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Abstract: An AZ91 magnesium alloy (Mg-9%, Al-1% Zn) was processed by high-pressure torsion
(HPT) after solution-heat treatment. Tensile tests were carried out at 423, 523, and 623 K in the strain
rate range of 10−5

−10−1 s−1 to evaluate the occurrence of superplasticity. Results showed that HPT
processing refined the grain structure in the alloy, and grain sizes smaller than 10 µm were retained up
to 623 K. Superplastic elongations were observed at low strain rates at 423 K and at all strain rates at
523 K. An examination of the experiment data showed good agreement with the theoretical prediction
for grain-boundary sliding, the rate-controlling mechanism for superplasticity. Elongations in the
range of 300–400% were observed at 623 K, attributed to a combination of grain-boundary-sliding
and dislocation-climb mechanisms.
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1. Introduction

Superplasticity refers to the ability of a polycrystalline material to undergo large stable deformation
in tension and achieve high elongation prior to failure. Formally, it was defined as elongations larger
than 400% and strain-rate sensitivity of ~0.5 [1]. It is now recognized that the deformation mechanism
associated with superplasticity is grain-boundary sliding in which the grains slide over each other
with little or no change in their overall shape [2]. In practice, sliding along grain boundaries is caused
by the movement of grain-boundary dislocations that then pile up at obstacles such as triple junctions
and activate slip in a neighboring grain as an accommodating mechanism [3]. This leads to a pile up of
dislocations at the opposite grain boundary, and the rate of deformation is then controlled by the rate
of climb of these dislocations at the head of the pile up. Two requirements for superplasticity are a
fine-grained structure, with average grain sizes typically smaller than ~10 µm, and a high homologous
temperature, typically larger than ~0.5 of the absolute melting temperature [4].

Small grain sizes in the range of a few microns are usually obtained through conventional
thermomechanical-processing operations such as extrusion and rolling. More recently, the development
of severe-plastic-deformation (SPD) [5] techniques, such as equal-channel angular pressing (ECAP) [6]
and high-pressure torsion [7], allowed the production of metallic materials with ultrafine (<1µm) or even
nanostructured grains (<100 nm). This significant decrease in structural size, compared to conventional
thermomechanical processing, allowed the introduction of superplastic behavior into a very wide range
of different alloys, and affected the temperature and strain-rate range associated with the superplastic
process. In practice, it is now recognized that superplastic behavior is observed at lower temperatures
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and/or faster strain rates when grain size is decreased. Moreover, it is also clear that a decrease in grain
size may also increase the maximal elongations achieved under superplastic deformation.

Early reports showed that ECAP processing introduced superplastic properties in many different
magnesium alloys, including Mg-0.6% Zr [8], Mg-9% Al [9], and commercial alloys AZ31 [10–12],
AZ91 [13–17], and ZK60 [15,18–22]. It also led to the highest elongation reported to date in a superplastic
magnesium alloy [23]. Despite the outstanding ability to develop superplasticity in magnesium alloys,
the ECAP processing of these alloys is generally highly demanding. This is due to their limited
formability and restricted slip systems that tend to prevent easy processing at ambient temperature,
and invariably lead to cracking, inhomogeneities, and segmentation within the gauge section [24].
In practice, therefore, heating the dies and samples is time-consuming and limits the overall effectiveness
of grain refinement.

By contrast, the high hydrostatic compressive stresses developed in high-pressure torsion (HPT)
provide an opportunity for delaying or even effectively suppressing the advent of early sample
failure [25–27]. A further advantage of HPT processing is the ability to apply severe plastic deformation
in magnesium alloys at room temperature, and thereby achieve exceptionally fine grain structures.
A recent review on the HPT processing of magnesium alloys [28] revealed that there are few reports
concerning the development of superplasticity in these alloys. In addition, although the as-processed
grain structures are finer in HPT-processed magnesium alloys, the inherent high density of crystalline
defects may serve to reduce the overall thermal stability of these materials. As a consequence, grain
growth may take place in the temperature range associated with superplasticity, and thus prevent the
occurrence of high superplastic elongations. This deficiency may be critical if planning to use these
alloys in industrial superplastic-forming operations [29].

The present paper was prepared with the objective of evaluating the high-temperature behavior
of an AZ91 magnesium alloy processed by HPT, with special emphasis on the ranges of temperature
and strain rates associated with the development of superplastic flow. As is demonstrated, it is feasible
to use HPT processing to achieve excellent superplastic properties in the AZ91 alloy with elongations
up to and exceeding 1000%.

2. Materials and Methods

The material used in the present investigation was an AZ91 magnesium alloy (Mg-9% Al-1% Zn)
provided by Rima (Bocaiuva/MG, Brazil) as a cast slab. A piece in the shape of a cylinder 10 mm
diameter and 60 mm length was machined from the as-cast material and subjected to solution treatment
at 693 K for 24 h, followed by water quenching. Discs with thickness of ~0.9 mm were cut from
the solution-treated cylinder and ground to ~0.85 mm. HPT processing was carried out at room
temperature using a quasiconstrained facility [27,30]. The rotation rate was 2 rpm, and discs were
processed to 10 turns under an applied pressure of 6.0 GPa. A detailed characterization of the processed
material is given elsewhere [31].

Miniature tensile specimens with 1 mm gauge length were cut from the processed discs using
spark erosion. Tensile tests were carried out at temperatures of 423, 523, and 623 K using a furnace
adapted to a universal testing machine. Samples were heated with the testing grips, and temperature
homogenization was achieved by maintaining the testing temperature for 30 min before starting the
test. Testing was carried out at a constant rate of cross-head displacement with initial strain rates in
the range of 10−5

−10−1 s−1. The load and displacement data were converted into stress and strain.
The elastic portions of the stress–strain curves were associated with the elastic modulus of magnesium
to minimize the distortion of the testing machine and tensile grips. In order to estimate grain growth
due to high-temperature exposure, the microstructures at the grip areas of the samples tested at the
highest strain rates were examined using conventional metallographic techniques. These areas did
not undergo straining during tensile testing, and exposure time was only slightly longer than for the
samples subjected to testing. Therefore, grain structures in these areas were considered representative
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of the initial grain structures in the gauge area. Spatial grain sizes d were determined using relationship
d = 1.74 × L, where L is mean linear intercept length [32].

3. Results

True stress vs. true strain curves obtained from tensile tests at different temperatures and
strain rates are shown in Figure 1. Flow stresses decreased at lower testing strain rates and higher
temperatures. All curves displayed a large initial portion in which stress increased with increasing
strain. This strain-hardening behavior was observed earlier in a superplastic magnesium alloy, and
attributed to grain growth during deformation [33]. The sample pulled in tension with an initial
strain rate of 10−2 s−1 at 423 K failed without noticeable deformation, which suggested brittle behavior.
Therefore, the curve associated with this condition was not included in Figure 1.
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Figure 1. True stress vs. true strain curves obtained at different testing temperatures and strain rates.

Figure 2 shows the appearance of specimens pulled to failure at different temperatures and strain
rates with an untested specimen shown at the top for comparison purposes. The final elongations to
failure are listed to the right of each sample. Superplastic elongations, defined as elongations >400%,
were observed at 423 K at strain rates of 10−4 s−1 and slower, and at all strain rates tested at 523 K.
The report of superplasticity at 423 K was considered representative of low-temperature superplasticity
because this temperature was lower than 0.5 Tm, where Tm is the absolute melting temperature.
Superplastic elongation was observed at 10−2 s−1 at 523 K, which was considered representative of
high-strain-rate superplasticity [34]. Although superplastic elongations were not observed at 10−3 s−1

at the lower testing temperature of 423 K and at the highest testing temperature of 623 K, the final
elongations were in the range of ~300–400% for these conditions, which is exceptionally high for
magnesium alloys. Specimens pulled under superplastic conditions exhibited no evidence of any
localized necking within the gauge area, which is consistent with expectations for true superplastic
flow [35].
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The grain structures observed in the grip area are shown in Figure 3 for samples heated to the
testing temperatures of (a) 423, (b) 523, and (c) 623 K, respectively. The image at 623 K was taken at
a lower magnification. Average grain sizes were recorded as ~1.3, ~3.3, and ~9.6 µm, respectively.
This showed that the grain structure was not stable in this temperature range but all grain sizes remained
within the conventional upper limit of ~10 µm for superplasticity [4]. An earlier report showed that
the grain size obtained in a similar alloy processed by HPT using similar processing parameters was
~100 nm [31]. Therefore, significant grain growth took place even at the lowest testing temperature of
423 K. The highest elongations providing evidence for high-strain-rate superplasticity were observed
at 523 K. Precipitation of second-phase particles was observed at this temperature. Many grain
boundaries appeared to be decorated with second-phase particles at 523 K. The formation of a Zn-rich
film along the grain boundaries of aluminum was associated with improved strain-rate sensitivity [36].
These precipitates might aid in impeding grain growth. Therefore, the excellent superplastic behavior
observed at 523 K can be associated, in part, with the precipitation of second-phase particles along
grain boundaries.
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Figure 3. Grain structure at grip area in samples heated to (a) 423 K, (b) 523 K, and (c) 623 K.

4. Discussion

The present results showed that grain sizes obtained in the AZ91 alloy after HPT processing
followed by heating to the temperature range of 423 to 623 K were smaller than the limiting grain sizes
for superplasticity (~10 µm). In practice, superplastic elongations up to and over 1000% were achieved
in these experiments. Analysis of deformation behavior showed a significant difference between the
fine- and coarse-grained AZ91 alloys in this temperature range.

Figure 4 shows flow-stress plots as a function of strain rate observed in the present experiments
and in experiment data collected from published reports [14,37–41] for testing temperatures of (a) 423,
(b) 523, and (c) 623 K. Grain sizes reported in various experiments were also recorded. It was clearly
observed that the present data and other data from the fine-grained AZ91 alloy exhibited lower flow
stresses and/or faster strain rates than those of their coarse-grained counterparts. For example, the creep
testing of cast AZ91 alloy [37,39] resulted in strain rates more than three orders of magnitude slower
than those observed in the present experiments for similar levels of flow stress at 423 K. The present
data agreed fairly well with other reports of high-temperature testing of AZ91 processed by ECAP [14]
and HPT [38] in which the range of grain sizes was similar. A coarse-grained (~85 µm) AZ91 alloy [40]
exhibited much larger flow stresses at 523 and 623 K within a similar strain-rate range than flow stresses
observed in the present experiments. Analysis showed that the deformation mechanism operating
under these conditions in the coarse-grained alloy was dislocation climb.
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The deformation mechanism associated with superplasticity is grain-boundary sliding, and the
strain rate for this mechanism is given by an equation of form

·
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where δ is the grain-boundary width (considered to be 2b), b is the Burgers vector modulus, Dgb is
the grain-boundary diffusion coefficient, G is the shear modulus, k is Boltzmann’s constant, T is the
absolute temperature, and σ is flow stress.

Previous investigations [11,42] showed that this equation predicted well the behavior of the AZ31
magnesium alloy in conditions where superplasticity was observed. In order to evaluate whether the
equation also reasonably predicted the behavior of the AZ91 alloy, the present data and other results
from the literature reporting superplasticity in this alloy [14,38,41,43] were compared to the theoretical
prediction in Figure 5, where strain rate was normalized by the effect of grain size and temperature,
and plotted as a function of the stress normalized by the shear modulus. It is apparent that data in
Figure 5, which correspond to various processing techniques including HPT [38], ECAP, and ECAP +

Annealing [14], extrusion [43] and rolling [41], showed good agreement with the theoretical prediction
and, therefore, confirmed the mechanism of grain-boundary sliding as the rate-controlling mechanism
for the AZ91 alloy. The only set of results that tended to fall below the prediction were associated
with the material processed by ECAP. However, an as-processed grain size of ~0.7 µm was reported
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for this condition, and the subsequent occurrence of grain growth before high-temperature testing
was not considered. Therefore, it is reasonable that the datum points were not fully consistent with
the predictions.
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Different thermomechanical-processing operations introduced superplasticity in the AZ91 alloy.
In Figure 5, data were collected from various processing methods, but the largest elongations were
associated with processing by SPD. Thus, maximal elongations of 425% [43] and 455% [41] were
reported after extrusion and rolling, respectively, whereas elongations of 956% [14] and 1308% [38]
were reported after ECAP and HPT, respectively. The present results confirmed that SPD was the
optimal processing technique to introduce superplasticity in this alloy, as elongations over 1000% were
observed at 523 K at strain rates of 10−5 s−1 and 10−4 s−1. Elongations over 400%, which is considered
a limiting threshold for superplasticity, were also not reported at temperatures below 0.5 Tm or at
strain rates of 10−2 s−1 or faster after extrusion or rolling. However, low-temperature superplasticity at
T = 423 K was obtained in the present experiments in material processed by ECAP [14] and HPT [38].
High-strain-rate superplasticity was observed in the present experiments and reported only after HPT
processing [38].

Finally, samples tested at 10−3 s−1 at 423 K and at all strain rates at 623 K displayed elongations in
the range of 300–400%. Although these elongations were below the conventional limiting threshold for
superplasticity, they were much larger than elongations expected for coarse-grained material. Stress-
and strain-rate data observed in these conditions agreed well with the prediction for grain-boundary
sliding. A recent report outlined analysis of the creep-deformation behavior of the fine-grained AZ31
alloy, and developed deformation-mechanism maps for this alloy [44]. It was shown that there is a
region between the mechanisms of grain-boundary sliding and climb where both mechanisms appear
to operate. The reason for this overlap was suggested to be the formation of subgrain structures
within grains at large stresses that affect the operation of grain-boundary sliding. Thus, elongations
between 300% and 400% observed in the present experiments were attributed to a combination of
both grain-boundary-sliding and conventional dislocation-climb mechanisms. The combination of
these deformation mechanisms was observed experimentally in the AZ31 alloy [45]. Although the
alloying content in the AZ31 alloy differed from that in the AZ91 used in the present experiments,
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it is reasonable to anticipate that this difference should have no significant effect on the operative
creep mechanisms.

5. Conclusions

(1) An AZ91 alloy was processed by HPT and tested in tension in the temperature range of 423
to 623 K. Superplastic elongations were observed, including evidence for low-temperature and
high-strain-rate superplasticity.
(2) Grain refinement changed the deformation mechanism in the alloy, and experiment data agreed
well with the theoretical predictions for the grain-boundary sliding mechanism.
(3) Severe plastic deformation through HPT introduced superplastic properties at lower temperatures
and/or at faster strain rates, and produced higher elongations than those in samples prepared using
conventional thermomechanical processing.
(4) Elongations between 300% and 400% were observed at temperatures of 423 and 623 K, attributed to
the occurrence of a combination of grain-boundary-sliding and dislocation-climb mechanisms.
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