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Abstract: The preparation of rhenium powder by a hydrogen reduction of ammonium perrhenate is
the only industrial production method. However, due to the uneven particle size distribution and
large particle size of rhenium powder, it is difficult to prepare high-density rhenium ingot. Moreover,
the existing process requires a secondary high-temperature reduction and the deoxidization process
is complex and requires a high-temperature resistance of the equipment. Attempting to tackle the
difficulties, this paper described a novel process to improve the particle size distribution uniformity
and reduce the particle size of rhenium powder, aiming to produce a high-density rhenium ingot,
and ammonium perrhenate is completely reduced by hydrogen at a low temperature. When the
particle size of the rhenium powder was 19.74 µm, the density of the pressed rhenium ingot was
20.106 g/cm3, which was close to the theoretical density of rhenium. In addition, the hydrogen
reduction mechanism of ammonium perrhenate was investigated in this paper. The results showed
that the disproportionation of ReO3 decreased the rate of the reduction reaction, and the XRD and
XPS patterns showed that the increase in the reduction temperature was conducive to increasing the
reduction reaction rate and reducing the influence of disproportionation on the reduction process.
At the same reduction temperature, reducing the particle sizes of ammonium perrhenate was conducive
to increasing the hydrogen reduction rate and reducing the influence of the disproportionation.

Keywords: ammonium perrhenate; rhenium; disproportionation reaction; hydrogen reduction

1. Introduction

Rhenium as an important rare metal is widely used in metallurgy and the aerospace industry [1].
The plasma method, electrolysis method, vapor deposition method, and powder metallurgy are the
main processes for the preparation of rhenium [2,3]. Jurewicz et al. [4] prepared a high-purity nanometer
rhenium powder by the plasma method. Leonhardt et al. [5] used plasma spray spheroidization to
control the microstructure of rhenium and obtained spherical rhenium powders. Schrebler et al. [6] also
prepared spherical rhenium powder from a mixture of rhenic acid and sodium sulfate by electrolysis.
Liu et al. [7] prepared small particles of superfine spherical rhenium powder by vapor deposition.
The rhenium powders prepared by the above processes have a uniform particle size distribution and
large specific surface area, and the pure rhenium materials prepared from these rhenium powders

Metals 2020, 10, 640; doi:10.3390/met10050640 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://www.mdpi.com/2075-4701/10/5/640?type=check_update&version=1
http://dx.doi.org/10.3390/met10050640
http://www.mdpi.com/journal/metals


Metals 2020, 10, 640 2 of 15

have high densities. However, due to the complexity of the above processes and high equipment
requirements, none of the above processes have been industrialized. The hydrogen reduction of
ammonium perrhenate is a commonly used process to prepare rhenium powder in industry, which has
the characteristics of a simple process flow, low production cost, and low equipment requirements [8,9].
The preparation process flow chart of rhenium ingot is shown in Figure 1. However, the rhenium
powders that are produced by this preparation technology have an uneven particle size distribution,
small specific surface area, and the rhenium ingots produced have poor compactness. Moreover, due
to the low efficiency of the mass and heat transfer in the traditional process, the reaction with hydrogen
is not complete and the second reduction step at a high temperature is required [10–12].
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reduction of a combustion-synthesized foam-like MoO2 precursor. All of the above studies are 
based on a reducing substance pretreatment, which provides a certain reference experience for this 
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In order to optimize the process of preparing rhenium by a high-temperature reduction, we can
look into work dealing with the preparation of other metal powders by a high-temperature reduction.
In recent years, there have been many studies on the preparation of metal powders by a high-temperature
hydrogen reduction [13–21]. For instance, Wang et al. [22] proposed a novel route to synthesize Mo
powders via a carbothermic prereduction of molybdenum oxide followed by a reduction by hydrogen;
they removed oxygen from the samples by a secondary reduction. Kanga et al. [23] prepared
nanosized W and W-Ni powders by applying ball milling and a hydrogen reduction of oxide powders.
Gua et al. [24] prepared Mo nanopowders through a hydrogen reduction of a combustion-synthesized
foam-like MoO2 precursor. All of the above studies are based on a reducing substance pretreatment,
which provides a certain reference experience for this study. However, the hydrogen reduction
reaction of ammonium perrhenate is a complicated process. This process not only involves reduction,
but also a disproportionation reaction. Colton [25] pointed out that the disproportionation of ReO3

occurred above 300 ◦C to produce Re2O7 and ReO2. This disproportionation reaction is the main
reason why ammonium perrhenate cannot be completely reduced to rhenium at a low temperature.
There are few reports on the preparation of a high-quality Re powder by a hydrogen reduction at
present. Bai et al. [26] reduced volatile rhenium oxide to prepare Re powder. However, due to the high
equipment requirements of this process, it cannot be used for industrial production.

Chemical Reaction Considerations

Ammonium perrhenate decomposes into oxides with different valence states when reduced at
a high temperature, and the main oxides are Re2O7, ReO3, and ReO2 [27]. The total equation for
the reduction of ammonium perrhenate in hydrogen is represented by Equation (1). Ammonium
perrhenate is decomposed by heat to Re2O7, which is gradually recombined with hydrogen and finally
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reduced to Re, as shown in Equations (2)–(4). ReO3 is very reactive; ReO3 is disproportionated at a
high temperature to produce ReO2 and Re2O7, as shown in Equation (5).

2NH4ReO4 (s) + 7H2 (g) = 2Re (s) + 8H2O (g) + 2NH3 (g) (1)

Re2O7 (s) + H2 (g) = 2ReO3 (s) + H2O (g) (2)

ReO3 (s) + H2 (g) = ReO2 (s) + H2O (g) (3)

ReO2 (s) + 2H2 (g) = Re (s) + 2H2O (g) (4)

3ReO3 (s) = Re2O7 (s) + ReO2 (s) (5)

In the present work, we determined the reduction mechanism of ammonium perrhenate through
a differential thermal analysis, and innovatively proposed that the disproportionation reaction in the
reduction process was the main reason affecting the complete reduction of ammonium perrhenate.
This work also determined an innovative process for reducing the particle size and reduction
temperature of rhenium powder, aiming to produce a high-density rhenium ingot, and ammonium
perrhenate is completely reduced by hydrogen at a low temperature. This is the technological
innovation point of this paper. Moreover, the optimization and innovation of this process is based on
the already industrialized hydrogen reduction process to produce rhenium ingot, which makes it easy
to realize as an industrialized production process.

2. Materials and Methods

2.1. Instrument

Instrument: The following instruments were used herein: RE-2000A rotary evaporator, Qiqiang
instrument manufacturing co. LTD, Shanghai, China; SSX-550 scanning electron microscope, Shimadzu,
Osaka, Japan; PW3040/60 X-ray diffractometer (XRD), Panalytical Company, Almelo, Netherlands;
Escalab250 250 X-ray photoelectron spectroscopy (XPS), Hewlett-Packard Company, Palo alto, CA,
USA; VEP223 high-temperature vacuum sintering furnace, Beizhen Vacuum Technology Co. Ltd.,
Shenyang, China; HYL-1076 laser particle size analyzer, Haoyu Technology Co. Ltd., Dandong, China;
the self-developed recrystallization reactor, Institute of metals, Chinese academy of sciences, Shenyang,
China; STA PT1600 Differential Thermal Analysis (DTA), Linseis Co. Ltd., Selb, Germany.

2.2. Materials

Materials: NH4ReO4 (99.99%, Re ≥ 69.4%) from Halin Chemical Co. LTD, Weifang, China.

2.3. Analytical Methods

XRD detection: The light tube type was a Cu target, ceramic X light tube. λ = 0.15406 nm, scan
range was 10–90 degrees, the scanning speed was 2 degrees/min.

DTA detection: The temperature ranged from 300 to 700 ◦C, and the gas atmosphere was nitrogen.
Particle size distribution detection: the test medium was ethanol, the optical model was Mie,

and the distribution type was volume distribution.
The parameters of SEM: The electron acceleration voltage was 20.0 KV, the working distance was

21.8 mm, and the magnification was 15,000 times.
XPS analysis parameters: The fitting software was XPSPEAK (XPSPEAK.41, Hewlett-Packard

Company, Palo alto, CA, USA). The read base pressure was 2.4 × 10−8 Pa, utilizing monochromatic Al
Kα radiation operating at 1486.6 eV. At the pass energy of 50 eV, with a 0.1 eV step, the high-resolution
scans were performed. At the pass energy of 100 eV and a step size of 1 eV, the survey spectra
were acquired. The reproducible C (1 s) binding energy of all samples was 284.6 eV and the charge



Metals 2020, 10, 640 4 of 15

neutralization was achieved using low-energy electrons and argon ions. The spin–orbit splitting was
2.4 eV, and the spin orbital split intensity ratio of 4f7/2 and 4f5/2 was 4:3.

2.4. Experimental Procedure

As illustrated by Figure 2 was the experimental flow chart of a hydrogen reduction of ammonium
perrhenate in this study. Ammonium perrhenate (99.99%, Re ≥ 69.4%) was prepared with deionized
water into a saturated solution at room temperature, the room temperature was about 25 ◦C. Then the
saturated solution of ammonium perrhenate at room temperature was placed in an RE-2000A rotary
evaporator, and part of the water was evaporated to form a hot saturated solution at 120 ◦C [28].
The thermally saturated solution of ammonium perrhenate was introduced into the recrystallization
condensation reactor; the stirring speed and cooling temperature were adjusted and recrystallized at 5 ◦C
for 3 h. Finally, the cooled solid–liquid mixture was filtered and dried to obtain ammonium perrhenate
crystals. The SEM diagrams of the recrystallized ammonium perrhenate are shown in Figure 3 [29],
and the median diameters (D50) and specific surface area are shown in Table 1. The recrystallization
ammonium perrhenate particles (60 g) were reduced with the different temperatures (300–900 ◦C) in
the high-temperature vacuum sintering furnace; the hydrogen flow rate was 500 mL/min, and the
heating rate was 10 ◦C/min. After 3 h of reduction, the reduction product of ammonium perrhenate
was obtained.
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Figure 3. SEM images of recrystallized ammonium perrhenate particles at different agitation intensities
and ammonium perrhenate raw material particles (a) ammonium perrhenate raw material particles,
(b) 100 rpm stirring strength recrystallized particles, and (c) 200 rpm stirring strength recrystallized
particles) [29].

Table 1. Specific surfaces and median diameters (D50s) of the NH4ReO4 particles.

Ammonium Perrhenate Specific Surface (m2/kg) D50 (µm)

100 rpm stirring strength
recrystallized 21.72 81.05

200 rpm stirring strength
recrystallized 26.93 71.17

Raw material particles 14.79 123.90
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Preparation of rhenium ingots: 20 g rhenium powder was put into the powder press mold
(the height was 32.00 mm and the inner diameter of the mould was 16.60 mm) to press. The pressure
of the powder press was 74,000 N, the sintering furnace temperature was 2300 ◦C, and the sintering
time was 3 h. The theoretical density of rhenium is 21.04 g/cm3.

3. Results and Discussion

3.1. Reduction Mechanism Analysis

In order to research the reaction mechanism of ammonium perrhenate in the reduction process,
the decomposition products of ammonium perrhenate (Re, ReO2, and ReO3) were analyzed by a
differential thermal analysis (DTA), and the differential thermal analysis curve is shown in Figure 4.
It can be seen that an obvious endothermic peak appeared at 350 to 400 ◦C. Re is stable at a high
temperature, and the decomposition temperature of ReO2 is 700 ◦C. Therefore, the generation of this
endothermic peak can only be due to the disproportionation of ReO3. The disproportionation reaction
products of ReO3 are ReO2 and Re2O7, and the reaction equation is shown in Equation (5). In the
hydrogen reduction process, the ammonium perrhenate is firstly decomposed into Re2O7, the Re2O7

reacts with hydrogen to form ReO3, and ReO3 reacts with hydrogen to form ReO2 until they are reduced
to Re. In the process of a hydrogen reduction of ammonium perrhenate, if the disproportionation
reaction and reduction reaction exist simultaneously, the disproportionation reaction will be the main
reason affecting the complete reduction of ammonium perrhenate at a low temperature.
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In order to research the effect of disproportionation on the hydrogen reduction of ammonium
perrhenate, the hydrogen reduction experiments of ammonium perrhenate were carried out at the same
reduction time and at different reduction temperatures. The reducing substance was recrystallized
ammonium perrhenate at a 200 rpm stirring strength (D50 was 71.17 µm, specific surface was
26.93 m2/kg). The XRD patterns of the reduction products of ammonium perrhenate at different
temperatures are shown in Figure 5. The characteristic peaks of the reduction products were complex
at lower temperatures (300–600 ◦C), and the diffraction peaks of the reduction products indicated Re
and ReO2, and ReO3. The characteristic peaks of Re did not change obviously from 400 to 600 ◦C.
However, in the range of 300 to 400 ◦C, the characteristic peaks of ReO3 were enhanced. In the range of
400 to 600 ◦C, the characteristic peaks of ReO2 were enhanced, while that of ReO3 were weakened.
When the temperature reached 700 ◦C, the characteristic peaks of the reduction products were Re, and
other crystal peaks were not observed. This result suggested that the contents of ReO3 in the reduction
products increased in the range of 300 to 400 ◦C. However, within the temperature range of 400 to
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600 ◦C, the content of Re in the reduction products did not increase significantly, while the content of
ReO2 increased significantly.
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Figure 5. XRD patterns of the reduction products of ammonium perrhenate (D50 was 71.17 µm, specific
surface was 26.93 m2/kg) at different temperatures. Figure (a) was the XRD diffraction pattern of the
reduced product at 300 to 400 ◦C; Figure (b) was the XRD diffraction pattern of the reduced product at
500 to 700 ◦C.

In order to further clarify the influences of reduction temperatures on an ammonium perrhenate
hydrogen reduction, X-ray photoelectron spectroscopy was used for the rhenium atomic quantitative
analysis in different valence states. According to the references [30–32], a rhenium atom has a split
energy level (f), where the spin–orbit splitting was 2.4 eV, and the spin orbital split intensity ratio of
Re 4f7/2 and Re 4f5/2 was 4:3. The background was a mixed Shirley background (Shirley + straight
line) [33], and the slope of the line was eight. The peak positions and fit paramters for all samples
are given in Table 2. The X-ray photoelectron spectroscopy of the reduced products at the different
reduction temperatures are shown in Figure A1.

Table 2. The peak positions and fit paramters for Re 4f7/2 and Re 4f5/2.

Fitting Parameters Re Re4+ Re6+ Re7+

B.E (4f7/2) 40.31 42.7 45.2 46.1
B.E (4f5/2) 42.71 45.1 47.6 48.5

FWHM 1.3 1.7 1.75 1.8

The X-ray photoelectron spectroscopy of the reduced products at different reduction temperatures
are shown in Figure A1. According to the peak areas of the different valence states of rhenium,
the content of each valence state was calculated, as shown in Table 2. The percent of rhenium atom in
each valence state was calculated, as shown in Table 3.

Table 3. The percent of rhenium atom in each valence state of the reduction products of ammonium
perrhenate (D50 was 71.17 µm, specific surface was 26.93 m2/kg) at different temperatures.

Reduction Temperature (◦C) Re (%) Re4+ (%) Re6+ (%) Re7+ (%)

300 75.9 20.0 3.0 1.1
350 69.6 16.4 24.0 0.0
400 59.3 14.1 26.6 0.0
500 65.9 16.2 17.9 0.0
600 76.1 18.1 7.8 0.0
700 100 0.0 0.0 0.0
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According to the results in Table 3, the percents of rhenium atom in each valence state of the
reduced products at different temperatures were plotted, as shown in Figure 6. Combined with Table 2
and Figure 6, it can be concluded that the percent of Re6+ in the reduction products increased in the
range of 300 to 400 ◦C, and within the temperature range of 400 to 600 ◦C, the percent of Re in the
reduction products did not increase significantly, while the content of Re4+ increased significantly.
These results showed that the ReO3 content in the reduction products increased in the temperature range
of 300–400 ◦C and decreased with the increase in the reduction temperature; the Re content decreased
in the temperature range of 300–400 ◦C and increased with the increase in the reduction temperature.
In order to explain this rule, the following conclusions were obtained by combining the XRD and
DTA detection results: the disproportionation reaction of ReO3 occurred between 350 and 400 ◦C,
ReO3 decomposed into ReO2 and Re2O7, and Re2O7 was converted to ReO3 by a hydrogen reduction.
Therefore, in the temperature range of 350 to 400 ◦C, the effect of disproportionation hindered the
normal reduction process, and this is why ammonium perrhenate cannot be reduced to more rhenium
at 350 to 400 ◦C in the same reduction time. This phenomenon shows that the disproportionation of
ReO3 hindered the normal reduction reaction in a certain temperature range, but with the increase in
the temperature, the reduction reaction rate gradually increased, and the content of rhenium in the
reduction products also increased. At the reduction temperature of 300 ◦C, the disproportionation of
ReO3 did not occur, and only the reduction reaction was carried out. Therefore, the content of Re in
the reduction products was higher. As discussed above, in the process of a hydrogen reduction of
ammonium perrhenate, the disproportionation of ReO3 decreased the rate of the reduction reaction,
and the increase in the temperature can increase the reduction reaction rate and reduce the effect of
disproportionation on the reduction process. Increasing the reduction time and lowering the reduction
temperature below the temperature at which the disproportionation of ReO3 occurs can also increase
the content of Re in the reduction products.
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Figure 6. Oxidation state atomic content changes of ammonium perrhenate (D50 was 71.17 µm, 
specific surface was 26.93 m2/kg) hydrogen reduction reaction at different temperatures.  
Figure 6. Oxidation state atomic content changes of ammonium perrhenate (D50 was 71.17 µm, specific
surface was 26.93 m2/kg) hydrogen reduction reaction at different temperatures.

3.2. Influence of Particle Size on Reduction

In the solid-state reaction system, the reaction rate is related not only to the temperature but also
to the diffusion rate of the reactant [34]. The particle size of the reactant decreases, which is conducive
to increasing the diffusion rate [35]. In order to research the effects of particle sizes of ammonium
perrhenate on the reduction effect, the recrystallized ammonium perrhenate (D50 81.05 µm) was used
for the reduction experiments under the same operating conditions. The XRD patterns of the reduction
products of ammonium perrhenate at different temperatures are shown in Figure 7. The characteristic
peaks of the reduction products were complex at lower temperatures (300–700 ◦C), and the diffraction
peaks of the reduction products indicated Re and ReO2, and ReO3. The characteristic peaks of Re did
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not change obviously from 500 to 800 ◦C. However, in the range of 300 to 400 ◦C, the characteristic peaks
of ReO3 were enhanced. In the range of 500 to 800 ◦C, the characteristic peaks of ReO2 were enhanced,
while that of ReO3 were weakened. When the temperature reached 900 ◦C, the characteristic peaks
of the reduction products were Re and ReO2, and other crystal peaks were not observed. This result
suggested that the contents of ReO3 in the reduction products increased in the range of 300 to 400 ◦C.
However, within the temperature range of 500 to 800 ◦C, the content of Re in the reduction products
did not increase significantly, while the content of ReO2 increased significantly.
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Figure 7. XRD patterns of the reduction products of ammonium perrhenate (D50 was 81.05 µm, 
specific surface was 21.72 m2/kg) at different temperatures. Figure (a) was the XRD diffraction 
pattern of the reduced product at 300 to 400 °C; Figure (b) was the XRD diffraction pattern of the 
reduced product at 500 to 900 °C. 

In order to further clarify the influence of particle sizes on an ammonium perrhenate hydrogen 
reduction, X-ray photoelectron spectroscopy was used to quantitatively analyze this feature. The 
X-ray photoelectron spectroscopy of the reduced products at different reduction temperatures are 
shown in Figure A2. The percent of rhenium atom in each valence state was calculated, as shown in 
Table 4. According to the results in Table 4, the percents of rhenium atom in each valence state of the 
reduced products at different temperatures were plotted, as shown in Figure 8. Combined with 
Table 4 and Figure 8, it can be concluded that the content of Re in the reduction products increased 
with the decrease of ReO3 between 350 and 800 °C. At the reduction temperature of 300 °C, the 
disproportionation of rhenium trioxide did not occur and the content of rhenium was higher. The 
composition law of the reduction products was the same as that of previous reduction experiments, 
which proved the accuracy of the reduction mechanism analysis. When the reduction temperature 
reached 800 °C, rhenium trioxide still existd. It can be concluded that the disproportionation of 
ReO3 existed in the range of 350 to 800 °C. Compared with the previous reduction experiment, the 
temperature range at which the disproportionation reaction occurs had increased. This was because 

Figure 7. XRD patterns of the reduction products of ammonium perrhenate (D50 was 81.05 µm, specific
surface was 21.72 m2/kg) at different temperatures. Figure (a) was the XRD diffraction pattern of the
reduced product at 300 to 400 ◦C; Figure (b) was the XRD diffraction pattern of the reduced product at
500 to 900 ◦C.

In order to further clarify the influence of particle sizes on an ammonium perrhenate hydrogen
reduction, X-ray photoelectron spectroscopy was used to quantitatively analyze this feature. The X-ray
photoelectron spectroscopy of the reduced products at different reduction temperatures are shown in
Figure A2. The percent of rhenium atom in each valence state was calculated, as shown in Table 4.
According to the results in Table 4, the percents of rhenium atom in each valence state of the reduced
products at different temperatures were plotted, as shown in Figure 8. Combined with Table 4 and
Figure 8, it can be concluded that the content of Re in the reduction products increased with the decrease
of ReO3 between 350 and 800 ◦C. At the reduction temperature of 300 ◦C, the disproportionation of
rhenium trioxide did not occur and the content of rhenium was higher. The composition law of the
reduction products was the same as that of previous reduction experiments, which proved the accuracy
of the reduction mechanism analysis. When the reduction temperature reached 800 ◦C, rhenium
trioxide still existd. It can be concluded that the disproportionation of ReO3 existed in the range of 350
to 800 ◦C. Compared with the previous reduction experiment, the temperature range at which the
disproportionation reaction occurs had increased. This was because the particle size of ammonium
perrhenate increased, the solid reaction diffusion rate decreased, and the contact between the reactant
and hydrogen was not ideal. Therefore, under the same operating conditions, reducing the particle size
of ammonium perrhenate can increase the hydrogen reduction diffusion rate and reduce the influence
of the disproportionation on the reduction process.
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Table 4. The percents of rhenium atom in each valence state of the reduction products of ammonium
perrhenate (D50 was 81.05 µm, specific surface was 21.72 m2/kg) at different temperatures.

Reduction Temperature (◦C) Re (%) Re4+ (%) Re6+ (%) Re7+ (%)

300 65.7 20.0 10.8 3.5
350 58.9 21.8 19.1 0.2
400 36.3 10.7 45.9 7.1
500 68.1 15.7 16.2 0.0
600 72.2 18.2 9.6 0.0
700 72.7 22.0 5.3 0.0
800 79.0 17.2 3.8 0.0
900 80.1 19.9 0.0 0.0
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surface was 21.72 m2/kg) hydrogen reduction reaction at different temperatures.

3.3. Analysis of the Products of the Rhenium Ingots

The Re powders were prepared by unrecrystallized ammonium perrhenate and recrystallized
ammonium perrhenate with a different D50, and the rhenium ingots were prepared from these rhenium
powders. The relevant physical parameters of the products are shown in Table 5. The particle size
distribution of the rhenium powder is shown in Figure 9. It can be seen from Table 5 and Figure 9
that the rhenium powder prepared by ammonium perrhenate with a small particle size is also of
relatively small particle size; the particle size distribution uniformity of rhenium powder prepared by
recrystallized ammonium perrhenate was improved obviously, and the rhenium ingot prepared has a
higher density. The theoretical density of rhenium is 21.04 g/cm3, and the density of the rhenium ingot
prepared by D50 71.17 µm ammonium perrhenate reached 20.106 g/cm3. The rhenium ingot prepared
under this condition was close to the theoretical density. The SEM images of the surface defects of
the rhenium ingots are shown in Figure 10. It can be seen that the rhenium ingot prepared by the
small particle size rhenium powder not only has a high density but also has a small surface hole defect.
Therefore, reducing the particle size of the rhenium powder is a key factor in preparing a high-density
rhenium ingot.

Table 5. The rhenium materials prepared from ammonium perrhenate of different particle sizes.

D50 of Ammonium
Perrhenate (µm) D50 of Re Powders (µm) Specific Surface Area of

Re (m2/kg)
Density of Rhenium

Ingots (g/cm3)

81.05 34.04 97.54 18.779
71.17 19.74 163.70 20.106

123.90 52.15 72.73 17.726
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3.4. Proposed Flow Sheet

Based on the experimental results, the flow sheet for the processing of rhenium ingots by
ammonium perrhenate was tentatively suggested, which is shown in Figure 11. The ammonium
perrhenate particles were refined by homogeneous recrystallization, and the D50 of the ammonium
perrhenate particles was refined from 123.90 to 71.17 µm. The recrystallized ammonium perrhenate
was completely reduced by hydrogen at 700 ◦C for 3 h, and the D50 of 19.74 µm rhenium powder was
obtained. The density of the rhenium ingots pressed by these rhenium powders was 20.106 g/cm3.
The theoretical density of rhenium is 21.04 g/cm3, and a rhenium ingot that reaches the theoretical
density of more than 90% is a high-quality product. In this study, the rhenium ingot density was
95.56% of the theoretical density, which reached the high-quality product standard. The optimized
production process of rhenium ingot not only realized a low-temperature reduction, but also increased
the density of the rhenium ingot, which can provide a theoretical basis and practical experience for
industrial production.
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4. Conclusions

In this study, the influences of disproportionation on the hydrogen reduction of ammonium
perrhenate were investigated and the following conclusions were drawn:

(1) In the process of a hydrogen reduction of ammonium perrhenate, the disproportionation of
ReO3 decreased the rate of the reduction reaction, and the increase in the reduction temperature was
conducive to increasing the reduction reaction rate and reducing the influence of disproportionation
on the reduction process.

(2) At the same reduction temperature, reducing the particle sizes of ammonium perrhenate
was conducive to increasing the hydrogen reduction rate and reducing the influence of the
disproportionation on the reduction process.

(3) The rhenium ingot prepared by the small particle size rhenium powder not only has a high
density but also has a small surface hole defect. Therefore, reducing the particle size of the rhenium
powder is a key factor in preparing high-density rhenium ingot.

(4) It is feasible to increase the density of rhenium ingot by reducing the particle size of the
rhenium powder. The particle size of ammonium perrhenate was reduced to a rhenium powder with a
D50 of 19.74 µm and a specific surface area of 163.70 m2/kg, which was pressed into a rhenium ingot
with a density of 20.106 g/cm3, close to the theoretical density of rhenium.
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Figure A1. X-ray photoelectron spectroscopy of the reduction products of ammonium perrhenate 
(D50 was 71.17 µm, specific surface was 26.93 m2/kg) at different temperatures. 
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