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Abstract: Sustainment issues associated with military helicopters have drawn attention to the growth
of small cracks under a helicopter flight load spectrum. One particular issue is how to simplify
(reduce) a measured spectrum to reduce the time and complexity of full-scale helicopter fatigue tests.
Given the costs and the time scales associated with performing tests, a means of computationally
assessing the effect of a reduced spectrum is desirable. Unfortunately, whilst there have been a
number of studies into how to perform a damage tolerant assessment of helicopter structural parts
there is currently no equivalent study into how to perform the durability analysis needed to determine
the economic life of a helicopter component. To this end, the present paper describes a computational
study into small crack growth in AA7075-T7351 under several (reduced) helicopter flight load spectra.
This study reveals that the Hartman-Schijve (HS) variant of the NASGRO crack growth equation
can reasonably accurately compute the growth of small naturally occurring cracks in AA7075-T7351
under several simplified variants of a measured Black Hawk flight load spectra.

Keywords: small cracks; helicopter flight load spectra; FALSTAFF flight load spectra; fatigue
crack growth

1. Introduction

It is now known that “ab initio” design and aircraft sustainment [1,2] are best tackled using different
computational tools. United States Air Force (USAF) airworthiness standard MIL-STD-1530D [3] states
that analysis is the key to both damage tolerant design and to assessing the economic life of military
aircraft. MIL-STD-1530D also states that the primary role of testing is “to validate or correct analysis
methods and results and to demonstrate that requirements are achieved”. The USAF-McDonnell
Douglas study into the economic life of USAF F-15 aircraft [1] was arguably the first to reveal that
sustainment analyses need to use the short crack da/dN versus ∆K curve, and not the da/dN versus ∆K
curve determined as per the US American Society for Testing and Materials (ASTM) fatigue test standard
ASTM E647-13a [4]. (The term durability is defined in MIL-STD-1530D [3] as: “Durability is the attribute
of an aircraft structure that permits it to resist cracking, corrosion, thermal degradation, delamination,
wear, and the effects of foreign object damage for a prescribed period of time”. MIL-STD-1530D [3]
defines the term economic service life: The economic service life is the period during which it is
more cost-effective to maintain, repair, and modify an aircraft component or aircraft than to replace
it.) This conclusion is now echoed in ASTM E647-13a, Appendix X3. Whereas the ability of various
crack growth equations to capture the growth of long cracks under a representative helicopter flight
load spectrum has been studied [5–7] as part of the “Helicopter Damage Tolerance Round-Robin”

Metals 2020, 10, 944; doi:10.3390/met10070944 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0003-3197-2796
https://orcid.org/0000-0003-4586-7268
https://orcid.org/0000-0002-3157-634X
https://orcid.org/0000-0002-4012-8055
http://www.mdpi.com/2075-4701/10/7/944?type=check_update&version=1
http://dx.doi.org/10.3390/met10070944
http://www.mdpi.com/journal/metals


Metals 2020, 10, 944 2 of 16

challenge [8], there are few studies into the ability of crack growth equations to model small crack
growth of small under helicopter flight load spectra. This shortcoming is particularly important
since the durability/economic “initial flaw assumptions” contained in the US Joint Services Structures
Guidelines JSSG2006 [9], which in MIL-STD-1530D are termed as equivalent initial damage sizes (EIDS),
are typically 0.05 inches (0.127 mm). Indeed, this size of EIDS is also referenced in Structures Bulletin
EZ-19-01, which presents the USAF approach to the Durability and Damage Tolerance Certification
for Additive Manufacturing of Aircraft Structural Metallic Parts [10]. The importance of a validated
predictive capability is highlighted in MIL-STD-1530D Sections 5.2.5 and 5.2.6, which state that a
damage tolerance and a durability analysis must be performed for all aircraft, and in Section 5.3.4
which states that the purpose of full scale fatigue testing is to “validate or correct the analysis”.
MIL-STD-1530D also states that a factor of 2 is to be used on these analyses. The Australian Defence
Science and Technology (DST) Group’s small crack Helicopter Round Robin Challenge [11,12] is, to the
best of the author’s knowledge, the first attempt to address this shortcoming, i.e., the lack of a validated
analysis for small crack growth under a helicopter flight load spectrum.

It has previously been shown [7] that the Hartman-Schijve (HS) crack growth equation [2], which is
an extension of a concept first proposed in [13], accurately predicted crack growth in the “Helicopter
Damage Tolerance Round-Robin” challenge [8]. It has also been shown [2,7,14–18] that this formulation
can also predict small crack growth under maritime aircraft, combat aircraft, and civil aircraft flight
load spectra, and that the small crack equation needed for a durability/economic life analysis can often
be determined from the associated long crack equation by setting the fatigue threshold term to a small
value. The HS equation has also been shown to hold for crack growth in adhesively-bonded joints,
bonded wood structures, and both bridge and rail steels [19–25], as well as for delamination crack
growth in composite structures [26–32]. Consequently, the focus of the present paper is to examine
if the HS crack growth equation can also capture crack growth in the DST Advancing Structural
Simulation to drive Innovative Sustainment Technologies (ASSIST) small crack Helicopter Round
Robin Challenge.

The general form of the HS equation used in this paper is as given in [2], viz:

da/dN = D (∆κ)n (1)

where a is the crack length/depth, N is the number of cycles, D is a material constant and n is another
material constant that is often approximately 2. The crack driving force ∆κ used in Equation (1) was
first suggested by Schwalbe [33], viz:

∆κ = (∆K − ∆Kthr)/(1 − Kmax/A)1/2 (2)

here K is the stress intensity factor, Kmax and Kmin are the maximum and minimum values of the stress
intensity factor seen in the cycle, ∆K = (Kmax − Kmin) is the range of the stress intensity factor that
is seen in a cycle, ∆Kthr is the “effective fatigue threshold”, and A is the cyclic fracture toughness.
As per [2,14,16,18], the values of the terms ∆Kthr and A are chosen to fit the measured data. As further
explained in [34], the term ∆Kthr is related to the ASTM E647-13a definition of the fatigue threshold
∆Kth, namely the value of ∆K at a value of da/dN of 10−10 m/cycle, by:

∆Kth = ∆Kthr + (10−10/D)1/n (3)

as a general rule, crack growth predictions made using Equations (1) and (2) are quite sensitive to the
value used for ∆Kthr, and relatively insensitive to the value of A.

The HS equation has also been shown [34–38] to capture the growth of both small and long cracks
in additively manufactured materials (AM), and has an ability to account for the effect of residual
stresses in both conventionally and additively manufactured materials [39]. It has also been shown to
be able to capture the effect of surface roughness on the fatigue life of a component [39]. This finding
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is particularly important given the statement by the Under Secretary of Defense, Acquisition and
Sustainment [40] that “AM parts can be used in both critical and non-critical applications”, and the
statement in the USAF Structures Bulletin EZ-19-01 [10] that for AM parts that the most difficult
challenge is to establish an “accurate prediction of structural performance” specific to durability and
damage tolerance (DADT). As such it is envisaged that if it can be shown that the HS equation can be
shown to reasonably accurately compute the growth of small cracks subjected to helicopter flight load
spectra, then it may be useful for assessing if an AM (helicopter) replacement part, or an AM repair to
a helicopter part, meets the durability requirement inherent in the Structures Bulletin EZ-19-01.

2. Materials and Methods

The majority of references quoted in this paper are taken from peer reviewed journals. The refereed
conferences, proceedings, and texts referenced are either publicly available, or available from Google
searches. Thirty-nine of the journal papers referenced are in journals that are either listed in
SCOPUS or in the World of Science (WOS). The book chapters referenced are listed in SCOPUS.
In the case of conference papers, one is in the Proceedings of 13th International Conference on
Fracture (ICM13), two are contained in the Proceedings of the 1st Virtual European Conference
on Fracture, two are available on Research Gate; seven references are available on various US
Department of Defense DTIC websites, one is available on the American Helicopter Society website,
and another is on the US Pentagon website. Keywords that were used in these searchers were durability,
damage tolerance, Hartman-Schijve, small cracks, additive manufacturing, crack growth in operational
aircraft, and aircraft certification.

The paper begins by using the HS equation [2] to compute crack growth in an AA7075-T7352
specimen under a FALLSTAFF (which is an industry standard combat aircraft spectrum) flight load
spectrum. It is then used evaluate crack growth under several variants of a US Army Blackhawk spectrum.

3. Crack Growth in 7075-T7351

3.1. Crack Growth under a FALSTAFF Flight Load Spectrum

Before we can compute crack growth in the Helicopter Challenge, we need to establish the
constants in the HS equation. To do this we examined the crack length histories given in [41] for the
growth of through-the-thickness cracks in a 6.35 mm thick middle tension (MT) panel, with a rectangular
cross section, tested under a FALSTAFF flight load spectrum. A plan view of the specimen geometry is
shown in Figure 1. The specimens were pre-cracked to a length of approximately 2 mm before the main
fatigue test. The specimens were then tested under FALSTAF, an industry-standard combat aircraft
load spectrum. The test loads were applied at a frequency of 10 Hz, see [41]. The maximum load in
the spectrum was 60 kN. This corresponds to a remote stress of 157.48 MPa in the working section.
One block of FALSTAFF load spectrum consisted of 9006 cycles. This equates to 100 equivalent flight
hours. The various crack growth histories for the 25 tests performed in [41] are shown in Figure 2.
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The similarity between the da/dN versus ∆K crack growth curves associated with AA7075-T6
and AA7075-T7351 meant that the values of the constants D and n in Equation (1) for AA7075-T7351
could be taken to be as given in [14] for AA7075-T6, namely: D = 1.86 × 10−9 (MPa−2 cycle−1),
and n = 2. The value of A was taken from that given in [14] for tests on small cracks in AA7075-T7351,
viz: A = 111 MPa

√
m. A similar value is given in [42]. The resultant measured and computed crack

growth histories are shown in Figure 2, and the values of A and ∆Kthr used in the analysis are given
in Table 1. Figure 2 reveals excellent agreement between the measured and computed crack growth
histories. Figure 2 also reveals that, as reported in [2,15,16,18,38,43], the scatter in the crack growth
histories can be captured by allowing for variability in the term ∆Kthr. Figure 3 presents the crack
growth history plotted using log-linear axes. Figure 3 reveals that crack growth in these 25 tests
could be approximated as being exponential. As explained in [2] this is due to the test program being
performed on cracks in an MT panel.

Table 1. Values of A and ∆Kthr used in Figure 2 when computing the crack growth curves for the various tests.

Test A (MPa
√

m) ∆Kthr (MPa
√

m)

G 111 1.3

K 111 1.79

L 111 1.1

N 111 1.1

U 111 1.48

V 111 1.6

X 111 1.45

Y 111 1.6

G 111 1.3
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3.2. Short Cracks in 7075-T7351

Having determined the crack growth equation for AA7075-T7351 a comparison between the
R = 0.8 AA7075-T73 short crack da/dN versus ∆K curve presented in [44] and the corresponding curve
predicted using Equation (1) with D = 1.86 × 10−9, and n = 2, ∆Kthr = 0.6 MPa

√
m and A = 111 MPa

√
m

is given in Figure 4. Figure 4 reveals that there is an excellent agreement between the computed and
the measured curve presented in [44]. The next section will use these values of D, n, ∆Kthr, and A to
compute crack growth in the DST Helicopter Challenge.
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4. Computing Crack Growth in the DST Small Crack Helicopter Round Robin Challenge

The focus of problem proposed in the (DST) Group’s small crack Helicopter Round Robin
Challenge was to compute the growth of small cracks in 8.4 mm thick AA7075-T7351 specimens under
a range of simplified helicopter flight load spectra [11,12]. The baseline spectrum, which is described
in [45], was obtained from a flight strain survey conducted on a US Army H-60 Black Hawk helicopter.
The crack growth data and details of the specimen and the various helicopter flight load spectra were
made publicly available via the DST ASSIST initiative and are available at [11,12].

The load sequences provided by DST as part of the ASSIST Round Robin were termed IRF-E14, IRF-E15,
and IRF-E16. These spectra are simplified/reduced versions of the baseline spectrum, where different
numbers of small amplitude cycles have been removed. Sequences termed CSL090SSXX, which are
truncated versions of the IRF-E16 spectrum, were also provided. The CSL090SSXX spectra had: (a) an
additional 90% of the smallest cycles removed, and (b) the mid-range cycles were scaled by XX%.

A plan view of the test specimens used by DST in the ASSIST test program [11] is shown in
Figure 5. The number of turning points in each of the spectra used in this test study are given in
Table 2. The surface of the specimen was etched to promote organic crack nucleation, using a solution
of Hydrofluoric acid (1%), Nitric acid (50%), and water (49%). Further details of the test specimen and
the spectra are given in [11,12].

Materials 2020, 13, x FOR PEER REVIEW 6 of 16 

 

4. Computing Crack Growth in the DST Small Crack Helicopter Round Robin Challenge 

The focus of problem proposed in the (DST) Group’s small crack Helicopter Round Robin 
Challenge was to compute the growth of small cracks in 8.4 mm thick AA7075-T7351 specimens 
under a range of simplified helicopter flight load spectra [11,12]. The baseline spectrum, which is 
described in [45], was obtained from a flight strain survey conducted on a US Army H-60 Black Hawk 
helicopter. The crack growth data and details of the specimen and the various helicopter flight load 
spectra were made publicly available via the DST ASSIST initiative and are available at [11,12].  

The load sequences provided by DST as part of the ASSIST Round Robin were termed IRF-E14, 
IRF-E15, and IRF-E16. These spectra are simplified/reduced versions of the baseline spectrum, where 
different numbers of small amplitude cycles have been removed. Sequences termed CSL090SSXX, 
which are truncated versions of the IRF-E16 spectrum, were also provided. The CSL090SSXX spectra 
had: a) an additional 90% of the smallest cycles removed, and b) the mid-range cycles were scaled by 
XX%.  

A plan view of the test specimens used by DST in the ASSIST test program [11] is shown in 
Figure 5. The number of turning points in each of the spectra used in this test study are given in Table 
2. The surface of the specimen was etched to promote organic crack nucleation, using a solution of 
Hydrofluoric acid (1%), Nitric acid (50%), and water (49%). Further details of the test specimen and 
the spectra are given in [11,12]. 

Table 2. The number of turning points in each spectrum. 

IRF-
E15 

IRF-
E15 

IRF-
E16 

CSL090SS00 CSL090SS05 CSL090SS15 CSL090SS20 

82,839 248,255 649,666 64,958 64,958 64,958 64,958 

 
Figure 5. Geometry of the 8.4 mm thick test specimen. (units are in mm). 

4.1. Short Cracks in 7075-T7351 

Equation (1), with D = 1.86 x 10−9, n = 2, and ΔKthr = 0.6 MPa √m, was used to predict the crack 
growth histories associated with the Round Robin tests subjected to the following spectra: IRF-E14, 
IRF-E15, IRF-E16, CSL090SS00, CSL090SS05, CSL090SS15, and CSL090SS20. The analysis was 
performed using both A = 40 MPa √m, and A = 111 MPa √m. The value of A = 40 MPa √m was 
investigated since prior DST constant amplitude tests [41] had yielded values of A ≈ 32 MPa √m for 
twenty four mm thick AA7075-T7351 specimens, and A ≈ 40 MPa √m for three mm thick AA7075-
T7351 specimens. The value of A = 111 MPa √m was investigated since it is associated with the short 
crack tests reported in [42]. As per the requirements enunciated in the ASSIST challenge [11], the 
initial crack size was taken to be a centrally located 0.01 mm semi-circular surface crack. The stress 
intensity factors were computed using the methodology outlined in [46]. Comparisons between the 
measured and computed crack growth histories are given in Figures 6–12, where the computed crack 
depth histories are labelled “Computed ΔKthr = 0.6 A = XX”, where XX is either 40 or 111 depending 
on what value of A was used in the analysis. Here it should be noted that, as shown in Figures 6–12, 
each spectrum test program had a number of repeated tests. Figures 6–12 reveal that there is little 

Figure 5. Geometry of the 8.4 mm thick test specimen. (units are in mm).

Table 2. The number of turning points in each spectrum.

IRF-E15 IRF-E15 IRF-E16 CSL090SS00 CSL090SS05 CSL090SS15 CSL090SS20

82,839 248,255 649,666 64,958 64,958 64,958 64,958

Short Cracks in 7075-T7351

Equation (1), with D = 1.86 × 10−9, n = 2, and ∆Kthr = 0.6 MPa
√

m, was used to predict the
crack growth histories associated with the Round Robin tests subjected to the following spectra:
IRF-E14, IRF-E15, IRF-E16, CSL090SS00, CSL090SS05, CSL090SS15, and CSL090SS20. The analysis
was performed using both A = 40 MPa

√
m, and A = 111 MPa

√
m. The value of A = 40 MPa

√
m was

investigated since prior DST constant amplitude tests [41] had yielded values of A ≈ 32 MPa
√

m for
twenty four mm thick AA7075-T7351 specimens, and A≈ 40 MPa

√
m for three mm thick AA7075-T7351

specimens. The value of A = 111 MPa
√

m was investigated since it is associated with the short crack
tests reported in [44]. As per the requirements enunciated in the ASSIST challenge [11], the initial crack
size was taken to be a centrally located 0.01 mm semi-circular surface crack. The stress intensity factors
were computed using the methodology outlined in [46]. Comparisons between the measured and
computed crack growth histories are given in Figures 6–12, where the computed crack depth histories
are labelled “Computed ∆Kthr = 0.6 A = XX”, where XX is either 40 or 111 depending on what value of
A was used in the analysis. Here it should be noted that, as shown in Figures 6–12, each spectrum test
program had a number of repeated tests. Figures 6–12 reveal that there is little difference between
the crack growth histories computed using A = 40 MPa

√
m or A = 111 MPa

√
m. This is because the
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majority of the life is consumed in growing to a depth of 1 mm. We also see that there is reasonable
agreement between the measured and predicted crack growth curves.
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Figure 6. The measured and computed crack depth histories for the helicopter flight load spectrum IRF-E14.
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5. Material Variability

The variability in crack growth that can arise from a fatigue test was first highlighted by a paper by
Virkler et al. [47] This study presented the results of more than sixty constant amplitude R = 0.2 tests on
identical 2024-T3 panels which had a constant initial half crack length of 9 mm (see Figure 13). Figure 2
illustrates the variability in crack growth seen in tests on long cracks tested under an operational
flight load spectra. Unfortunately, for small cracks the variability in the crack depth histories can
be significantly greater than that seen in the long crack curves shown in Figures 2 and 13 [16,48,49].
(The effect of (local) material variability on the growth of small cracks is compounded by the fact that
the size and shape of the initial material discontinuity is variable, and generally cannot be tightly
controlled [49–51].) The variability in the crack depth history associated with spectra CSL090SS15 is a
good example of this, see Figure 11 that presents the variability in the crack depth histories associated
with six different cracks.

This raises the question: How much greater would the variability in the crack growth histories
shown in Figures 6–12 have been if significantly more tests been performed?

Whilst it is not possible to definitively answer this question, it may be possible to shed some
light on the problem space by investigating the effect of small changes in the fatigue threshold on the
computed crack growth histories. Given that more than 90% of the Black Hawk flight load spectrum
consists of small amplitude loads [45], and that the variability in the growth of small cracks can often
be captured by allowing for variability in the term ∆Kthr (see Section 3.1 and [2,15,16,18,38,43]) it is
anticipated that a small change in ∆Kthr should result in a much greater change in the crack growth
history. To investigate this hypothesis we reanalysed the various test spectra using ∆Kthr = 0.5 MPa

√
m

and A = 111 MPa
√

m. The resultant crack depth histories are also shown in Figures 6–12 where
they are labelled “Computed ∆Kthr = 0.5 A = 111”. Here we see that, as expected, when values of
∆Kthr = 0.5 MPa

√
m and A = 111 MPa

√
m are used there is a significant reduction in the computed

fatigue lives, when compared to the lives computed using ∆Kthr = 0.6 MPa
√

m and A = 111 MPa
√

m,
and that the computed fatigue lives are now conservative. Bearing in mind that for small cracks growing
under combat, maritime, and civil aircraft flight load spectra, it has been shown that the variability
in the crack growth histories is captured by allowing for (relatively small) changes in ∆Kthr—this
appears to suggest that in order to evaluate the effect of simplifying a spectrum, so as to reduce test
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time, on the fastest possible (lead) crack a statistically significant number of tests should be performed.
This requirement is highlighted in Section 3.2.19.1 of the US Joint Services Structural Guidelines [9]
that states: “The allowable structural properties shall include all applicable statistical variability”.

Materials 2020, 13, x FOR PEER REVIEW 11 of 16 

 

appears to suggest that in order to evaluate the effect of simplifying a spectrum, so as to reduce test 
time, on the fastest possible (lead) crack a statistically significant number of tests should be 
performed. This requirement is highlighted in Section 3.2.19.1 of the US Joint Services Structural 
Guidelines [9] that states: “The allowable structural properties shall include all applicable statistical 
variability”. 

 

Figure 13. The variability in the crack length histories reported in [46]. 

To further investigate the variability (scatter) seen in the ASSIST tests let us examine the data 
associated with test spectra IRF-15 and CSL090SS15, which had information on the largest number of 
cracks (six). The mean lives, standard deviation (σ), and the projected worst case (mean-3σ) lives are 
given in Table 3. Here we see that the standard deviation in the test lives is a significant proportion 
of the mean life. It should be noted that whilst the mean-3σ life and the standard deviation 
calculations are based on small sample statistics, they nevertheless indicate the need for data on the 
growth of a greater number of cracks, i.e., additional testing. 

Table 3. The values of A and ∆Kthr and A used in Figure 14. 

Measured/Computed IRF-E15 
Load Blocks to Failure  

CSL090SS15 
Load Blocks to Failure 

Smallest test life 38.3 32.0 
Longest test life 66.1 72.7 

Mean life 46.8 54.5 
Standard deviation (σ) 10.4 13.6 

Mean-3σ 15.6 13.8 
Computed ΔKthr = 0.3 MPa √m,  

A = 40 MPa √m 
8.9 12.7 

Computed ΔKthr = 0.3 MPa √m,  
A = 111 MPa √m 

9.7 13.2 

It has been suggested [18] that for small cracks in aluminium alloys the threshold term lies in the 
range 0.1 < ΔKthr < 0.3. Consequently, for spectra IRF-15 and CSL090SS15 the analysis was repeated 
using ΔKthr = 0.3 MPa √m, and either A = 40 MPa √m, or A = 111 MPa √m. Comparisons between the 
measured and computed crack depth histories for these spectra are shown in Figures 14 and 15. The 
(computed) number of cycles to failure obtained using A = 40 MPa √m and A = 111 MPa √m are given 

5

10

15

20

25

30

35

40

45

50

55

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Cr
ac

k 
Le

ng
th

 (m
m

)

Cycles

2 3 4 5

6 7 10 11

12 15 16 17

18 19 20 21

22 24 25 26

27 28 29 30

31 33 34 35

36 37 38 39

40 42 43 44

45 46 48 49

50 51 52 53

55 57 60 61

68

Figure 13. The variability in the crack length histories reported in [46].

To further investigate the variability (scatter) seen in the ASSIST tests let us examine the data
associated with test spectra IRF-15 and CSL090SS15, which had information on the largest number of
cracks (six). The mean lives, standard deviation (σ), and the projected worst case (mean-3σ) lives are
given in Table 3. Here we see that the standard deviation in the test lives is a significant proportion of
the mean life. It should be noted that whilst the mean-3σ life and the standard deviation calculations
are based on small sample statistics, they nevertheless indicate the need for data on the growth of a
greater number of cracks, i.e., additional testing.

Table 3. The values of A and ∆Kthr and A used in Figure 14.

Measured/Computed IRF-E15
Load Blocks to Failure

CSL090SS15
Load Blocks to Failure

Smallest test life 38.3 32.0
Longest test life 66.1 72.7

Mean life 46.8 54.5
Standard deviation (σ) 10.4 13.6

Mean-3σ 15.6 13.8
Computed ∆Kthr = 0.3 MPa

√
m, A = 40 MPa

√
m 8.9 12.7

Computed ∆Kthr = 0.3 MPa
√

m, A = 111 MPa
√

m 9.7 13.2

It has been suggested [18] that for small cracks in aluminium alloys the threshold term lies in the
range 0.1 < ∆Kthr < 0.3. Consequently, for spectra IRF-15 and CSL090SS15 the analysis was repeated
using ∆Kthr = 0.3 MPa

√
m, and either A = 40 MPa

√
m, or A = 111 MPa

√
m. Comparisons between

the measured and computed crack depth histories for these spectra are shown in Figures 14 and 15.
The (computed) number of cycles to failure obtained using A = 40 MPa

√
m and A = 111 MPa

√
m

are given in Table 3. Here we see that Table 3 and Figures 14 and 15 reveal that the computed
crack depth history is a weak function of the cyclic fracture toughness. We also see that when
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using ∆Kthr = 0.3 MPa
√

m the resultant computed crack depth histories have a near exponential
shape. Furthermore, the computed lives to failure are more conservative than the “Mean-3σ” lives
as determined from the “limited” number of tests. It is thus suggested that in the absence of a
statistically significant number of small crack tests the crack depth curve calculated using the value
∆Kthr = 0.3 MPa

√
m may be a reasonable first estimate for this “worst case” curve.
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On the Shape of the Crack Depth History Curves

In the previous section, we remarked that using ∆Kthr = 0.3 MPa
√

m gave crack depth histories
that had a near exponential shape. It was also suggested that, in the absence of a statistically significant
number of small crack tests, the crack depth curve computed using ∆Kthr = 0.3 MPa

√
m may be a

reasonable first estimate for the worst-case crack depth history. In this context, it should be noted
that the USAF Durability Design Handbook [52] explains that the growth of small “lead” cracks,
i.e., the fastest growing cracks in an airframe or a component [53,54], in military aircraft is generally
exponential. Indeed, this exponential crack growth model is contained within the USAF approach
to assessing the risk of failure [55]. This feature, i.e., the exponential growth of lead cracks growing
under flight load spectra, was independently validated in [49,56] and is discussed in more detail
in [2,49]. However, examining Figures 6–12, we see that the crack growth histories are not exponential.
This observation raises an additional question, viz:

If significantly more tests had been performed would the “worst-case” crack depth versus load
blocks curves have been (approximately) exponential?

6. Conclusions

The assessment of the economic lives of operational metallic helicopter airframes requires a
durability analysis in which the EIDS are sub mm, typically 0.254 mm. Unfortunately, whereas several
studies into the ability of crack growth models to perform a damage tolerance analysis of helicopter
components subjected to a representative flight load spectrum have been performed few, if any,
studies can be found on the ability of crack growth models to perform a valid durability assessment of
a component subjected to an operational helicopter flight load spectrum. In this context, the present
study has found that the HS equation is able to reasonably accurately compute the growth of small
naturally occurring cracks in AA7075-T7351 under several simplified/reduced Black Hawk flight
load spectra. This suggests that the HS equation may have the potential to address the question of
how to simplify measured spectra in order to reduce the time and complexity of full-scale helicopter
fatigue tests.

It is also suggested that, given the inherent variability seen in small crack growth, any round robin
test on small cracks, and any test program performed to the effect of spectrum truncation on the growth
of small cracks should involve a statistically significant number of tests.
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