
metals

Article

A Comparative Assessment of Six Machine Learning
Models for Prediction of Bending Force in Hot Strip
Rolling Process

Xu Li 1,*, Feng Luan 2,* and Yan Wu 3

1 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
2 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China; wuy@smm.neu.edu.cn
* Correspondence: lixu@ral.neu.edu.cn (X.L.); luanfeng@mail.neu.edu.cn (F.L.); Tel.:+86-24-8368-1808 (X.L.)

Received: 12 April 2020; Accepted: 20 May 2020; Published: 22 May 2020
����������
�������

Abstract: In the hot strip rolling (HSR) process, accurate prediction of bending force can improve
the control accuracy of the strip crown and flatness, and further improve the strip shape quality.
In this paper, six machine learning models, including Artificial Neural Network (ANN), Support
Vector Machine (SVR), Classification and Regression Tree (CART), Bagging Regression Tree (BRT),
Least Absolute Shrinkage and Selection operator (LASSO), and Gaussian Process Regression (GPR),
were applied to predict the bending force in the HSR process. A comparative experiment was carried
out based on a real-life dataset, and the prediction performance of the six models was analyzed from
prediction accuracy, stability, and computational cost. The prediction performance of the six models
was assessed using three evaluation metrics of root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R2). The results show that the GPR model is considered
as the optimal model for bending force prediction with the best prediction accuracy, better stability,
and acceptable computational cost. The prediction accuracy and stability of CART and ANN are
slightly lower than that of GPR. Although BRT also shows a good combination of prediction accuracy
and computational cost, the stability of BRT is the worst in the six models. SVM not only has poor
prediction accuracy, but also has the highest computational cost while LASSO showed the worst
prediction accuracy.

Keywords: bending force prediction; hot strip rolling (HSR); comparative assessment; machine
learning; regression

1. Introduction

In recent years, with the development of hot strip rolling (HSR) technology, product users
continuously call for increased requirements. These increased requirements include strip variety,
specifications, and strip shape quality. A good strip shape quality produced by the HSR process has a
desired crown and flatness, and it is also an important factor to determine the competitiveness of strip
in the market. Therefore, strip shape quality has become a hot topic of many scholars [1,2].

There are many factors that affect the strip shape quality, which are mainly related to the roller,
strip, and rolling conditions in the HSR process. However, the field environment of the rolling process
is very complex, and there are many factors that affect the strip shape quality. There is still no perfect
solution to the strip shape quality problem in the world. In order to improve the strip shape quality,
most scholars mainly studied the following two aspects. The research on production equipment is
the first thought of researchers. In order to improve strip shape quality, it is necessary to control roll
crown effectively. Therefore, it can be achieved by replacing the work rolls with ultra-high strength
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and ultra-high hardness to reduce the flexural deformation of the rolls. Secondly, the research on
rolling technology has been carried out. In order to improve the precision of the preset model and
compensate the influence of external factors on strip shape measurement precision, various factors
affecting shape control model were studied. For example, in the process of strip production, if the
detection accuracy of the roller is too low, it will directly affect the adjustment ability of the strip shape
control mechanism, so the strip shape quality could not be improved [1,3].

Hydraulic roll bending control is one of the main methods to control the shape of hot rolled strip.
The hydraulic roll bending system is more and more widely used in shape control of rolling mill
because of its fast response and convenient real-time control. As shown in Figure 1, the principle of the
hydraulic roller bending control system is that the bending force generated by the hydraulic cylinder is
applied to the roller neck between the working roller and the supporting roller to change the deflection
of the working roller instantaneously. Therefore, the shape of the gap of the load rollers is changed
and the strip shape is controlled [4].
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When the rolling process and equipment parameters are changed, the preset value of bending
force needs to be adjusted in time. As a result of the adjustment, the roll gap shape is consistent
with the cross-sectional shape of the strip, so that the shape of the strip rolled by the rolling mill can
meet the requirements. In the production process, the setting value of bending force needs to be
adjusted constantly with the requirement of the rolling process. Therefore, the bending force is usually
calculated according to the rolling factors such as temperature, thickness, width, rolling force, material,
thermal expansion of rolls, wears of rolls, and so on, aiming at the convexity and flatness of the strip.
Due to the multivariable, strong coupling, nonlinear, and time-varying characteristics of rolling factors,
the calculation model of hot rolling bending force is extremely complicated [5,6].

The traditional mathematical model considers that all the rolling factors related to bending force
have linear or approximate linear effects on bending force, and the coupling relationship between
the rolling factors is weak in the model. Therefore, the mathematical model established according to
the traditional theory is difficult to achieve the ideal prediction effect of bending force because of the
limitations of its own structure [7].

Since the 1990s, artificial intelligence methods have been widely applied to rolling processes.
Furthermore, Artificial Neural Networks (ANN) have been extensively studied and applied in the fields
of mechanical property prediction [8–10], rolling force prediction [11–14], roughing mill temperature
prediction [15], strip shape and crown prediction [16–20]. For the first time, Wang et al. [21] used
the ANN model optimized by genetic algorithm to predict the bending force in the rolling process.
The accuracy of the model is verified by actual factory data, which shows that the model can be flexibly
used for on-line control and rolling schedule optimization.

These studies reveal that ANNs have been shown to perform nonlinear data well and have better
predictive quality as compared to traditional mathematical models due to its good learning ability.
However, they also have some shortcomings, such as the unexplained nature of relationships between
the input and output parameters of the process, the need for higher calculation times, and the tendency
of over-fitting, which leads to poor performance [22]. In recent years, besides ANN modeling, some new
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machine learning methods have emerged, such as Support Vector Machine (SVM), Classification and
Regression Tree (CART), Bagging Regression Tree (BRT), Least Absolute Shrinkage and Selection
Operator (LASSO), and Gaussian Process Regression (GPR). For the prediction research in the rolling
field, some scholars have realized that better prediction results and prospects can be obtained by
adopting new machine learning methods [21,23,24], and so far, there are few literature reports on
bending force prediction.

Therefore, this research is motivated to investigate the application of SVM, CART, BRT, LASSO,
GPR and ANN on bending force prediction in hot rolling process, and to comprehensively analyze
and evaluate the prediction performance of these models from prediction accuracy, stability and
computational cost. Through the comprehensive evaluation results of these models, a prediction model
of bending force with high prediction accuracy and good stability can be proposed, and finally the
profile quality of strip can be improved.

Inspired by this motivation, this paper first provides the basic principles of the six models; verifies
the predictability of the bending force using these models based on real-life dataset of a 1580-mm
hot rolling process in a steel factory. All the gauges used in this research were calibrated, and the
measurement results are reliable and valid. The remaining part of the paper is organized as follows.
Section 2 briefly describes the HSR process, the influencing factors of bending force, the acquisition,
and processing of experimental data. Section 3 gives a brief description of literature review and basic
theories of the six machine learning models. In addition, the three evaluation metrics are also given in
this section. Sections 4 and 5 report the experimental results and discussion, respectively. In Section 6,
we draw the conclusions.

2. Case Study and Data

2.1. Hot Rolling Technology and Bending Force

Figure 2 shows the complete rolling process in a typical HSR process. The HSR process consists of
6 key parts: the reheating furnace, the roughing mill, the hot coil box and flying shear, the finishing
mill, the laminar cooling, and the coiler. The key equipment of the production line is a finishing mill
group composed of 8 groups of stands, which determines the final shape of the strip. Each group of
stand consists of a pair of work rolls and a pair of backup rolls. The spacing between the stand is
5.5 m. The whole line is equipped with work roll shifting and hydraulic roll bending systems to control
flatness and plate crown.

A single batch consists of a coil of rough steel, which enters the reheating furnace to be reheated
to the appropriate temperature. Next, the strip passes through the roughing mill, where its thickness
and width are reduced to close to the desired value. Then, the strip enters the finishing mill section,
where the strip is carefully milled to the required width and thickness. The profile of the strip can be
controlled by changing the bending forces between the two work rolls [25]. The strip thickness and
flatness are measured in real time by an X-ray gauge at the end of the finishing stands as shown in Figure 2.
Measuring the final dimensions of the strip is vital for the mill controllers. The controllers adjust mill
parameters in real time with feedback from the gage to minimize strip flatness. Next, the strip is cooled by
water to an appropriate final temperature. Finally, the strip is coiled and is ready for shipment.
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2.2. Data Collection and Analysis

In this paper, the final stand rolling data of a 1580-mm HSR process in a steel factory are collected
for experiments. The purpose of models in hot rolling is to predict strip characteristics prior to rolling
the strip based on information about the mill. For the proposed prediction model of bending force,
the input variables are entrance temperature (◦C), entrance thickness (mm), exit thickness (mm),
strip width (mm), rolling force (kN), rolling speed (m/s), roll shifting (mm), yield strength (MPa),
and target profile (µm). The output variable of the model is the bending force (kN). The information of
the detection equipment for these parameters is shown in Table 1. In order to ensure the validity of the
parameters, all the gauges used in this research were calibrated. The fractal dimension visualization
diagram of the collected dataset is shown in Figure 3. Obviously, the input data vary considerably
in different dimensions. Table 2 shows the data distributions for each input variables. In order to
eliminate the difference between the numbers of different dimensional data, avoid prediction error
increase because of the big difference between input and output data, and update the weights and
biases conveniently in the modeling process. It is necessary to scale data to a small interval in a certain
proportion. Normalization is required prior to data entry into the model [26]. The following formula is
used to normalize the data:

y′i =
yi − ymin

ymax − ymin
(1)

where y′i , yi, ymin, and ymax are the normalized data, original data, maximal data, and minimal
data, respectively.

Table 1. Parameter information.

Parameter Detection Equipment Specifications Brand

Entrance temperature Infrared thermometer SYSTEM4 LAND
Exit thickness X-ray thickness gauge RM215 TMO

Strip width Width gauge ACCUBAND KELK
Rolling force Load Cell Rollmax KELK
Rolling speed Incremental Encoder FGH6 HUBNER
Roll shifting Position Sensor Tempsonics MTS
Target profile Profile Gauge RM312 TMO
Bending force Pressure Transducer HDA3839 HYDAC
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Table 2. Input parameters and the values.

Parameter Unit Mean Range of Value

Entrance temperature ◦C 1035.2 988.05~1082.8
Entrance thickness mm 2.4750 2.3827~2.5782

Exit thickness mm 2.2981 2.2374~2.3494
Strip width mm 1252.0 1248.9~1258.8

Rolling force kN 8940.4 7438.4~10,590
Rolling speed m/s 8.6995 8.6535~8.7362
Roll shifting mm 96.436 93.125~102.625

Yield strength MPa 456.71 433.74~482.02
Target profile µm 65.613 61.740~69.315

In the present study, the K-fold cross validation method was used and 1440 pairs of measured
bending force data were divided into five subsets. Four subsets were employed to train the machine
learning models and the remaining one for testing the models. Furthermore, the measurement data
should be processed with z-score normalization to the same scale to reduce the impact of different
magnitudes and dimensions.

3. Methodology

3.1. Artificial Neural Network (ANN)

ANNs are complex computational models inspired by the human nervous system, which are
capable of machine learning and pattern recognition. ANN includes a wide range of learning algorithms
that have been developed in statistics and artificial intelligence. It uses analogy with biological neurons
to generate general solutions to the problem. Since ANNs are nonlinear classification techniques and
also composed of an interconnected group of artificial neurons, they have the ability to learn complex
relationships between input and output variables [17]. ANN is the earliest prediction model applied
in the rolling field, including mechanical property prediction, rolling force prediction, roughing mill
temperature prediction, flatness, and crown prediction [7–21]. Therefore, ANN is the most widely
applied model and the basic model for comparison.

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning method developed from statistical
learning theory to analyze data and pattern recognition, which can be used to classify and regression
data [27]. SVM as a regression technique (SVR) is a nonlinear algorithm and the basic principle is
to map the data to a high-dimensional feature space using a nonlinear mapping, and then construct
the regression estimation function in the high-dimensional feature space and then map back to the
original space, and this nonlinear transformation is achieved by defining the appropriate kernel
function. Many machine learning algorithms follow the principle of empirical error minimization,
while SVR follows the principle of structural risk minimization, so it can obtain better generalization
performance [28]. SVRs are prominent in research and practice, due to their use of linear optimization
techniques to find optimal solutions to nonlinear predictive problems in higher-dimensional feature
spaces. Therefore, it has been widely employed for regression and forecasting in the fields of agriculture,
hydrology, the environment, and metallurgy [29–31]. This encourages us to apply an SVR to the
prediction of the HSR process.

3.3. Classification and Regression Tree (CART)

Decision trees (DT) is an important algorithm for machine learning. The classification and
regression tree methodology, also known as the CART was introduced in 1984 by Breiman et al. [32].
CART has low computational complexity because of its recursive computation. To predict a response,
follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node
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contains the response. So CART is non-parametric and can find complex relationships between input
and output variables. Therefore, CART also has the advantage of discovering nonlinear structures
and variables interactions in the training samples [33]. Regression tree is a data mining algorithm
widely used in regression problems of biology [34], environment [35] and material processing [36].
We selected CART to prediction bending force because they are an explanatory technique, able to
reveal data structure, identify important characteristics, and develop rules.

3.4. Bagging Regression Tree (BRT)

Bagging (short for bootstrap aggregating) is a simple and very powerful ensemble method.
Bagging is one of the simplest techniques, which can reduce variance when combined with the base
learner generation, with surprisingly good performance [37]. Bagging Regression Tree (BRT) is the
application of the bootstrap procedure to RT. The basic idea underlying BRT is the recognition that part of
the output error in a single regression tree is due to the specific choice of the training dataset. Therefore,
if several similar datasets are created by resampling with replacement (that is, bootstrapping) and
regression trees are grown without pruning and averaged, the variance component of the output error
is reduced [38,39]. The BRT has been widely used in the fields of biostatistics [40], remote sensing [41],
and material processing [42] due to its flexibility and interpretability to high-order nonlinear modeling.
Therefore, it is reasonable to compare and evaluate BRT as one of the optional models.

3.5. Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO stands for Least Absolute Shrinkage and Selection Operator [43]. The idea behind the
LASSO algorithm is to achieve a minimization of the residual sum of squares while regularizing the
sum of the absolute value of the coefficients being less than a given constant. LASSO technique has
been successfully developed in recent years, combining shrinkage and highly correlated variables.
LASSO regression is characterized by variable selection and regularization while fitting the generalized
linear model. Regularization is to control the complexity of the model through a series of parameters so
as to avoid over fitting. LASSO has been widely used in temperature prediction [44], the wavelength
analysis [45], and streamflow prediction [46]. In view of its wide application in industry, LASSO is also
taken as one of the research models in this paper.

3.6. Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) is a new machine learning regression method developed in
recent years, and it is also a non-parametric model algorithm based on Bayesian network. The GPR
algorithm can adaptively determine the number of model parameters according to the information of
the training samples, and add the prior knowledge of the existing objects in the modeling process,
and then combine the actual experimental data to obtain the posterior Gauss process model [47].
When GPR is applied to practical problems, GPR can give a confidence interval while outputting
the mean value, making the validity of the prediction result continuously enhanced. In addition,
because the GPR can quantitatively model Gaussian noise, it has excellent prediction accuracy [48,49].
Because of its good predictive ability, GPR has been widely used in data-driven modeling of various
problems in industry [50–53], so GPR has also become an optional scheme in this paper.

3.7. Model Information

All models were implemented in Matlab (Version 2015b, MathWorks, Natick, MA, USA) under
a computer with a hardware configuration of Intel Core i7-7500U CPU 2.7 GHz, and 8 GB of RAM.
CART, BRT, LASSO, and GPR were carried out with treefit, fitensemble, lasso, and fitrgp functions,
respectively. These four functions are included in Matlab’s Statistics and Machine Learning Toolbox.
The parameters of these models were automatically optimized by Matlab function according to the
training dataset. For SVR, the parameter C (trade-off parameter between the minimization of errors
and smoothness of the solution), and the parameter σ (the width of the RBF kernel function) are needed
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to determine the process of model establishment. In order to reveal the effect of C and σ on prediction
results in training dataset. Ten logarithmically, equally spaced points were generated between 1 and
1000 for C. Twenty logarithmically, equally spaced points were generated between 10 and 1000 for
σ. The optimized C and σ were determined to be 100 and 69.5, respectively. For ANN, the transfer
function of hidden layer and output layer are “tansig” and “purelin”, respectively. The “tainlm”
(Levenberg-Marquardt) was chosen as the optimal learning algorithm. In this paper, the performance of
neural networks with 2–30 neurons was investigated considering the single hidden layer. The number
of neurons in the network hidden layer is determined to be 6, and the ANN has the best performance.

3.8. Comparison of Model and Statistical Error Analysis

The accuracy and performance of the studied models for bending force prediction were evaluated
and compared using three commonly used statistical metrics, which were root mean square error
(RMSE, Equation (2)), mean absolute error (MAE, Equation (3)), and coefficient of determination
(R2, Equation (4)). The mathematical equations of the statistical indicators are described below.

RMSE =

√∑N
i=1 (yi − y∗i )

2

N
a = 1 (2)

MAE =
1
N

∑N

i=1

∣∣∣yi − y∗i
∣∣∣ (3)

R2 = 1−

∑N
i=1 (yi − y∗)2∑N
i=1 (yi − y)2 (4)

where yi and y∗i are the measured values and predictive values respectively, N is the total number of
predicted data. Higher values of R2 are preferred, i.e., closer to 1 means better model performance and
regression line fits the data well. On the contrary, the lower the RMSE and MAE values are, the better
the model performs.

4. Results

4.1. Prediction Accuracy of Various Models

Table 3 shows the results of the ANN, SVM, CART, BRT, LASSO, and GPR models performing 30
trials in training and testing dataset. It can be seen that the predicted bending force varies considerably
depending on the model selection. In training dataset, no matter which evaluation metrics are used,
BRT shows the best prediction performance with the highest R2 and lowest RMSE and MAE. In testing
dataset, GPR shows the best prediction performance with the highest R2 and lowest RMSE and
MAE. The prediction performance of BRT follows that of GPR. On the contrary, LASSO has the worst
prediction accuracy not only in the training dataset but also in the testing dataset.

Table 3. Accuracy statistical results of the six machine learning models performing 30 trials in training
and testing dataset.

Model
Training Dataset Testing Dataset

RMSE (kN) MAE (kN) R2 RMSE (kN) MAE (kN) R2

ANN
Max 10.3392 8.0444 0.9678 11.1894 8.6467 0.9621
Min 9.3885 7.2853 0.9611 10.1867 7.8557 0.9543

Mean 9.7603 7.6325 0.9653 10.5676 8.2064 0.9590

SVM
Max 13.0896 10.3777 0.9400 13.4531 10.7890 0.9371
Min 12.8499 9.9659 0.9378 13.1528 10.3986 0.9328

Mean 12.9733 10.1730 0.9389 13.2755 10.5367 0.9356

CART
Max 9.1048 6.8205 0.9749 10.5625 7.8368 0.9640
Min 8.3138 6.3089 0.9699 9.9445 7.2870 0.9591

Mean 8.7054 6.5526 0.9724 10.2547 7.5449 0.9615
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Table 3. Cont.

Model
Training Dataset Testing Dataset

RMSE (kN) MAE (kN) R2 RMSE (kN) MAE (kN) R2

BRT
Max 6.1908 4.7867 0.9865 9.7559 7.6485 0.9674
Min 6.1018 4.7222 0.9861 9.4643 7.4094 0.9653

Mean 6.1552 4.7561 0.9862 9.6441 7.5587 0.9660

LASSO
Max 13.5908 11.2526 0.9345 14.5408 11.9976 0.9330
Min 13.4307 11.0978 0.9329 13.5506 11.1993 0.9222

Mean 13.5261 11.1914 0.9336 14.0047 11.5624 0.9283

GPR
Max 7.4269 5.7891 0.9805 8.6418 6.6802 0.9745
Min 7.3335 5.7243 0.9800 8.3605 6.5054 0.9726

Mean 7.3887 5.7580 0.9802 8.5121 6.6137 0.9735

Note: Abbreviations: root mean square error, RMSE; mean absolute error, MAE; coefficient of determination, R2;
Artificial Neural Network, ANN; Support Vector Machine, SVR; Classification and Regression Tree, CART; Bagging
Regression Tree, BRT; Least Absolute Shrinkage and Selection operator, LASSO; Gaussian Process Regression, GPR.

Figure 4 shows the accuracy ranking results of the six models in training and testing dataset.
The prediction accuracy value of the model can be read out from the ordinate, and the ranking results
of these models are showed with numbers above the color bars. As can be seen from Figure 4, first of
all, the accuracy ranking results show slight difference in training and testing dataset. In training
dataset, the accuracy ranking results is consistent with the three evaluation metrics, and the rank order
is: BRT, GPR, CART, ANN, SVM, LASSO. However, the accuracy ranking result changes slightly in
testing dataset. In addition, with different accuracy evaluation metrics, the accuracy ranking results
are also different. The accuracy rank with the metrics of RMSE and R2 in descending order is: GPR,
BRT, CART, ANN, SVM, LASSO; and that of MAE in descending order is: GPR, CART, BRT, ANN,
SVM, LASSO. Based on the comprehensive performance of the two datasets, it can be considered that
GPR model shows the best prediction accuracy and LASSO model has the worst prediction accuracy.
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30 trials.

The scatter plot of the bending force values measured by the factory and the values predicted by
the six machine learning models in training and testing dataset are presented in Figure 5. Scattered
points of different colors in the figure represent the predicted values by different models. In training
and testing dataset, the predicted values of BRT and GPR models are closely distributed on both sides
of the straight line y = x. The results show that the predicted bending force of the two models have
a better correlation with the measured bending force value, and the two models are superior to the
other four models for bending force prediction. On the contrary, LASSO has the worst prediction
accuracy with the most scattered predicted value around the straight line y = x, indicating that the
predicted values are much different from the measured values. The maximum error of all other data
points predicted by the six models is within 10%. Therefore, these six models have achieved good
prediction performance.

Figure 6 shows the measured bending force and predicted bending force by the six models in
training and testing dataset, and also shows prediction errors below. It clearly shows that the BRT has
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the best prediction performance in training dataset, the maximum positive error is 23.60 kN and the
maximum negative error is −25.28 kN. In testing dataset, GPR has the best prediction performance
with the maximum positive error as 31.84 kN and the maximum negative error as −26.50 kN. The errors
of BRT and GPR are more concentrated in the range of 0 kN, which means that the number of samples
with large error values is smaller. On the contrary, the LASSO performs worst in the six models of two
datasets. In training dataset, the maximum positive error is 41.07 kN and the maximum negative error
is −44.56 kN. In testing datasets, the maximum positive error is 42.99 kN and the maximum negative
error is −27.04 kN.Metals 2020, 10, x FOR PEER REVIEW 10 of 18 
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Figure 7 shows the histograms and distribution curves of the errors. All the error distribution
curves have a bell shape of normal distribution, which indicates that the prediction errors of all models
are normal distribution. Whether in training or in testing datasets, GPR, BRT, and CART models
perform relatively well, and their normal distribution curves are higher and narrower, which indicate
that more prediction values with smaller errors are obtained. In addition, it is also found that the dataset
centers (the highest point of normal distribution curve) of most models are close to the zero point of
errors. The dataset center represents the average value of errors, indicating that the probabilities of
positive error and negative error are almost equal. However, the normal distribution curve of LASSO
shifts to right obviously in testing dataset, which indicates that the positive error of LASSO model is
much more than the negative error and the predicted values are higher.Metals 2020, 10, x FOR PEER REVIEW 12 of 18 
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Figure 7. Histograms and normal distribution curves of the error of six machine learning models
performing 30 trials.

4.2. Stability of Various Models

The prediction accuracy results show that the prediction accuracy in testing dataset of all models
is lower than that in the training dataset. In addition, in training dataset, the prediction accuracy of
BRT model is better than the GPR. However, in testing dataset, the prediction accuracy of GPR model
is better than the BRT (showed in Figure 4). The difference of prediction accuracy between in training
and testing dataset can be regarded as the stability of the model. The stability of machine learning
model is also an important factor affecting the prediction performance, which should be taken into
account when evaluating the reliability of predicted result. The stability of the machine learning model
is the relative change percentage of the evaluation metrics (including RMSE, MAE, and R2) of the
model in training and testing datasets [31]. The smaller the relative change percentage, the higher the
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stability of the model. The relative change percentage of evaluation metrics under the two datasets can
be described by δi,N and calculated by the following formula:

δi,N =

∣∣∣∣∣∣δi,test − δi,train

δi,train

∣∣∣∣∣∣× 100% (5)

where i represent the evaluation metrics (RMSE, MAE, or R2) and N represent the one of the six models.
Figure 8 shows the δi,N from three evaluation metrics of the six models performing 30 trials.

It shows that the stability rankings of ANN, SVR, CART, BRT, LASSO, and GPR models are slightly
different with different evaluation metrics. With the evaluation metrics of RMSE and R2, SVR shows
the most stable performance with the lowest δi,N values of 2.33% and 0.35%, respectively. LASSO
shows the most stable performance with the lowest δi,N values of 2.33% in the evaluation metrics
of MAE. However, no matter which evaluation metrics is used, the BRT shows the most unstable
performance with the highest δi,N. The δi,N are 56.68%, 58.93%, and 2.05% calculated by RMSE, MAE,
and R2, respectively. This unstable performance reveals that when new input data is used, it will lead
to a significant reduction in prediction accuracy. This is because the BRT model has a large number of
hyper-parameters, which need to be carefully optimized for model application [31].
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Figure 8. Difference of prediction accuracy metrics (RMSE, MAE, and R2) between training datasets
and testing datasets for 30 trials (the δ(i,N) of the models are shown above the bars).

The distribution of the three evaluation metrics obtained from six machine learning models
performing 30 trials in training and testing dataset are illustrated in Figure 9 using a boxplot.
It represents the degree of spread for the prediction accuracy with its respective quartile. In training
dataset, the suspected outliers of the prediction accuracy only appear in ANN and CART models.
In testing dataset, suspected outliers appear in ANN, SVM, CART, and BRT models. At the same
time, it is found that the quartile distance of testing dataset is increasing compared with that in
training dataset, which indicates that the degree of dispersion of prediction accuracy became larger.
Although Figure 8 shows that both SVM and LASSO models have the most stable performance.
However, the variation of the quartile distance of the LASSO model is most obvious in the two datasets.
Considering comprehensively, it can be considered that SVM is the most stable model.
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4.3. Computational Costs of Various Models

Table 4 and Figure 10 shows the computational cost (time used for computation) of the six machine
learning models. The CART and LASSO show the lowest computational costs of 0.59 s and 0.35 s,
respectively. BRT and ANN also show smaller computational costs of 2.11 s and 9.35 s, respectively.
Compared with the above four models, the computational cost of GPR increases to 63.25 s. Furthermore,
the computational cost of SVM reaches the maximum value, which is 305.09 s.

Table 4. Comparison of computational costs (time used for computation) of the six machine learning models.

Model
Computational Cost (s)

Max Min Mean

ANN 11.66 8.12 9.35
SVM 321.59 295.24 305.09

CART 0.71 0.56 0.59
BRT 2.64 1.87 2.11

LASSO 0.51 0.31 0.35
GPR 64.55 62.06 63.25

Note: The lowest computational cost among all models are marked in bold.
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4.4. Comprehensive Evaluation of Various Models

Based on the above results, six machine learning models comprehensively evaluated from
prediction accuracy, stability, and computational cost, and the results are shown in Figure 11. It must
be pointed out that the prediction accuracy here is in testing dataset. Figure 11 shows that GPR
provides the best combination of prediction accuracy, stability, and computational cost. The prediction
accuracy of BRT, CART, and ANN models is slightly worse than that of GPR. For the three models,
the prediction accuracy and computational cost of them are not much different, but BRT has the worst
stability. In addition, SVM does not perform well in terms of prediction accuracy and computational
cost. LASSO has good stability and computational cost, but the prediction accuracy is the worst.
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5. Discussion

With the development of technology, today, in the production process of a series of steel, the
equipment will maintain a stable operation state, so the rolling process is also carried out stably.
Therefore, for specific strip specification, most rolling processes will obtain relatively stable datasets
without large variability. Then, the key technology of rolling parameter prediction is how to improve
the prediction accuracy. The stable data can better reflect the normal rolling process. The purpose
of this paper is to discuss the comparison results of prediction accuracy when different models are
applied to bending force prediction. Therefore, in order to reflect the most essential characteristics
of the model and obtain a fair comparison result, the machine learning models used in this paper
were not over optimized by combining with other intelligent optimization algorithms (such as Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), etc.). We believe that this paper can be used as a
reference and basis for other similar prediction applications and research to select machine learning
models, and it is more practical to select basic original models and parameters.

6. Conclusions

In this paper, we applied six machine learning models, including ANN, SVR, CART, BRT, LASSO,
and GPR, to predict the bending force in the HSR process. A comparative experiment was carried
out based on real-life dataset, and the prediction performance of the six models was analyzed from
prediction accuracy, stability, and computational cost. All the gauges used in this research were
calibrated to ensure the validity of the data and reliability of the results. The prediction performance of
the six models was assessed using three evaluation metrics of RMSE, MAE, and R2.

(1) The comparison results of prediction accuracy show that the accuracy ranking results in testing
dataset are slightly different under the three evaluation metrics. However, considering that GPR
performs best, followed by BRT, CART, ANN, SVM, and LASSO respectively. The bending force
measured by experiment is 690~890 kN, while the prediction error of GPR is only 8.51 kN (RMSE)
and 6.61 kN (MAE).

(2) The ranking results of stability show inconsistency in the three evaluation metrics. However,
considering comprehensively, SVM shows the most stable performance with the γ of 2.33%
(RMSE), 0.32% (MAE) and 0.35% (R2). The stability decreases in the order of LASSO, ANN,
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GPR, CART, and BRT. BRT shows the most unstable performance with the γ of 56.68% (RMSE),
58.93% (MAE), and 2.05% (R2).

(3) The computational cost of the six models presents three levels. The computational costs of
LASSO, CART, BRT, and ANN are increasing gradually, but they are all within ten seconds.
The computational cost of GPR model is slightly higher, at about 63 s. However, the computational
cost of SVM has reached more than 300 s.

(4) Comprehensively considering the prediction accuracy, stability, and computational cost of the
six models, GPR can be considered the most promising machine learning model for predicting
bending force. The prediction accuracy and stability of CART and ANN is slightly lower than
GPR, but the computational cost is relatively small, so it can also be used as an alternative.
In addition, BRT also shows the better combination of prediction accuracy and computational
cost, but the stability of BRT is the worst among the six models. SVM not only performs poorly in
prediction accuracy, but also has the greatest computational cost. While LASSO has good stability
and small computational cost, but it also has the worst prediction accuracy.
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