.
It should be emphasized that this is a conventional identification procedure followed by Barlat et

al. in their work [34]. As reported, Equations (3)–(10) can be easily solved by the Newton–Raphson
method in a few iterations.

By contrast, the values Y0, Y90, Y45, YB and R0, R90, R45, RB can also be interpreted as the
identification parameters, which are inserted in the above system of equations to evaluate α1, α2, . . . ,α8.
Consequently, the values Y0, Y90, Y45 and R0, R90, R45 can be equated with corresponding values
measured from the uniaxial tensile test, whereas the parameters YB and RB can be determined from
the nonhomogeneous strain field tensile test response.

2.3. Proposed Identification Methodology

The proposed method represents a compromise between the conventional calibration procedure
and full-field strain measurement identification methods. The process can be described in the
following steps:

1. The standard uniaxial tensile tests [3] are first carried out in three directions, i.e., one parallel (0◦),
one transverse (90◦) and one in a diagonal (45◦) direction to the rolling direction. The hardening
behaviour, normalized yield stresses and R-values are calculated directly from these tests.

2. The developed heterogeneous strain field specimen is tested by using a uniaxial tensile testing
machine. The tensile force and the strain field at the centre of the test specimen are measured
during the test. The test specimen is presented in Section 2.4.

3. The parameters are identified using a FEMU procedure, where the simulated heterogeneous
test response is compared to the measured one. More specifically, the calculated test response
depends on the α1, α2, . . . ,α8 values, determined by Y0, Y90, Y45, R0, R90, R45, YB and RB.
This means that Y0, Y90, Y45, R0, R90, R45, YB and RB can be considered as optimization input
parameters, and parameters related to the uniaxial tensile test data can be directly set equal to
their experimental values from uniaxial tests, i.e., Y0 = Yexp

0 , Y90 = Yexp
90 , Y45 = Yexp

45 , R0 = Rexp
0 ,

R90 = Rexp
90 , R45 = Rexp

45 , and excluded from optimization. This means that only two parameters,
YB and RB, are sought by an inverse identification algorithm utilizing a heterogeneous strain field
tensile test response. In other words, with the supplementary values Yexp

0 , Yexp
90 , Yexp

45 , Rexp
0 , Rexp

90
and Rexp

45 , an arbitrary set of parameters {YB, RB} can be converted to α1, α2, . . . ,α8 parameters,
which are used in the YLD2000-2d model simulations. We can also interpret this procedure as a
constrained optimization problem, where the parameters α1, α2, . . . ,α8 are constrained by six
experimental values from the uniaxial tensile tests. This means that the dimensionality of the
parametric space reduces from eight to two.

The proposed methodology is schematically presented in Figure 1. The left box (a) presents the
tests to be performed. The outputs of these tests are the normalized uniaxial stresses, the R-values
and the strain fields measured from the heterogeneous test. Together with the initial guesses for
{YB, RB} = {1, 1}, the experimental values of Yexp

0 , Yexp
90 , Yexp

45 , Rexp
0 , Rexp

90 and Rexp
45 are inserted in

the conversion algorithm (b), which yields YLD2000-2d parameters α1, α2, . . . ,α8 (see Section 2.2).
These parameters are delivered in the numerical simulation of the conducted heterogeneous test (c).
The output of the numerical simulation is strain field response at the centre of the specimen (d), which
is compared with the experimental data (e) during the minimization procedure (f). New values of
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{YB, RB} are then returned to the conversion algorithm (b) and the procedure is repeated to minimize
the discrepancy between measured and simulated responses.

Figure 1. Proposed calibration procedure using standard uniaxial tensile tests and purposely developed
heterogeneous test: (a) required experimental tests, (b) conversion of parameters Y0, Y90, Y45, R0, R90,
R45, YB, RB to YLD2000-2d parameters α1, α2, . . . ,α8, (c) numerical simulation of heterogeneous test
response, (d) calculated and (e) measured heterogeneous test responses are compared in (f) the inverse
identification procedure.

2.4. Development of the Heterogeneous Strain Field Specimen

As proposed by the identification methodology, a heterogeneous test is used for YB and RB

identification, where strain field and tensile force are to be measured. From this viewpoint, several
requirements for a specimen design arise. Primarily, a biaxial stress state should be pronounced at
the strain measurement locations and these locations should not be close to free edges, where it is
difficult to obtain good experimental DIC measurements. Free-edge strain measurements are also
affected by the edge roughness and manufacturing tolerances. Moreover, any stress concentrations or
high strain gradients at measuring locations are not desired and should be avoided. This means that a
pronounced biaxial stress state should be spread over the acquisition domain.

Based on these requirements, we developed a heterogeneous specimen with pronounced biaxial
stress state close to the centre of the specimen (Figure 2). During the specimen design, we initially
followed the notched specimen design, which contains some biaxial stress state information, but this
state is located close to the notched edge. To move this location towards the centre of the specimen,
we further designed a cross shape at the centre region.

Figure 2. The geometry of the purposely developed heterogeneous test for use on a standard uniaxial
testing machine: (a) shape with overall dimensions, (b) detailed section, (c) location of twelve strain
acquisition points at the centre of the specimen.
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As seen in Figure 2, the two main branches diverge from the clamping part of the specimen and
cross at a 45◦ angle at the centre. To additionally compensate for the stress concentrations near the
adjacent notch, we introduced four bridges which interconnect the main branches. Finally, while the
clamped part of the specimen geometry matches that of a standard tensile specimen, the geometry of
the central part was designed to promote a dominant biaxial stress state close to the centre. A drawback
of the specimen design is the buckling of the upper and lower bridge. To restrain the bridges from
buckling, sheet metal can be sandwiched by a pair of dies which locally support the sheet metal,
as proposed by Kuwabara [9]. However, since the present study is only meant to demonstrate the
identification procedure, we did not find such measures to be required.

2.5. Sensitivity Analysis

The key feature of the sensitivity analysis is the specimen design. In the identification procedure,
an issue might arise if the strain field is not sensitive to all sought parameters [38]. This means that some
designs can result in lower accuracy of the identified parameters than others [34]. This issue has been
addressed by Martins et al. [39] who studied the influence of different cruciform specimen geometries
on the hardening and plastic anisotropy parameters. They found that VFM-based identification with
specimen geometry proposed by Zhang et al. [40,41] yields a higher error on the shear parameter N
in the Hill48 model in comparison to the other two proposed geometries and also with respect to
other Hill’s parameters. A similar study was also conducted by Schmaltz and Willner [42], who tested
even more sophisticated cruciform specimen designs. In their study, they show that FEMU-based
identification fails at specimen tests that produce more features than the numerical material model can
simulate. Moreover, to systematically tackle this issue, Souto et al. [43,44] proposed a quantitative
indicator to distinguish, rate and rank different tests according to the strain state range, the deformation
heterogeneity and the level of strain achieved.

In this study, a method used by Lecompte et al. [45,46] or Bertin et al. [47,48] is upgraded to
evaluate how much the response of the heterogeneous strain specimen is sensitive to the sought
parameters. In particular, the objective is to determine the sensitivity of principal strains ε1 and ε2 to
variations in parameters YB and RB. High sensitivity indicates that variation in a parameter results in a
large variation in the strain field, whereas a small sensitivity suggests that variation in a parameter
does not alter the simulated strain at all. Hence the parameter cannot be identified from the measured
response. However, from the calculated sensitivity fields, it is also difficult to estimate which value is
the bottom value if the sensitivities are not compared with some known value or being normalized.
For these reasons, we calculated two types of sensitivities and normalized one with another.

Firstly, we calculated the sensitivity of heterogeneous specimen principal strain fields to parameter
variations, i.e., ∂ε1/∂YB, ∂ε1/∂RB, ∂ε2/∂YB and ∂ε2/∂RB. Secondly, we analytically calculated the
sensitivity of the standard uniaxial tensile test longitudinal strain εuni

1 to flow stress Y0 variation and
sensitivity of transversal strain εuni

2 to R0 variation, i.e., ∂εuni
1 /∂Y0, ∂εuni

2 /∂R0. These two values will be
used for normalization because it is well known that they are high in a uniaxial test. To derive the
sensitivities ∂εuni

1 /∂Y0, ∂εuni
2 /∂R0, we assumed negligible elastic strains, plastic volume preservation,

the proportionality of loading paths and that the uniaxial test is a force-driven process. Under these
assumptions, a tensile force and R-value can be expressed as:

F0 = Y0YA0e−ε
uni
1 , R0 = −

εuni
1

εuni
1 + εuni

2

(11)

where Y = Y
(
ε

pl
eq

)
presents reference flow stress, A0 initial cross-section area and εpl

eq equivalent plastic

strain. Furthermore, from the plastic work equivalence, i.e., Yεpl
eq = Y0Yεuni

1 , a relationship between

εuni
1 and εpl

eq can be expressed as: εpl
eq = Y0εuni

1 . By taking a derivative of tensile force F0 with respect
to Y0, and setting it to zero, the sensitivity of the longitudinal strain εuni

1 to flow stress Y0 variation
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∂εuni
1 /∂Y0 can be expressed. Moreover, the sensitivity of transversal strain εuni

2 to R0 variation can

be derived from Equation (11), by expressing εuni
2 = −R0εuni

1 (1 + R0)
−1 and taking a derivative with

respect to R0. Both results are given by the Equation (12).

∂εuni
1

∂Y0
=

Y + Hεpl
eq

(Y −H)
,

∂εuni
2

∂R0
=

−ε
pl
eq

(1 + R0)
2 , (12)

where H presents hardening modulus and Y0 is assumed to be one.
The sensitivities of the heterogeneous test, namely, ∂ε1/∂YB, ∂ε1/∂RB, ∂ε2/∂YB and ∂ε2/∂RB are

evaluated numerically by using a forward difference scheme. With these values available, relative
sensitivities can be expressed by:

〈
∂εi
∂YB

〉
=

∣∣∣∣∣∣∣ ∂εi/∂YB

∂εuni
1 /∂Y0

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣ ∂εi
∂YB

Y −H

Y + Hεpl
eq

∣∣∣∣∣∣∣∣,
〈
∂εi
∂RB

〉
=

∣∣∣∣∣∣∣ ∂εi/∂RB

∂εuni
2 /∂R0

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣ ∂εi
∂RB

−(1 + R0)
2

ε
pl
eq

∣∣∣∣∣∣∣∣, i ∈ {1, 2}, (13)

where the values of Y, H and εpl
eq correspond to the current state of yielding. If no or only a small

amount of equivalent plastic strain develops, the relative sensitivity is assumed to be zero.
The sensitivity fields are presented in Figure 3 and should be interpreted as information of ε1 or

ε2 associated with parameters YB or RB compared to the information from uniaxial test strains ε1 or ε2

associated with Y0 or R0. From Figure 3a–d, it can be observed that maximum relative sensitivity is
located mainly at the centre of the specimen and that the field is relatively uniformly distributed over
the region. The localised peak values in Figure 3d originate as a numerical error when evaluating the
relative sensitivities 〈∂ε1/∂RB〉 and 〈∂ε2/∂RB〉 at the points where material undergoes the elastic-plastic
transition, after which the equivalent plastic strain is close to zero. No sensitivity is assumed at these
locations because principal strains are also small.

Figure 3. Heterogeneous test relative sensitivity fields: (a) relative sensitivity of max. principal strain
ε1 to a change of YB, (b) relative sensitivity of max. principal strain ε1 to a change of RB, (c) relative
sensitivity of min. principal strain ε2 to a change of YB, (d) relative sensitivity of min. principal strain
ε2 to a change of RB.

However, Figure 3 indicates that all sensitivities of strain fields are accounted for strain acquisition
points located at the centre of the specimen. In Figure 3a,c,d, it can be observed that sensitivities
∂ε1/∂YB, ∂ε2/∂YB and ∂ε2/∂RB represent about 35% of sensitivities ∂ε1/∂Y0 or ∂ε2/∂R0 indicated by
a standard uniaxial tensile test. Based on these values, it can be concluded that the parameters YB and
RB are well represented by the heterogeneous strain field test response at the centre of the specimen.

It is worth noting that the relative sensitivity of maximum principal strain ε1 to variation in RB

(Figure 3b) yields a value greater than one because variation in ε1 in the biaxial state is larger than
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the variation in ε2 in the uniaxial tensile test. It should also be noted that the maximum sensitivity in
Figure 3c,d is located in the vicinity of the horizontal notch because the notch influences the principal
stress direction, which means that ε2 is pronounced.

2.6. Experimental Procedure and Measurement of the Heterogeneous Test Response

The 304 austenitic stainless steel was chosen in this study, and its chemical composition was 0.07 C,
1.9 Mn, 19.2 Cr, 9.2 Ni, 0.04 P, 0.72 Si, 0.028 S, 0.09 N and balance Fe (wt. %). According to the proposed
identification procedure, the standard uniaxial tensile tests [3] were carried out on 0.68 mm thick
304 stainless steel sheet metal in the parallel (0◦), transverse (90◦) and diagonal (45◦) direction. Flow
stress as a function of equivalent plastic strain and R-value in a selected direction were determined in
accordance with the literature [49]. Flow curve in the rolling direction was set as a reference curve,
meaning that the normalized flow stress Y0 was set equal to unity. The normalized flow stresses in
the other two directions, namely Y90 and Y45, were determined by scaling the reference curve to the
analysed curve and detailed information is available in Starman et al. [50]. The measured values are
reported in the Results section.

The heterogeneous test specimens were cut using a wire electrical discharge machining process,
where the specimens were cut in the rolling direction. To avoid excessive roughness and heat generation,
which may influence the material properties, the cutting speed was 0.5 mm/h whereas the diameter
of the cutting wire was 0.2 mm. The specimens are designed for use on a uniaxial tensile machine,
therefore the geometry of the clamping part of the specimen is equal to the standard uniaxial tensile
test. During the test, quasi-static loading conditions were imposed by tensile machine crosshead
speed set equal to 0.01 mm/s and loading force measured with a 50 kN loading cell. The logarithmic
surface strain field is measured at the centre of the specimen using a DIC optical system Q-400 Dantec
Dynamics GmbH, (Ulm, Germany). The force measurement was synchronized with the acquisition of
DIC images. The parameters of the optical measuring system are presented in Table 1.

Table 1. Adopted Digital Image Correlation (DIC) settings for the heterogeneous test.

cameras Manta G-507, Allied Vision, (Exton, PA, USA) (3 pieces)
image resolution 2464 pixel × 2056 pixel
objective focal distance 35 mm
field of view 25 mm × 21 mm
stereo angle 80◦ (between outermost cameras)
patterning technique matt white spray paint base coat with black speckles
pattern feature size (approx.) 3 pixel
DIC technique multi-cam
DIC software Istra 4D (ver. 4.4.6), Dantec Dynamics GmbH, (Ulm, Germany)
facet size 19 pixel
grid spacing 12 pixel
spatial smoothing local regression (5 × 5 window)
temporal smoothing none
logarithmic strain noise-floor 5 × 10−4

number of acquired data points 16,000
acquisition frequency 2 Hz

Figure 4a presents the optical measurement system setup with multi-cam configuration, which is
focused in the field of view 25 mm × 21 mm. In Figure 4b,c principal logarithmic strain fields ε1 and ε2

are presented, which are, for demonstration purposes only, measured over a larger field of view than
finally selected (25 mm × 21 mm field of view). As shown, the fields are relatively homogeneous in
the centre of the specimen, which means that the measurements are potentially less sensitive to strain
location error. Based on this information, the principal strain fields ε1 and ε2 were measured in twelve
acquisition points (cf. Figure 2c), which served in the inverse identification procedure. The measured
force–strain responses are reported in the next section.
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Figure 4. Heterogeneous specimen strain field measurement: (a) optical measurement system with a
multi-cam configuration, (b) measured maximum principal logarithmic surface strain field contours ε1

(c) measured minimum principal logarithmic surface strain field contours ε2.

3. Results

In this section, the uniaxial test results and the heterogeneous specimen strain acquisition
measurements are presented first. Based on these measurements, an inverse identification procedure is
conducted, by comparison of measured and simulated strain field response. The results of the inverse
identification are presented afterwards.

3.1. Standard Uniaxial Tensile Tests Results

Normalized flow stress values and width-to-thickness strain ratios measured from the standard
uniaxial test were directly input into the conversion algorithm for YLD2000-2D model. The results are
reported in Table 2. The left column presents normalized flow stresses and R-values, whereas the flow
curve is given in the right column. The flow curve is calculated from the standard uniaxial test in the
rolling direction as Y = F0/A, where A is the actual cross-section area. The equivalent plastic strain
was calculated by εpl

eq=ε
uni
1 − F0/(EA), where the modulus of elasticity E was found to be 190 GPa.

Table 2. Normalized flow stresses, R-values and plastic flow curve calculated from the uniaxial tensile
test data. Nine specimens were tested for each cutting direction.

Normalized Flow Stress
and R-Value

Isotropic Hardening

Y
(
εpl

eq

)
(MPa) Y

(
εpl

eq

)
(MPa)

Y0 1.00 Y(0) 213 Y(2.0e-2) 368
Y90 1.03 Y(3.0e-4) 255 Y(5.0e-2) 446
Y45 0.98 Y(9.0e-4) 284 Y(1.0e-1) 564
R0 0.92 Y(3.0e-3) 300 Y(1.5e-1) 665
R90 0.81 Y(6.0e-3) 317 Y(2.0e-1) 760
R45 1.21 Y(1.0e-2) 333 Y(3.0e-1) 940

3.2. Heterogeneous Strain Field Tensile Tests Results

The heterogeneous specimen logarithmic strain was measured at observation points presented
in Figure 2c and plotted against tensile force. Due to the symmetric configuration of the acquisition
points, the measurements were gathered in three characteristic points presented in Figure 5, which
were processed for both principal surface strains.
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Figure 5. Characteristic measurements of heterogeneous specimen response: (a) max./min. strain–force
response at the close-to-centre points (pt. 1), (b) max./min. strain–force response at the horizontal
far-from-centre points (pt. 2), (c) max./min. strain–force response at the vertical far-from-centre points
(pt. 3). Blue and red insets in the figure represent the central region in Figure 4b,c, whereas the
acquisition points are coloured red, green and blue. Short cyan lines represent the direction of a
principal strain.

Figure 5a corresponds to the middle, close-to-centre points (pt. 1, coloured red in Figure 2c),
the centre column plot (Figure 5b) corresponds to the horizontal far-from-centre points (pt. 2, coloured
green) and the right column plot (Figure 5c) corresponds to the vertical far-from-centre points (pt. 3,
coloured blue in Figure 2c). Since three specimens were tested, this yielded twelve curves for each plot,
and as seen from the figure, the discrepancy between the curves is within 5 × 10−4. This means that the
repeatability of the measurements is high and that the specimens’ response is relatively symmetrical.

3.3. Identification Procedure Results

For the inverse identification process, finite element simulations of a heterogeneous specimen
test were conducted in ABAQUS/Standard. A quarter model with 10,000 quadrilateral finite elements
was used in the simulations. Logarithmic strain versus tensile force was monitored at the locations of
characteristic points: pt. 1, pt. 2 and pt. 3. Furthermore, in the optimization procedure, the objective
function was defined as a sum of the squared differences between the simulated and the measured
data points of strain–force curves. The data of all six characteristic strain–force curves in the force
range from 2.5 kN to 3.2 kN were included in the objective function definition. The gradient-based
Levenberg-Marquardt optimization method was utilized to minimise the objective function, where
the Jacobian matrix was calculated by the finite difference method. The identification procedure was
started with initial values {1,1} for YB and RB, and after three iterations, the minimum of the objective
function was reached. The parameters are reported in Table 3. Moreover, because gradient methods
are prone to reach local minima instead of a global one, the optimization process was repeated several
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times with different starting values. However, the same result {YB, RB} = {0.94, 1.03} was obtained
each time in a few iterations.

Table 3. The values of identified parameters using a heterogeneous test response.

Identified Parameters

YB 0.94
RB 1.03

By comparing the heterogeneous test responses in Figure 6, good agreement between simulated
(solid line) and characteristic measured values (black dotted line) can be observed. The simulation
results correspond to the identified parameters, given in Table 3. As shown, the simulation results fall
within the standard deviation of the measurements.

Figure 6. Comparison of simulated and measured responses of the heterogeneous specimen test:
(a) max./min. strain–force response at the close-to-centre points (pt. 1), (b) max./min. strain–force
response at the horizontal far-from-centre points (pt. 2), (c) max./min. strain–force response at the
vertical far-from-centre points (pt. 3).

3.4. Experimental Verification of Identified Anisotropy

The proposed methodology was verified by conducting a bulge test according to ISO 16808 [5],
with which the identified values can be directly compared. The bulge tests (Figure 7) were performed
using custom-built hydraulic testing equipment consisting of a chamfered die with a 160 mm opening
and a circular steel base with a drawing bead to constrain sheet metal from moving towards the centre
of the die. Before the pressurization, the die is tightened to the base plate with twelve bolts. During
the pressure increase, the deformation of the bulge is monitored with a multi-cam DIC system which is
synchronized with the pressure sensor. The multi-cam optical measuring setup is presented in Figure 7
and the settings were set to surpass the ISO 16808 optical system requirements. Three specimens were
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tested up to a pressure of 16 MPa at which no specimen rupture occurred. The strains were measured
along with the sheet’s rolling and transverse-to-rolling direction.

Figure 7. Bulge test setup with optical measurement equipment in the multi-cam configuration.

The results are presented in Figure 8. Figure 8a presents the measured strains in the transverse
direction εTD plotted against the longitudinal strains εRD. Linear regression is applied to the measured
data points and the slope of the fit is defined as the value of Rexp

B . The experimental value of this
parameter was found to be 1.03, which is identical to the identified value in Table 3. Moreover,
the hardening curve was calculated from the pressure and curvature measurement of the sheet, by
following the procedure described in [51]. By using the bulge test, it was found that the yield curve is
about 2 per cent lower than the reference curve obtained by the uniaxial test in the rolling direction.
In other words, the conducted bulge test yields Yexp

B = 0.98. By comparing this result with the value
identified by the proposed procedure, it is found that there is approximately a 4% discrepancy between
the measured and identified YB value.

Figure 8. Bulge test results: (a) transverse direction strain εTD as a function of rolling direction strain
εRD, (b) yield curve as a function of equivalent plastic strain calculated from the bulge test.

4. Discussion and Conclusions

This paper presents an alternative methodology for plastic anisotropy parameter calibration,
which combines a heterogeneous strain field tensile test and a standard uniaxial tensile test, but avoids
both special testing equipment for biaxial testing and a large number of identification parameters.
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To avoid a large number of parameters in the identification procedure, the parameters of the
employed model are first expressed as parameters with physical meaning using a conversion procedure.
In this concept, the YLD2000-2d parameters α1, α2, . . . ,α8 are first expressed with normalized flow
stresses Y0, Y90, Y45, YB and R-ratios, R0, R90, R45 and RB. Moreover the flow stresses Yexp

0 , Yexp
90 , Yexp

45
and width-to-thickness strain ratios Rexp

0 , Rexp
90 , Rexp

45 , measured from the uniaxial tests, can be used
directly as the model inputs. This way, the number of sought parameters can be reduced and the
procedure substantially simplified.

For calibration, a heterogeneous strain field specimen for use on the standard tensile testing
machine was designed. Although the specimen’s design is rather complicated, the geometry aims to
induce pronounced biaxial state at the centre of the specimen, which is relatively uniformly distributed
over the region. A disadvantage of the specimen is that it tends to buckle as the load increases.
The strains in the specimen are relatively small, but this is a common issue of a majority of uniaxial
heterogeneous field specimens because strain heterogeneity is usually achieved by the specimen’s
shape heterogeneity. The latter induces stress concentrations at notches, which lead to premature
necking of a specimen.

Although in our design the plastic strains are relatively small, this does not influence the identified
R-value, because as demonstrated by the verification case, the biaxial R-value does not alter with the
increased plastic strain substantially. On the other hand, a variation of R-values is usually common to
uniaxial tensile tests. For example, as proposed by the standard procedure [4], the uniaxial R-values
are measured in equivalent plastic strain range between 0.08 and 0.12. If a heterogeneous testing
procedure is aimed to identify these values and if the strains in a heterogeneous specimen are mainly
small, unreliable results can be obtained.

Similar behaviour was anticipated also in the presented case, where the calculated strain field
is influenced by the flow curve. In other words, it is known that flow stress can vary with increased
plastic strain and better agreement between identified and measured normalized flow stress would be
achieved with higher strains. The strains are relatively small, therefore we believe that this is the main
reason for the discrepancy.

The employed sheet metal exhibits mild planar anisotropy, which results in biaxial R-value and
normalized biaxial flow stress close to unity. Nevertheless, to verify the effectiveness, the optimization
process was repeated several times with starting values changed up to 30%. The optimum was found
in a few iterations. However, in the future, it would be valuable to validate the method with a sheet
with stronger plastic anisotropy.

In the present work, eight material data are assumed to be available and the YLD2000-2d yield
criterion is employed for anisotropy description. If the analysis is focused on materials having a
strong planar anisotropy, more advanced yield criterion, e.g., YLD2004-18p [34,35] is suggested to be
employed. Since with such a model more parameters have to be identified, additional uniaxial tests or
upgraded heterogeneous strain field identification technique should be performed.
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