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Abstract: The simplified model of numerical analyses of discrete dislocation motion and emission
from a stressed source was applied to predict the yield stress, dislocation creep, and fatigue crack
growth rate of metals dominated by dislocation motion. The results obtained by these numerical
analyses enabled us to link various dynamical effects on the yield stress, dislocation creep, and fatigue
crack growth rate with the experimental results of macroscopic phenomena, as well as to link them
with theoretical results obtained by the concept of static, continuously distributed infinitesimal
dislocations for the equilibrium state under low strain or stress rate conditions. This will be useful to
holistic research approaches with concern for time and space scales, that is, in a time scale ranging
from results under high strain rate condition to those under static or low strain rate condition, and in a
space scale ranging from meso-scale to macro-scale mechanics. The originality of results obtained by
these analyses were found by deriving the analytical formulations of number of dislocation emitted
from a stressed source and a local dynamic stress intensity factor at the pile-up site of dislocations
as a function of applied stress or stress rate and temperature material constants. This enabled us
to develop the predictive law of yield stress, creep deformation rate, and fatigue crack growth rate
of metals dominated by dislocation motion. Especially, yielding phenomena such as the stress
rate and grain size dependence of yield stress and the delayed time of yielding were clarified as a
holistic phenomenon composed of sequential processes of dislocation release from a solute atom,
dislocation group moving, and stress concentration by pile-up at the grain boundary.

Keywords: holistic approach; dislocation group dynamics; dynamic factor; dislocation pile-up; yield
stress; dislocation creep; fatigue crack growth rate

1. Introduction

The purpose of the research of dislocation mechanics is considered to have two directionalities,
that is, application to the research of materials science and application to the research of the strength of
materials such as that of yielding and fatigue crack growth rate.

The former closely relates to micro plasticity, such as the conditions of dislocation emission,
annihilation, and cross slip, and this research was developed in the manner of the modern dislocation
dynamics [1].

The latter closely relates to connect problems of the strength and fracture of materials with the
macro scale [2–5].

This article is related to the fracture of materials. For this case, the numerical results of the number
of moving dislocations emitted from a stressed source and local stress concentration caused by a
dislocation pile-up were necessary to be formulated as an analytical function of applied stress or stress
rate, temperature, and material constants [2,3].
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Since the behaviors of dislocation group motion have a scale of µm at the meso-scale level, that is,
the intermediate scale of nm (an individual dislocation) and mm (crack length) scales, which is a
comparable scale with grain size. At this scale, the simplification of the model of analysis is considered
to be more convenient to derive a predictive law of the strength and fracture of metals.

To fulfil this purpose, in our research, the establishment of a predictive theory of strength and
fracture of materials was conducted by conducting the simplification of the model of analysis [3] and
verification with experimental results [3,6].

Yielding phenomena such as stress rate and grain size dependence of yield stress and delayed
time of yielding were especially clarified as a holistic phenomenon composed of sequential processes
of dislocation release from a solute atom [7,8], dislocation group moving [6], and stress concentration
by a pile-up at the grain boundary [2–4].

2. Dislocation Groups Dynamics Aimed for Applications to Problems of Yielding, Creep,
and Fatigue [2,9,10]

2.1. Model, Basic Equation and Method of Analysis [2,9,10]

Plastic deformation is caused by dislocation group motion emitted from a stressed source.
It closely relates to plastic yielding and fatigue crack growth dominated by discrete dislocations

emitted from a stressed source near a crack tip. Pioneering works on the analysis of discrete dislocation
group dynamics emitted from a stressed source have been conducted [4,11,12], but a power law
equation has been adopted between the isolated dislocation velocity and the stress for practical
application to the strength of materials such as the yield stress, creep rate, and fatigue crack growth
rate; this is given by Equation (1), which is related to experimental equations [4].

Equations of discrete moving dislocation groups are given by Equations (1) and (2).

Vi =
dxi
dt

= Mτe f f ,i
m (1)

τe f f ,i =
.
τt + A

n∑
j = 1
i , j

1
xi − x j

( i = 1 ∼ n) (2)

In the equations, Vi and xi are velocity and position of individual dislocations in a linear array,
respectively, and M and m are the material constants of an isolated dislocation given by the experimental
Equation (3) [13]. The calculation starts at the time of t = 0.0 s.

v = v0

(
τ
τ∗0

)m

V (3)

In Equation (3),
.
τ is the stress rate; t is the time of stress application; τe f f ,i is the effective stress

exerted on individual dislocations in terms of shear stress; and A = Gb
2π(1−ν) , where G is the shear

modulus, b is the Burgers vector, ν is the Poisson’s ratio, V0 = 1 cm/s, and τ∗0 is a constant representing
the stress required to give a dislocation velocity v = 1 cm/s (resistant stress against the dislocation
motion).

A free expansion model of linear dislocation motion emitted from a stressed source, S, is shown
in Figure 1 [9,10].

The numerical analyses were conducted as follows [9].
When the effective stress exerted on dislocation source (x = 0.0) takes the source activation stress,

the new dislocation is originated at x = 0.0, and these processes are iterated. Equations (2) and (1) were
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solved by the Runge–Kutta Merson method. The effective stress exerted on a dislocation source is
given by Equation (4).

τ =
.
τt

τe f f ,s =

.

.
τt−A

n∑
j=1

1
x j

(4)
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N = ܯቀ(m)ߛ
ൗܾܩ ቁ

(௠ାଵ
௠ାଶ)

 ௠ାଵ (6a)ߟ

(m)ߛ = 1.4݉ିଵ.ସହ (6b) 

In these equations, γ(m) is a non-dimensional function depending on m. 
The velocity of an isolated dislocation is given by thermally activated process, as shown in 

Equation (2- [14]. 

v = ݌ݔଵ݁ܣ ൬−
ܪ

ܴܶ
൰ (7) 

H = ௞ܪ ቆ1 +
1
4

݈݊
16߬௣

଴

߬ߨ
ቇ (8) 

In these equations, A1 is a constant, ܪ௞  is the kink energy, ߬ is the applied stress, ߬௉
଴  is the 

Peierls stress at 0° K, and T is the absolute temperature. By substituting Equation (8) into Equation 
(7) and comparing Equation (7) with Equation (9), which is the experimental equation of an isolated 
dislocation, Equations (10a) and (10d) could be obtained. 

v = M߬௠ (9) 

Figure 1. Free expansion model of linear dislocation motion emitted from a stressed source, S.

2.2. Discrete Dislocation Groups Dynamics of Free Expansion and Similarity Law of Dislocation Flow [9,10]

From the analysis, the ratio of positions, velocity and effective stress of individual dislocation
in the dislocation array to those of an isolated dislocation, such as xi

xiso
, vi

viso
, and

τe f f i
τiso

, were found to

dominated by Θ =
( .
τ.
τ0

) (m+1)
(m+2)

θ, which is named the dynamic factor [9,10]. Here, τ is the applied stress

acting on dislocations in the dislocation array, θ is the non-dimensional time controlled by t0, and t0 is

the time of an isolated dislocation moving the distance, l. It is given by t0 =
[
(m+1)l
M

.
τ

m
0

] 1
(m+1)

[2,9,10] by

using Equation (3). In this analysis, l was taken as the length of 0.01 mm.
Furthermore, the number of dislocations emitted from a stressed source were also found to be

given by the dynamic factor, Θ, which is a non-dimensional character, as shown in Equation (5a); the
dimensional parameter η is shown in Equation (5b) [9,10].

N = AΘm+1 (5a)

N = A0η
m+1 (5b)

η =
.
τ

m+1
m+2 t = τ

.
τ
−

1
m+2

In the equation, A and A0 are non-dimensional and dimensional constants, respectively.
By dimensional analysis, N is given by Equation (6a) [9,10].

N = γ(m)
( M

Gb

)(m+1
m+2 )

ηm+1 (6a)

γ(m) = 1.4m−1.45 (6b)

In these equations, γ(m) is a non-dimensional function depending on m.
The velocity of an isolated dislocation is given by thermally activated process, as shown in

Equation (2) [14].

v = A1exp
(
−

H
RT

)
(7)

H = Hk

1 +
1
4

ln
16τ0

p

πτ

 (8)

In these equations, A1 is a constant, Hk is the kink energy, τ is the applied stress, τ0
P is the Peierls

stress at 0◦ K, and T is the absolute temperature. By substituting Equation (8) into Equation (7) and
comparing Equation (7) with Equation (9), which is the experimental equation of an isolated dislocation,
Equations (10a) and (10d) could be obtained.

v = Mτm (9)
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m =
Hk
4kT

(10a)

M = v0

(
1
τ∗0

)m

(10b)

τ∗0 = τ00

(
A1

v0

)−1/m

(10c)

τ00 = e4
(16
π

)
τ0

P (10d)

Using Equations (10a)–(10d), Equation (6a) was able to be rewritten as Equation (11). From this
equation, the number of dislocations emitted from a stressed source was found to be dominated by a
thermally activated process [10].

N = A∗t
m;1

m+2
a

(
τ
G

) m;1
m+2

exp
{
−

m + 1
m + 2

Hkln
(
τ00

τ

)
/4kT

}
(11)

where A∗ = γ(m)

(
b

A1

)−m+1
m+2

(12)

2.3. Dislocation Pile-Up Induced by Local Stress Field [2]

Some previous research has treated analyses of dislocation pile-up [4,11,15], but there has not
been so much research that has considered the application to fracture mechanics description.

In this section, numerical analyses were conducted on the dynamic piling-up of discrete dislocations
emitted from a stressed source and on the dynamic stress intensity factor caused by discrete moving
dislocations in a pile-up.

2.3.1. Model, Basic Equation and Analysis [2]

Until the lead dislocation in the array arrives at a barrier, such as grain boundary, dislocations
will emit from a stressed source and move freely except for the interactions between dislocations, as
shown in Figure 1. Equations of the motion of dislocation groups are given by Equations (1) and (2).
After the arrival of the lead dislocation at the barrier, it is locked and the trailing dislocations pile-up
against the barrier, as shown in Figure 2.
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Equations of effective stress exerted on each dislocation in the array for the case of dislocation
group pile-up are given by Equation (13).

τe f f ,i =
.
τt + A(

1
xi − l

+
∑

n

j = 2
i , j

1
xi − x j

) i = 1~n (13)
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The equation of motion of each dislocation in the array is calculated by Equation (1).
The effective stress exerted on a dislocation source before and after the leading dislocation arrives

at the site of pile-up is given by Equations (14a) and (14b), respectively.

τe f f ,s =

.

.
τt−A

n∑
j=2

1
x j

, (x1 < l) (14a)

τe f f ,s =
.
τt−A(

1
l
+

.
n∑

j=2

1
x j
), (x1 = l) (14b)

The stress distribution, τ(x, t), caused by dynamical piling up in the region of x > l is shown in
Figure 3 and is given by Equation (15).

τ(x, t) =
A

x− l
+ A

n∑
i=2

1
x− xi

+
.
τt (15)

The dynamic stress intensity factor caused by dislocation pile-up formation is given by
Equations (2)–(16).

k(t) �
√

2π(x− l)τ(x, t)l<x<l(1+ε) (16)

where lε is the small distance in which the stress distribution has the characteristic of

1
√

x∗
(x∗ = x− l = lε)
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2.3.2. Results [2,3]

The numerical results of stress distribution on the slip line x > l near the site of pile-up (barrier)
were obtained by Equation (15), as shown in Figures 4 and 5, where s* = s− 1 is the non-dimensional
distance from the site of dislocation pile-up (O* in Figure 3), S is the non-dimensional value of x
controlled by l.

When the number of dislocations emitted is as small as shown in Figure 4, the stress distribution
near the barrier shows a 1/s* singularity, and with an increase in s*, a 1

√
s∗

singularity appears but is

restricted within a narrow region. (3 × 10−3 < s∗ < 2 × 10−2) The characteristics of 1
√S∗ take minor

portion in the stress distribution [2].
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On the other hand, when the number of emitted dislocations increases, as shown in Figure 5
(sixty emitted dislocations), the stress distribution shows a singularity of 1

√
s∗

, which appears from the
vicinity of the barrier; this characteristic region extends up to 5% of the length of slip line [2].Metals 2020, 10, x FOR PEER REVIEW 6 of 26 
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The numerical results of the dynamic stress intensity factor Kd(θ) due to pile-up by discrete
dislocation groups dynamics with emission were obtained, as shown in Figure 6, by using Equations (15)
and (16) and by the 1

√
s∗

singularity of the stress distribution, as in Figure 5. A static solution, Ks(θ),
obtained by the concept of continuously distributed infinitesimal dislocations for the equilibrium
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pile-up is given by Equation (17) and is also shown in Figure 6 for comparison with the dynamic stress
intensity factor, Kd(θ). Ks(θ) and the linear part of Kd(θ) in Figure 6 are written as follows.

Ks(θ) = 103θ (17)

Kd(θ) = 1.2× 103θ− 5.2 (18)

where θ =
t
t0
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From these results, it can be seen that the dynamic stress intensity factor is smaller than the static one
and asymptotically approaches the static one as the number of emitted dislocations increases.
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The calculated dynamic dislocation density distribution fd is shown in Figures 8–11 [3]. On the
other hand, the static dislocation density distribution fs and the number of dislocations N under
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equilibrium state without emitting are given by the continuous distributed infinitesimal dislocations
concept, assuming fs(s) = 0 at the dislocation source and fs(s)→∞ at the site of pile-up, respectively.
They are given by Equations (19) and (20).

fs(s) =
τa

πA∗

√
s

1− s
(19)

N =

∫ d

0
fs(s)ds =

τad
2A∗

(20)
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In Figures 8–11, fs is shown by the dotted line. These results showed when the stress application
rate,

.
τ, or grain size, d, is small, and a static equilibrium solution based on a continuous distribution

of infinitesimal dislocations gives a good approximation, as shown in Figures 8 and 9. However,
with increase in

.
τ or d, the dynamic effect becomes more remarkable and fd becomes smaller than fs [3],

as shown in Figures 10 and 11 [3].
The dynamic stress intensity factor Kd(θ) at the site of pile-up such as grain boundary in

non-dimensional form can be obtained using Equation (16). In Figure 12, Kd(θ)/Ks(θ) is plotted

against the non-dimensional dynamic factor Θ =
( .
τ.
τ0

) (m+1)
(m+2)

θ [9,10]. For the case of iron (m = 3 [13]),

the following equation was obtained [3].

Kd
Ks

= 1.0−Aexp(−BΘ) (21)
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By using the non-linear least square method, A and B in Equation (21) were obtained as a function
of

.
τ.
τ0

and d, respectively, as follows [3].

A = ϕ

( .
τ
.
τ0

, d
)
= 2.35− 0.0214

( .
τ
.
τ0

)−0.172

d−0.896 (22)

B = ψ

( .
τ
.
τ0

, d
)
= 1.08

( .
τ
.
τ0

)−0.0557

(23)

The results of Figures 13 and 14 show that Equations (22) and (23) well-represent numerical results.
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Figure 14. The relationship between B and
.
τ
.
τ0

[3].

By substituting Equations (22) and (23) into Equation (21), Equation (24) can be obtained [3].

Kd
Ks

= 1.0−

2.35− 0.0214
( .
τ
.
τ0

)−0.172

d−0.896

exp

−1.08
( .
τ
.
τ0

)0.75 t
t0

 (24)

Figure 15 shows that the calculated values from Equation (24) were found to be in good agreement
with data obtained by numerical analyses.

By using dimensional analysis and determining the coefficient of the constant term using the
number of material constants, Equation (24) leads to Equation (25) [3].

Kd(t) =
√

2πd
( .
τt

)


1.0−
{

2.35− 0.230
(

G
τ∗0

) m
(m+2) (GV0.

τb

) 1
(m+2)

(
b
d

) (m+1)
(m+2)

}
×exp

−1.08
( .
τt
τ∗0

) m
(m+2)

(
V0t

(m+1)d

) 1
(m+1)



 (25)
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2.4. Application to Problem of Yielding

2.4.1. Basic Equations

Cottrell and Bilby described the mechanism of yielding from the view point of dislocation trapping
mechanism by solute atoms of carbon [7]; however, the effect of strain rate and temperature have not
yet been fully formulized. Concerning ductile fracture of steels, the formulation of the upper yielding
point and delay time for yielding are important factors to be analyzed. Takeo Yokobori conducted the
formulation of the stress rate dependence of the upper yield point based on a stochastic model analysis
that analyzed the releasing process of solute atom from a dislocation [8].

On the other hand, on the basis of the concept that the velocity of an isolated dislocation is
proportional to the strain rate of a specimen given by Equation (26), Johnson [15] and Hahn [16]
described the yielding phenomenon from the view point of theory of dislocation [15,16]. However,
a cleared formulation of yielding phenomenon including the effect of temperature has not yet been
conducted. Furthermore, the researchers used the equation of velocity of an isolated dislocation motion
by considering that every dislocation moves at the same velocity without interaction between them, as
given by Equation (26) [16].

.
γ = ρbv (26)

In the equation, ρ is the dislocation density, b is the Burgers vector, and v is the mean velocity of a
dislocation in which the equation of velocity of an isolated dislocation was used.

In this section, instead of Equation (26), Equation (27) [4,17], which considers the interaction of
dislocations within groups starting with dislocation emission from a stressed source (as calculated by
Equations (1) and (2)) was adopted.

.
γ = ρb

n(t)∑
i=1

vi (27)

In Equation (27), n(t) is the number of dislocations emitted from a stressed source at the time of t, i
is the dislocate-ion number, and vi is the velocity of the i th dislocation in the dislocation groups.
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By conducting computer simulation using the physical model of Figure 1 and Equations (1)–(4),
the summation of non-dimensional velocity of each dislocation in the array was found to be written by
Equation (28) and is shown in Figure 16 [17].

n∑
i=1

vi(t)
viso

� n(t) (28)
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By substituting Equation (28) into Equation (27) and using Equation (29), the plastic strain rate is
given by Equation (30) [17].

ρ = ρ∗0Λ∗ (29)

In Equation (29), ρ is the area density dislocation, ρ∗0 is the volume density dislocation, and Λ∗ is
the average length of dislocation.

.
γ = ρ∗0Λ∗bn(t)v0

(
τ
τ0

)m

= ρ(t)bv (30)

In Equation (30), ρ(t) = ρ∗0Λ∗n(t), and v is given by Equation (3).

2.4.2. The Application of This Theory to Yielding of Steels

The Delay Time of Yielding

The delay time of yielding under rapid application of constant stress is calculated by Equation (31)
as the time of plastic strain, thus taking the specified value [16].

γP =

∫ t

0

.
γ dt = const (31)
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Using Equations (30) and (32), which are the number of dislocations emitted from a stressed source
under constant stress condition [6], and by substituting Equations (30) and (32) into Equation (31) and
integrating Equation (31), Equation (33) was obtained [17].

n(t) = 2.45m−0.865
(

b
v0t

)− (m+1)
(m+2)

(
τ∗0
G

)−m(m+1)
(m+2) (

τa

G

) (m+1)2

(m+2)
(32)

where G is the shear modulus. τa = τY = σY
2 , where σY is the yield stress under uniaxial tensile load,

is assumed.

t =

 γP

ρ∗0Λb2
2m + 3
m + 2

m0.865

2.45


m+2

2m+3 b
v0

(
G
τ∗0

) m+1
2m+3

(
σY
2τ∗0

)− (2m2+4m+1)
(2m+3)

(33)

By using Equations (7)–(10), Equation (33) was able to be written in the following manner as a
function of yield stress, temperature, and material constants [17].

t =

0.792γP

ρ∗0Λb2

0.515( Hk
4kT

)0.446 b
A1

(
G
τ00

)0.485(
σY

2τ00

)−( Hk
4kT )

(34)

In Equation (34), σY is the yield stress under uniaxial tensile loading. As the criterion of yielding,
γp = 0.01 and ρ∗0Λ∗ = 108/m2 were selected [15], and G = 79.38 GPa, τ∗0 = 169.6 MPa [10], m = 10 [16]
were taken as those under room temperature and b = 3× 10−10m was selected. Furthermore, for m =

10~30 (for steel) [13],
(
2m2 + 4m + 1

)
/(2m + 3) ≈ m was approximately assumed.

A comparison of Equation (34) with experimental data is shown in Figure 17 [17]. Equation (34)
was found to well-predict experimental data [18,19]. Furthermore, this equation was in good agreement
with that obtained based on dislocation dynamics theory that defined yielding to occur when the
dislocation density takes some critical value [6] as follows.

t =
(

N0

ρ∗0Λ2.45

)1.06( Hk
4kT

)0.917 b
A1

(
G
τ00

)(
σY

2τ00

)−( Hk
4kT )

(35)

In Equation (35), N0 is critical dislocation density at the yielding.
This means that the γP criterion is identical to the N0 criterion.
Furthermore, Equation (34) was found to be in good qualitative agreement with theoretical

results [8] based on Cottrell-Bilby’s dislocation release mechanism [7] for locking by solute atoms
such as carbon or nitrogen, as given by Equation (36). This means that the locking mechanism closely
connects with the mechanism of dislocation group dynamics, as described in the following expression.

t = t0

(
σY
σ0

)− 1
nkT

(36)

where t0 and σ0 are material constants.
T. Yokobori found that adopting a friction stress, τi, to resist the motion of a dislocation in

Equation (36) was very effective in obtaining agreement with experimental results via equations [20].
In this theory, the effect of τi on delay time for yielding, as included in Equation (33), was extended to
then give Equation (37) [17].

t =

 γP

ρ∗0Λb2
2m + 3
m + 2

m0.865

2.45


m+2

2m+3 b
v0

(
G

τ∗0 − τi

) m+1
2m+3

 σY

2
(
τ∗0 − τi

) 
−

(2m2+4m+1)
(2m+3)

(37)
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By adopting τi = 86.3 MPa and using Equations (10a)–(10d), Equation (37) was found to
well-predict experimental results [19], as shown in Figure 18 [17].Metals 2020, 10, x FOR PEER REVIEW 15 of 26 
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Furthermore, a previous numerical analysis based on the pile-up behaviors of moving dislocations
emitted from a stressed source was conducted [4], and the theoretical relationship between delay time
of yielding and yield stress was derived for various grain size [4]. These results were found to be in
good agreement with experimental results and were also found to produce similar characteristics to
the results given by Figure 18 [17].
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From the results mentioned above, the criteria for the various cases of dislocation release from
locking by solute atom [8], critical plastic strain [16,17], critical dislocation density [6], and dislocation
pile-up at the grain boundary [4] were closely associated with the sequential processes involved in
determining the delay time for yielding. Thus, the theoretical results [8] based on Cottrell-Bilby’s
dislocation release mechanism [7] for dislocation locking by solute atoms (Equation (36)) are considered
to be the starting for understanding plastic yielding.

The Applied Stress Rate Dependence of Yield Stress [17]

Strain rate caused by applied stress,
.
γa, is given by the summation of plastic strain rate of the

specimen, γ́P, and elastic strain rate including those of grips and rigidity of testing machine,
.
γe,

as follows.
.
γa = γ́e +

.
γP (38)

For the case of a sharp yielding point,
.
γe ≈ 0 is satisfied at the yield point. Therefore,

.
γa is given

by Equation (39).
.
γa =

.
γP ≈ A∗

1
G

.
τa (39)

where A* is a proportional constant. By using Equations (11) and (12) for the number of dislocations
emitted from a stressed source under constant stress rate condition and then substituting Equations (26)
and (27) into Equation (39), σY can be given by Equation (40) as a function of stress rate and material
constants. Furthermore, τa = τY = σY

2 and τ́ = σ́
2 were also assumed.

σY = 2τ∗0

m1.45

1.4
A∗

ρ∗0Λb2


1

(2m+1)
(
τ∗0
G

)− 2(m+1)
(m+2)(2m+1)

(
σ́b

2v0G

) (2m+3)
(m+1)(2m+1)

(40)

Using Equations (7)~(10) and the following approximation for m = 10–30 (steel) [16], Equation (42)
was obtained.

2m + 1
(m + 2)(2m + 1)

≈
1

m + 2
≈

1
m + 1

≈
1
m

(41)

σY = 2τ00

 A∗

1.4

( Hk
4kT

)1.45 1
ρ∗0Λb2

(
τ00

G

)−1.9


2kT
Hk

(
σ́b

2A1G

) 4kT
Hk

(42)

As material constants, the following physically reasonable and almost equal values to those used for
the analysis of the delay time of yielding, ρ∗0Λ = 1.75× 106/m2 [16], G = 79.38 GPa, τ∗0 = 176.0 MPa [18],
and m = 10 [16] were taken at room temperature, with b = 3 × 10−10 m selected. Before yielding,
since τa = Gγa was almost satisfied, A∗ was considered to be almost equal to one.

A comparison of Equation (42) with experimental data is shown in Figure 19 [17]. Equation (42)
was found to agree well with experimental data [19]. Furthermore, this equation was in good agreement
with that obtained based on dislocation dynamics theory that defined yielding as occurring when
dislocation density takes some critical value [6] as follows.

σY = 2τ00

{
1

1.4

( Hk
4kT

)1.45 N0

ρ∗0Λ

} 4kT
Hk

 Gσ́b
2A1τ2

00


4kT
Hk

(43)

This means that the γP criterion is identical to the N0 criterion. Furthermore, Equation (42) was
found to be in in good qualitative agreement with theoretical results [8] based on Cottrell-Bilby’s
dislocation release mechanism [7] for dislocation locking by solute atoms such as carbon or nitrogen,
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as given by Equation (44). This means that the locking mechanism closely connects with the mechanism
of dislocation group dynamics as the appropriate mechanism of locking.

σY = σ0

(
t0

nkT
σ́
σ0

)nkT

(44)

Furthermore, other results obtained based on a viscoplasticity model also showed the same type
of relationship between strain rate and yield stress [5].

From the total results mentioned above, it can be seen the criteria of dislocation release from locking
by the solute atom [8], critical strain rate [16,17], critical dislocation density [6], and viscoplasticity [5]
are closely connected with the sequential processes of plastic yielding. Furthermore, the theoretical
results [8] based on Cottrell-Bilby’s dislocation release mechanism [7] from locking by solute atom
(Equation (44)) are considered to be a starting process of yielding.
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T. Yokobori also found that the adoption of the friction stress, τi, of the motion of dislocation
in Equation (40) was very effective in predicting experimental results with the current equation [20].
In this theory for Equation (40), the effect of τi on yield stress carries on to lead to Equation (45) [17].

σY = σi + 2
(
τ∗0 − τi

)m1.45

1.4
A∗

ρ∗0Λb2


1

(2m+1)
(
τ∗0 − τi

G

)− 2(m+1)
(m+2)(2m+1)

(
σ́b

2v0G

) (2m+3)
(m+1)(2m+1)

(45)

By adopting τi = 86.3 MPa and using Equations (10a)–(10d), Equation (45) was found to
well-predict experimental results [19], as shown in Figure 20 [17].
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Figure 20. The relationship between the upper yield point and constant stress rate based on dislocation
dynamics by accounting for the effect of friction stress of dislocation on upper yield point. Solid lines
represent the theoretical results [17]. Dotted lines represent experimental results [19].

The relationship between τ∗0 used for analyses of Figures 17–20 and temperature T is shown
in Figure 21. The results were in good agreement with the theoretical relationship given by
Equation (10c), thus showing the validity of the method of analysis.
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The Effect of Grain Size and Applied Strain Rate on Yield Stress Based on the Theory of Dislocation
Piling Up [2,3,21]

The effect of grain size d on lower yield point was obtained by the following experimental
relationship [22,23].

σl,y = σs + κd
−1
2 (46)

where σs and κ are material constants that are positive values.
Furthermore, many detailed studies have been conducted on this relationship [24,25].
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In this section, using the Equation (25), the calculated relationship between an applied stress, τ,
required for a dynamic Kd to take on a critical value over a range in grain size d is shown by the solid
line in Figure 22 [3], which is expressed by Equation (47).

τ = τ1 + k
1
√

d
(47)

where τ1 and k are constants. The dashed line is a static solution given by Equation (48).

τ =
Ks
√

2πd
(48)

where Ks is static stress intensity factor.Metals 2020, 10, x FOR PEER REVIEW 19 of 26 
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obtained by the analysis of dislocation dynamic pile, as shown by dotted data [3]. Dotted line represents
the solution obtained by Equation (48).

It can be seen from Equation (47) that the dynamic yield strength also increases linearly with
respect to the inverse square root of grain size. Furthermore, by comparing Equations (47) and (48),
the yield stress corresponding to d−

1
2 ≈ 0 was found to be higher in dynamic yielding than that in the

static case, and this characteristic is in good agreement with the experimental data [26].
Concerning the effect of applied strain rate on yield stress, the rate-determining process of yielding

of iron and steel is considered to correspond to the dynamic piling up of emitted dislocations.
The dislocation pile-up at grain boundaries and yielding is considered to occur when Kd, given

by Equation (25) to measure the local stress concentration, takes on a critical value. A comparison of
results obtained by Equation (25) and experimental data [27] is shown in Figure 23 [3]. In Figure 23,
the solid line represents the calculated relation between the applied stress σ required for Kd to take the
critical value and applied strain rate that is in good agreement with experimental data [25]. In Figure 23,
έ is evaluated by the relationship of σ́ = 2τ́ = Eέ.
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From the total results presented in Section 2.4, it can be seen that the various criteria associated
with dislocation release from locking by solute atom [8], critical plastic strain [16,17], critical strain
rate or stress rate, critical dislocation density [6], viscoplasticity [5], and dislocation pile-up at a grain
boundary [3,4] characterized by local stress intensity factor [3] (Kd) all relate closely to the sequential
processes of yielding. Furthermore, the theoretical results [8] based on Cottrell-Bilby’s dislocation
release mechanism [7] for dislocation locking by solute atoms is considered to be a starting process
of yielding.

In addition to the relationship between yield stress and grain size, a theoretical relationship between
the yield stress and temperature was derived based on dislocation mechanics [28,29]. The present
description closely connects with the results given in Figures 18 and 20 [17].

2.5. Application to Problem of Creep

Previous descriptions of the creep rate have been dominated by the use of equations based on the
properties of an isolated dislocation [30].

In this section, instead of using the velocity of an isolated equation, the results of dislocation
group dynamics associated with emission from a stressed source under constant stress condition were
adopted, and a creep rate dominated by the grouped dislocation mechanism was formulated.

The maximum radius of dislocation loop is given by Equations (49) and (50) [30].

L =

√
2(τa − τi)

Gbρ∗0
(49)

Λ∗ = 3L (50)

By using Equations (27)–(29) and Equation (32), the creep rate, γ́, can be given by Equation (51).

γ́ = A1(τa − τi)
δ (51)

In (51), τa in Equation (32) is replaced by (τa − τi).

δ =
2m2 + 9

2 m + 2
m + 2

(52)



Metals 2020, 10, 1048 21 of 26

A1 = 3

√
2ρ∗0b

G
× 2.45m−0.86

(
Gb
v0t

)−m+1
m+2

×

(
τ∗0

)−m(2m+3)
m+2 v0 (53)

Furthermore, when using Equations (7)–(10), the creep rate, γ́ is given by Equation (54) as an
equation of a thermally-activated process.

γ́ = C1(τa − τi)
α1exp

(
−

Q1

kT

)
(54)

where

C1 = 3

√
2ρ∗0b

G
× 2.45m−0.86A1

(
Gb
A1t

)−m+1
m+2

× (G)−
m(2m+3)

m+2 (55)

α1 =
2m2 + 9

2 m + 2
m + 2

(56)

Q1 =
2m + 3

4(m + 2)
Hkln

τ00

G
(57)

Equation (54) is in good agreement with a pioneering experimental equation given for the creep
rate [31]. Since m = 1 is valid for Zn [13], α1 is 2.83 in Equation (54), which is in good agreement
with experimental data [31]. Thus, Equation (54) is a theoretical equation of a creep rate dominated
by a dislocation mechanism that incorporates the effect of dislocation dynamics corresponding to
dislocations being emitted from a stressed source.

2.6. Application to the Problem of Fatigue Crack Growth [32,33]

The fatigue crack growth rate da/dN for a crack blunting and re-sharpening model [34] is
approximately equal to 1

2 U, as shown in Figure 24 [32,33] and given by Equation (58).

da
dN

�
1
2

U = nb (58)

where U is the crack opening displacement caused by dislocation emission from a crack tip and is
equal to 2nb, b is the Burgers vector, and n is the number of dislocations emitted from a crack tip,
as shown in Figure 24.
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where ∆ܭଵ is the stress intensity factor, f is load frequency, and ߝ is the local distance from a crack 
tip, e.g., 1.5 × 10ିସ mm. Local stress around a crack tip is characterized given by ߬௔ = ∆௄భ

√ఌ
.  

∗ܣ = 1.4݉ିଵ.ସହ ൬
ܾ

ଵܣ
൰

ି௠ାଵ
௠ାଶ

  

Equation (59) can be written as Equation (60). 

݈݊
݀ܽ
݀ܰ

= ݈݊ ൬
ଶܣ
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where ܣଶ, ܽଶ, and ܾ଴ are material constants. 
Equation (59) can be expressed as: 

Figure 24. Blunting and re-sharpening model of fatigue crack growth. (a) Before fatigue load cycle,
(b) maximum load of the fatigue cycle, (c) unloading process of the fatigue cycle, and (d) complete
unloading of the fatigue cycle. The crack increment of U/2 (crack opening displacement/2) is caused by
dislocation emission.
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Substituting Equations (6)–(10) into Equation (58) allows for the fatigue crack growth rate to be
expressed in terms of an apparent single thermal activated process that is given by Equations (59a) and
(59b) [32,33].

da
dN

= bγ(m)

(
4 f b
v0

)−m+1
m+2

(
τ∗0
G

)−m(m;1)
m+2

(
∆K1
√
εG

) (m+1)2

m+2

(59a)

= bA∗(4 f )−
m+1
m+2

(
∆K1
√
εG

)m+1
m+2

exp

−
(

m+1
m+2

)
Hkln

(
τ00
√
ε

∆K1

)
4kT

 (59b)

where ∆K1 is the stress intensity factor, f is load frequency, and ε is the local distance from a crack tip,
e.g., 1.5× 10−4 mm. Local stress around a crack tip is characterized given by τa =

∆K1√
ε

.

A∗ = 1.4m−1.45
(

b
A1

)−m+1
m+2

Equations (59a) and (59b) can be written as Equation (60).

ln
da
dN

= ln
(

A2

fλ

)
+ b0ln∆K1 −

U2 − a2ln∆K1

kT
(60)

where A2, a2, and b0 are material constants.
Equations (59a) and (59b) can be expressed as:

da
dN

= B1∆K1
δ (61)

Which is the well-known experimental Equation by Paris [35], where δ = (m+1)2

(m+2) .

The experimental relationship between ln
(

da
dN

)
and 1/T is shown in Figure 25 [36] with the

parameter of stress intensity factor amplitude, ∆K1.
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Figure 25. The thermally activated relationship between da/dN (fatigue crack growth rate) and the
inverse value of absolute temperature, 103

T , for 2024 aluminum alloys [36].

Figure 25 shows that these relationship were found to hold for the thermally activated process
in the range of higher values of ∆K1, in that the intercept values of the straight line of ln

(
da
dN

)
with
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the coordinate axis at 1/T = 0 were an approximately linear function of ln(∆K1), which is in good

agreement with Equation (60), that is, ln
(

A2
fλ

)
+ b0ln∆K1 [32,33].

On the other hand, in the range of lower values of ∆K1, the intercept value is constant with stress
intensity factor amplitude, ∆K1, which is in good agreement with the model based on micro crack
nucleation at the crack tip [37], given by Equation (62).

ln
da
dN

= ln
(

A1

f

)
−

U1 − a1ln∆K1

kT
(62)

where A1 and a1 are material constants. The same experimental tendencies were also found in the
relationship between ln

(
da
dN

)
and 1/T for stainless steel [38]. Furthermore, Equation (60) was found to

be in good agreement with the experimental relationship between ln
(

da
dN

)
and 1/T for high strength

steel at low temperatures [39].
Experimental data showed that da/dN is proportional to f−λ, and λ experimentally takes values

from 0.1 to 0.2 for steel [40] and 0.1 to 0.5 for aluminum alloys [41].
For the case of an elastic–plastic crack, the local stress around a crack tip is written by

Equation (63) [42].

σl = f (β)σcy

 ∆K1

σcy
√
ε


2β

1+β

(63)

where σcy, β, and f (β) are the initial yield stress in cyclic straining, cyclic strain hardening exponent,
and some function of β, respectively.

Therefore, by comparing Equations (63), (61), and (59a), da/dN can be given by the following
equation [33].

da
dN
∝

 ∆K1
√

2εσcy


2β

1+β
(m+1)2

m+2

(64)

Furthermore, for the effect of multiple slip lines and strain hardening under cyclic loading,
Equation (64) can be rewritten as Equation (65) [33].

da
dN
∝

 ∆K1
√

2εσcy


2β

1+β
(m+1)2

m+2 + 1
1+β

(65)

For β = 0.08–0.3 and m = 4–10, which are reasonable values for steel and aluminum alloys, the
power exponent becomes δ = 2.0–5.0, which are also experimentally reasonable values.

In Equation (61), the following equation can be seen from Equation (59a).

B1 = B/
(√
εG

)δ
(66)

From Equation (66), Equation (67) can be obtained [43].

lnB1 = lnB− δ·ln
(√
εG

)
(67)

Equation (67) was found to be in good agreement with the experimental relationship [43] between
B1 and δ, as shown in Figure 26 [43].
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3. Concluding Remarks and Future Problem

Analyses of discrete dislocation dynamics and emission from a stressed source were conducted.
The results obtained by these analyses enabled us to link various dynamical effects, such as load
frequency and temperature, on the yield stress, dislocation creep rate, and fatigue crack growth rate
with the experimental results of macroscopic phenomenon and to also link them with theoretical
results obtained by the concept of static, continuously distributed infinitesimal dislocations for the
equilibrium state under low strain or stress rate conditions.

This will be useful as a holistic research approach relating to the time scale—e.g., ranging from
results under high strain rate condition to those under static or low strain rate conditions—and the
space scale—e.g., ranging from meso-scale and macro-scale mechanics—that is, from the scale of
dislocation groups dynamics to fracture mechanics.

To establish a perfect link of mesoscopic mechanics with macro mechanics and for practical
applications to engineering structures, further nonlinear interactive treatments will be necessary,
e.g., effects of vacancy diffusion, different multiaxial stress in structures, and different scales of grain
boundary influences on dislocation group dynamics. For these study fields, the establishment of inter
disciplinary science between material science and structural engineering coupled with computational
mechanics is needed as one of future research problems involving the strength of materials.

Detailed research on the effects of grain size and temperature on the yield stress has been
systematically conducted, and many innovative results have been obtained [28,29].

The proposed research approach mentioned in this article will enable us to link mesoscopic
mechanical factors with macro-scale engineering results [28,29].

Concerning the problems of nano-scale fracturing and plasticity, many studies based on the
method of 3D discrete dislocation dynamics have already been successfully conducted [1]. These
studies would appear to directly connect with physical properties of dislocations and nano-scale
fracturing behaviors. The present results should lead to a wider establishment of fracture prediction in
the full range from the nano-scale to macro-scale.
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