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Abstract: During many manufacturing processes for surface treatment of steel components heat will
be exchanged between the environment and the workpiece. The heat exchange commonly leads
to temperature gradients within the surface near area of the workpiece, which involve mechanical
strains inside the material. If the corresponding stresses exceed locally the yield strength of the
material residual stresses can remain after the process. If the temperature increase is high enough
additionally phase transformation to austenite occurs and may lead further on due to a fast cooling
to the very hard phase martensite. This investigation focuses on the correlation between concrete
thermal loads such as temperature and temperature gradients and resulting modifications such
as changes of the residual stress, the microstructure, and the hardness respectively. Within this
consideration the thermal loads are the causes of the modifications and will be called internal
material loads. The correlations between the generated internal material loads and the material
modifications will be called Process Signature. The idea is that Process Signatures provide the
possibility to engineer the workpiece surface layer and its functional properties in a knowledge-based
way. This contribution presents some Process Signature components for a thermally dominated
process with phase transformation: laser hardening. The target quantities of the modifications are
the change of the residual stress state at the surface and the position of the 1st zero-crossing of the
residual stress curve. Based on Finite Element simulations the internal thermal loadings during
laser hardening are considered. The investigations identify for the considered target quantities
the maximal temperature, the maximal temperature gradient, and the heating time as important
parameters of the thermal loads.

Keywords: laser hardening; process signature; thermal loads; residual stress; initial microstructure;
mechanical behavior

1. Introduction

Manufacturing processes have an impact on the functional performance of compo-
nents [1–3]. On the one hand these impacts are not always wanted. Especially finishing
processes such as grinding or hard turning affect not only the requested features but also
generate sometimes thermal effects which change the workpiece surface layer properties,
e.g., residual stresses, microstructure, and hardness. For example, high residual tensile
stresses or large stress gradients may lead to reduced lifecycle performance because of
easier crack initiation and propagation. If a surface hardening is wanted a selective heat
treatment on the other hand can lead to an optimal surface hardness and residual stress
state. These examples make clear that the most precise knowledge of plastic deforma-
tions and modified microstructures, which are generated by the considered processes,
is necessary.

However, up to now it is very difficult to generate predefined surface layer properties
after machining processes [2]. Especially if basic production methods change, the process
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quantities have to be redefined and the resulting properties must be redetermined [4]. This
procedure should be accelerated and improved. To accomplish that, a material-orientated
view is applied that considers physical and chemical quantities which are responsible for
the modifications. These quantities will be called in this paper internal material load. The
Transregional Collaborative Research Centre (CRC) “Process Signatures” funded by the
German Research Foundation, resumes the so-called concept of Process Signatures [5].
The term Process Signature is already applied for hot stamping processes [6]. It describes
the shape of the strain envelope and depicts the strain state of contiguous elements in a
stamping process. In terms of the CRC “Process Signatures” it means the correlation of
internal material loads and material modifications. The advantage of Process Signatures is
that this approach considers not necessarily a concrete process.

To develop Process Signatures appropriate descriptive quantities of the internal ma-
terial loads must be elaborated which correlate with the considered modifications. The
descriptive values include the process parameters further on only in an implicit way. In
prior papers Process Signatures with mainly thermal impacts were developed for grinding
and induction heating processes [7]. In this regard the temperature increase due to an
induction coil and a grinding wheel which transmit heat into the material are considered
(Figure 1). Both processes generate heat by moving heat sources which have their own
characteristic features and physical conditions. Each process type changes the tempera-
ture distribution inside of the workpiece in its own characteristic manner and generates
therefore characteristic distributions of plastic strains and phase distributions.
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Figure 1. Basic models of external thermal loads due to grinding (a), induction (b) and laser heating (c).

The current work extends the existing Process Signatures [7] to laser hardening and
will give therefore a contribution to confirm the general validity of the prior assumptions
which are elaborated for grinding and induction hardening. In particular, the investigated
load spectrum consisting of “surface heat source with mechanical load” and “volume heat
source without mechanical load” is extended by the combination of “surface heat source
without mechanical load” (Figure 1).

Laser surface hardening is a process to increase the hardness of the surface layer and
introduce the compressive residual stress, which further improve the wear resistance as well
as fatigue strength of a hardenable steel. After decades of investigations, laser hardening
has been well used in the industry, for example in spur gears [8] and splined shafts [9].

The modification of hardness and residual stress is a result of austenitizing and
martensite generation in a temperature cycle. Laser hardening is normally applied on steels
with carbon weight percentage between 0.4 and 1.5 [10]. In contrast to the conventional
transformation hardening using flame or in a furnace, a fast heating and cooling cycle can
be realized by a focused laser beam as moving heat source and subsequent self-quenching.
As the specimen is irradiated by the laser beam, a fast heating process allows the setting of
temperatures above the start temperature of austenitizing Ac1, followed by the dissolution
of cementite into carbon and diffusion of carbon into newly formed austenite grains. The
longer the temperature keeps above Ac1, the more of the original phase is transformed
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into austenite [11]. Due to the fast heat conduction in the base material, a so-called self-
quenching process enables the transformation from austenite to martensite.

Laser irradiation conditions are considered to be the important factors to influence
the hardening results [11]. To study the laser irradiation conditions, modeling serves as
an efficient approach to understand the effect of beam shape or scanning strategies on the
temperature field and the change of microstructures. The optimization of laser hardening
was conducted by adapting the intensity distribution to generate a top-hat temperature
distribution using freeform optics [12]. Rather than a top-hat intensity distribution, the best
possible shape for a surface heat source would be a rectangle with two radial quadrants on
each side. In terms of scanning strategies, there are, at present, two approaches: The first
method uses a large beam spot in size of dozens of millimeters and moving in one direc-
tion. Another method applies a small beam spot in size of some millimeters and scanning
bidirectionally (laser spot scanning speed) perpendicular to the moving direction (laser
head moving speed), with typical overlapping tracks. Based on the latter approach, the
influence of laser spot scanning speed on the hardening results was studied experimentally
and numerically [13]. It is found that scanning speed over 750 mm/s generate a relatively
smooth hardened track, which is similar to the conventional laser hardened track using the
first approach. In addition, models by extracting the punctual and geometrical attributes
from the measured hardness profile are built to predict the shape of the hardness profile
depending on the laser parameter for controlling laser hardening quality [14]. Furthermore,
for the effect of surface topography on the laser energy coupling, Volpp et al. [15] inves-
tigated the laser hardening of flat and curved surface and the corresponding hardening
qualities. Nevertheless, no significant impact of the surface shape on the microstructures
could be identified.

The main involved mechanisms which generate material modifications are for all
three considered processes expected and mainly equal. However, from a quantitatively
point of view the processes generate significantly different internal material loads. The
similarities and the differences of the processes should be elaborated to support the finding
of suitable process parameters. The goal of the investigations concerns the question of
influences of the considered internal material loads.

2. Objective and Procedure

To compare the residual stress distributions generated by the heating processes three
target quantities are considered for grinding and induction heating. These are: the residual
stress on the surface and the positions of the zero-crossings of the residual stress curve
(Figure 2a). In case of surface hardening generally compressive residual stresses on the
surface occur. Hence the 1st zero-crossing of the residual stress curve is from compressive
to tensile stress, the 2nd zero-crossing from tensile to compressive stress. Figure 2b gives
two examples. It illustrates the influence of the initial microstructure on the development of
surface residual stress for two different quenched and tempered states with an initial hard-
ness of 30 and 47 HRC. The main difference between both states is the phase transformation
kinetic and the yield strength [16].

The descriptive value for the target quantity residual stress on the surface (Figure 2a)
is the maximal temperature gradient (grad θ)max normal to the surface which occurs during
the process (Figure 2b). A possible mechanism orientated explanation for that behavior
is that the gradient is mainly responsible for thermal strains and stresses and therefore
responsible for the development of stresses.

The next target quantity is the depth of the 1st zero-crossing of the residual stress
profile from pressure to tensile stress. The depth of the 1st zero-crossing and the depth of
50% martensite amount occur at nearly the same position [7]. The square of the maximal
temperature increase multiplied by the square root of the heating time ∆θ2

max·
√

tc was
proposed as a descriptive value for the depth of the 1st zero-crossing. The heating time tc is
according to Figure 1 the quotient of lg and vft. It is the time in which a point at the surface of
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the workpiece is in direct contact to the power of the moving heat source. In contrast to the
first descriptive value, the mechanism which can explain the parameter ∆θ2

max is unknown.

Metals 2021, 11, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 2. (a) Typical residual stress profiles after interaction of thermally dominated processes and 
the target quantities of the considered material modifications. (b) The correlation of the maximal 
thermal gradient and the residual stress at the surface in case of grind hardening of two initial 
quenched and tempered states of AISI4140. 

The descriptive value for the target quantity residual stress on the surface (Figure 2a) 
is the maximal temperature gradient (grad θ)max normal to the surface which occurs during 
the process (Figure 2b). A possible mechanism orientated explanation for that behavior is 
that the gradient is mainly responsible for thermal strains and stresses and therefore 
responsible for the development of stresses. 

The next target quantity is the depth of the 1st zero-crossing of the residual stress 
profile from pressure to tensile stress. The depth of the 1st zero-crossing and the depth of 
50% martensite amount occur at nearly the same position [7]. The square of the maximal 
temperature increase multiplied by the square root of the heating time ∆𝜃௠௔௫ଶ ∙ ඥ𝑡௖ was 
proposed as a descriptive value for the depth of the 1st zero-crossing. The heating time tc 
is according to Figure 1 the quotient of lg and vft. It is the time in which a point at the 
surface of the workpiece is in direct contact to the power of the moving heat source. In 
contrast to the first descriptive value, the mechanism which can explain the parameter ∆𝜃௠௔௫ଶ  is unknown. 

The product of the maximal temperature increase with the square root of the heating 
time Δθmax √(tc) correlates with the zero-crossing from tensile to compressive stresses. In 
case of hardening this is commonly the 2nd zero-crossing of the residual stress [7]. The 
depth is hard to measure because it is mostly deeper than 2 mm. Therefore for residual 
stress measurements thick layers have to be electrolytic removed. For that reason they are 
not considered in this work. 

The extension of the processes to laser hardening offers on the one hand in 
comparison to grind hardening a surface heating method, which generates no additional 
impacts on the workpiece. There are no additional forces and no chip removals. Therefore 
a pure thermal impact can be investigated. On the other hand, laser hardening works with 
significantly different process parameters, because the heat source is commonly much 
smaller than in case of grinding and induction heating processes. Hence it has to carry out 
with significantly higher power densities. Due to the laser beam size and the applied 
moving velocities much smaller Peclet numbers [17] than in case of grind hardening and 
inductive heating can be investigated. The dimensionless Peclet number is given by: 𝑃𝑒 ൌ 𝑙௚ ∙ 𝑣௙௧4 ∙ 𝜅  (1)

lg is width of the moving heat source in moving direction and vft the velocity of the 
heat source. κ is the thermal diffusivity of the material. Although the material parameters 
are temperature dependent and the power profile in case of laser heating is not constant 
along lg the Peclet gives a good estimation of the principal local and time dependent 
temperature evolution [17]. 

Figure 2. (a) Typical residual stress profiles after interaction of thermally dominated processes and
the target quantities of the considered material modifications. (b) The correlation of the maximal
thermal gradient and the residual stress at the surface in case of grind hardening of two initial
quenched and tempered states of AISI4140.

The product of the maximal temperature increase with the square root of the heating
time ∆θmax

√
(tc) correlates with the zero-crossing from tensile to compressive stresses. In

case of hardening this is commonly the 2nd zero-crossing of the residual stress [7]. The
depth is hard to measure because it is mostly deeper than 2 mm. Therefore for residual
stress measurements thick layers have to be electrolytic removed. For that reason they are
not considered in this work.

The extension of the processes to laser hardening offers on the one hand in comparison
to grind hardening a surface heating method, which generates no additional impacts on
the workpiece. There are no additional forces and no chip removals. Therefore a pure
thermal impact can be investigated. On the other hand, laser hardening works with
significantly different process parameters, because the heat source is commonly much
smaller than in case of grinding and induction heating processes. Hence it has to carry
out with significantly higher power densities. Due to the laser beam size and the applied
moving velocities much smaller Peclet numbers [17] than in case of grind hardening and
inductive heating can be investigated. The dimensionless Peclet number is given by:

Pe =
lg·v f t

4·κ (1)

lg is width of the moving heat source in moving direction and vft the velocity of the
heat source. κ is the thermal diffusivity of the material. Although the material parameters
are temperature dependent and the power profile in case of laser heating is not constant
along lg the Peclet gives a good estimation of the principal local and time dependent
temperature evolution [17].

In case of grinding Peclet numbers higher than 1.8 are reached, whereby for laser
hardening Peclet numbers lower than 0.8 are applied. Due to a comparison of laser
hardened and grind hardened samples the effect of the applied Peclet numbers can be
investigated. The investigations are carried out for quenched and tempered states of an
AISI 4140 with annealing temperatures of 400 and 600 ◦C with a hardness of 47 HRC and
30 HRC respectively.

To elaborate Process Signatures, numerical methods are applied because the necessary
data are very difficult and time consuming to measure. Additionally, numerical methods
enable considerations of the inverse problem in which selected processes with their charac-
teristic process parameters should produce specific results. The knowledge of the mutual



Metals 2021, 11, 465 5 of 20

dependency of thermal loads and process parameters ensure the possibility for solving the
inverse problem.

To carry out the simulations the characteristics of the applied heat source of the process
must be known. These are the local and time dependent heat which is absorbed by the
workpiece and the local and time dependent loss of heat by the environment. Furthermore,
the thermal and mechanical properties and the transformation behavior during austeni-
tizing of the initial microstructure and martensite formation must be carefully measured,
because the initial state influences the development of phase transformation and the me-
chanical behavior [16] (Figure 2b). Additionally, the properties of the phases austenite and
martensite must be known.

Even after very precise determination of all these data a validation of the simulations
is necessary. This validation includes temperature measurements on and below the surface
to validate the complete local and time dependent temperature evolution of the considered
workpiece. Without these measurements the reliability of the numerically achieved thermal
loads would be uncertain. With similar arguments the necessity of measurements of the
final modifications such as the final microstructure with its hardness distribution and the
residual stress state after the heat treatment becomes clear.

3. Methods
3.1. Steel Grade AISI 4140 (42CrMo4)

In all cases the steel grade AISI 4140 was used. This material is a widely used steel
for quenching and tempering and therefore often used for induction hardening processes.
Many material data are available, e.g., for mechanical properties and phase kinetics. For
that reason it was chosen as the standard steel for investigations within the CRC “Process
Signatures”. AISI 4140 is subject of research [17]. The steel grade has many industrial
applications in engineering e.g., it is used for gears where the possibility of laser hardening
was shown [18,19]. Table 1 gives the measured element concentration of the investigated
steel melt.

Table 1. Element concentration of the used AISI 4140 melt.

Elements C Cr Mo Si Mn

AISI 4140 (42CrMo4) [mass%] 0.43 1.09 0.25 0.26 0.74

3.2. Generation and Main Properties of the Initial Microstructures

The heat treatment for generating the quenched and tempered initial microstructure
was carried out in a vacuum furnace. The time-temperature sequence is presented in
Figure 3a. It leads to a quenched and tempered (QT) state with a hardness of 30 HRC
(b). The microstructure is given in the middle picture of Figure 3, the characteristic
mechanical properties on the right hand side (c). The measurements of the martensite start
temperature MS reveal 321 ◦C ± 16 K. The final residual stress at the surface was less than
40 MPa. [20] The investigations of thermal and mechanical behavior were performed with
the thermal-mechanical-testing machine Gleeble 3500. More details and further results are
published in [16].

With a similar procedure quenched and tempered material with a hardness of 47 HRC
was produced. The tempering temperature was instead of 600 ◦C only 400 ◦C. For more
details compare [16].
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3.3. Modeling of the Phase Transformation and Hardness Calculation

The austenitizing process is modeled with an approach proposed by Miokovic [21]:

fA = 1− exp
(
−(b(T)·t)nA

)
(2)

with:

b(T) = C·exp
(
−∆H

kT

)
(3)

fA represents the amount of generated austenite, T is the temperature in Kelvin, ∆H
is a measure for the enthalpy of transformation, k the Boltzmann constant. C and nA
are constants (C = 2.84 × 1020 s−1 and nA = 1.525) [16]. With this equation the starting
temperature of austenite formation depends on the enthalpy of activation ∆H which varies
with the initial microstructure. In case of the applied quenched and tempered state with
30 HRC the enthalpy resulted in 4.225 +/− 0.13 eV. For the 47 HRC variant this value is
4.055 eV [16]. ∆H governs together with the heating rate the AC1 and AC3 value, which
is a measure for the beginning and ending of the phase transformation to austenite. The
AC1-value is reached by definition if fA equals 0.01.

The phase transformation to austenite enables the formation of martensite if a subse-
quent quenching is carried out. The transformation austenite to martensite was modeled
with a modified Koistinen-Marburger equation [22].

fM = 1− e−(
Ms−θ

θ0
)

nM
(4)

where f M represent the amount of generated martensite, MS is the martensite start temper-
ature. θ0 and nM are constants.

The experimental determination of martensite amounts is difficult, especially in case
of simultaneously existing tempered microstructures. For the validation of the calculated
phase proportions a model for hardness calculation proposed by Blondeau [23] was applied.
The hardness measured in Vickers is given by:

HV (martensite) = 127 + 949 C + 27 Si + 11 Mn + 8 Ni + 16 Cr + 21 Log10 (VR) (5)

VR is the temperature rate at 700 ◦C during the quenching period given in Kelvin/hour.
For the initial microstructure QT30HRC a hardness of 321 HV and for QT47HRC 400 HV are
assumed. In case of mixed phases a linear mixing rule is applied. The coefficients C, Si,
Mn, Cr are the amounts of the corresponding alloying elements given in mass%. For the
hardness of the retained austenite 100 HV is assumed. Bainite and ferrite/pearlite are not
considered, because in the framework of the considered processes they are not generated.
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Within a narrow strip temperatures between tempering temperature and AC1 are occur
and generate an additional tempering. This effect is neglected within this work.

3.4. Experimental Setup for Laser Hardening

Laser hardening was conducted by using a multi-mode Yb:YAG (Ytterbium-doped:
yttrium aluminum garnet) continuous-wave disk laser (Trumpf TruDisk 12002) with oper-
ating wavelength of 1030 nm. Two different fibers (core diameter of 200 µm and 600 µm)
were used to guide the beam to the optic. The optic (Trumpf BEO D70) was equipped
with a focusing and a collimation lens with 400 mm and 150 µm focal length, respectively.
Furthermore, the beam was coupled into a cylindrical lens, so that at focal position a rect-
angular beam with different beam width was generated, while the length perpendicular
to the moving direction kept constant at 10 mm due to system design. The laser spatial
intensity distribution and beam width was determined by a beam profiler (Ophir SP300).
The process was conducted with protection gas of argon, so that oxidation of the treated
surface was minimized. Additionally, the argon flow accelerates the cooling directly after
passing the laser beam (Figure 4).
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Figure 4. Setup for laser hardening of AISI 4140, with clamping.

The workpieces were 150 mm long, 12 mm wide and 15 mm high (Figure 5). The
surface temperature was measured with the quotient pyrometer Sensor Therm Metis M3.
To investigate the temperature evolution inside the workpiece sheath thermocouples type
K with a diameter of Ø 0.25 mm were used. The tips of the thermocouples were placed
in 6 mm deep vertical boreholes 1.0, 1.5, 2.0, and 2.5 mm from the heated surface. The
12 mm workpiece width was chosen to protect the thermocouples against the laser beam
length Llength perpendicular to the feeding direction of 10 mm. The laser would destroy
the thermocouples if the beam hits the thin wires of the thermocouples.Metals 2021, 11, x FOR PEER REVIEW 8 of 22 
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3.5. Residual Stress Measurements

To characterize residual stress distribution X-ray diffraction (XRD) was applied. The
depth profiles were investigated up to approximately 1.5 mm depth using electrochemical
etching of successive layers as described in Epp [24]. The measurements were performed
with a Bragg-Brentano diffractometer (type MZ VI E, GE Inspection Technologies).

For calculation of the residual stresses, the software RayfleX from GE Sensing Inspec-
tion Technologies was applied. The peak position was evaluated using sliding gravity
method with thresholds between 30 and 80% of the maximum intensity. The sin2ψmethod
was used to calculate the residual stresses using the 1

2 S2
hkl of the {211} diffraction peak

of α-Fe. For all measurements, depth correction was applied to correct the stress values
for the effect of the removed layers as described by Moore and Evans [25]. The mean error
from the standard deviation of the sin2ψmeasurements reached around ±20 MPa.

3.6. The Simulation Setup for Laser Hardening

According to the experimental investigations the simulation of laser hardening is
performed with laser beams generated by the fiber core diameters of 600 and 200 µm with
Gaussian intensity profiles. The feed velocities vft vary between 0.5–20 mm/s, the mean
heat fluxes

.
q vary from 10 to about 46 W/mm2 (total power Ptotal = 165–680 W). The heat

flux profile is assumed to be constant and hence temperature independent during each
simulation procedure. As mentioned above the experimentally used optical components
provide a constant laser beam length perpendicular to the moving direction of 10 mm.
In comparison to sample width of 12 mm not the complete sample was applied with
power. As mentioned above, this was necessary to protect the thermocouples. The same
configuration was chosen for validation of the simulation.

However, for comparability reasons with the already calculated Process Signatures
for grind hardening and induction hardening, the simulation study for laser hardening
was carried out with a beam length covering the entire sample width of 12 mm.

3D simulations with the Finite Element code SYSWELD® were carried out for sample
length of 30 mm, width of 6 mm, and height of 15 mm. The 30 mm length was chosen,
because a stationary state was already achieved after 15 mm. The simulation model takes
the symmetry of the problem into account (mirror symmetry with respect to the middle
plane in axial direction). The time increment was chosen in that way that the heating period
was calculated with about 1500 time steps. The fine mesh in Figure 6 consists of 35,000, the
other of 17,500 cubic volume elements with eight Gauss points each.

A further question concerns the clamping conditions of the workpiece. An inhomo-
geneous temperature distribution leads to strains inside the material. The component
reacts on the temperature strains with distortion which minimizes the stored elastic energy.
In case of grinding, bending of the workpiece would change the infeed of the grinding
process. Therefore grinding processes are commonly carried out with a fixation. Otherwise
the amount of bending can be significant.

Although clamping is not necessary for laser hardening a numerical clamping will
be applied for reasons of comparability with grinding investigations. Numerically the
clamping is achieved via a spring constant, which prevents a bending of the heat-treated
surface. The clamping is released at the end of the process. Hence all results belong at the
end to a workpiece which sees no external forces.
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4. Results
4.1. Power Distribution of the Laser Beam

As shown in Figure 7 the spatial intensity distribution measurement shows a quasi-
Gaussian intensity distribution along the short axis for the 200 and 600 µm fiber core
diameter. To achieve the best model for simulation of the power distribution a Gaussian
approach was chosen. The parameters of the approach were calculated by the least square
method. The beam width lg is defined by the intensity decrease down to 1/e of the maximal
intensity. This value is given by

√
2·σ, where σ is the standard deviation of the Gauss

distribution. σ for the 600 µm fiber core is 523 µm. About 84% of the absorbed laser power
coupled in within the strip 2·

√
2·σ. The 200 µm fiber core diameters lead together with the

optic components to a standard deviation of 160 µm. The beam width lg of the 600 µm fiber
core is 1.48 mm, the 200 µm fiber core approximately 0.45 mm (Figure 7).
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4.2. Validation of Temperature Calculation

For comparison with rectangular shaped power profile an equivalent power density
is defined. The equivalent power density allows the comparability of different shapes of
power profiles [7]:

.
qeq =

Ptotal
lg·Llength

(6)

As mentioned above, Llength is the length of the laser beam perpendicular to the moving
direction. Ptotal is the total absorbed power of the heat source.

Figure 8a presents measured and simulated temperature data for a heating process
with a fiber core diameter of 600 µm. The nominal laser power was 1000 W, the feeding
velocity vft 2 mm/s. The simulation was performed with a total power Ptotal of 325 W (ab-
sorption 32.5%). This value would lead to an equivalent power density

.
qeq of 21.96 W/mm2.

The pyrometer respectively thermocouple measurements and the related simulations agree
very well. In particular, the measured temperature front ahead and the cooling period
after passing of the laser beam agree very well with the simulations. Figure 8b presents the
calculated temperature evolution on the surface and compares this with the temperature
gradients on the surface. It shows that the gradient first increases after the temperature has
already risen to several hundred ◦C. The temperature gradient depends strongly on

.
q/λ.

The peak of the temperature gradient just before reaching the AC1 temperature occurs due
to the minimal heat conductivity for that temperature.
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Figure 8. (a) Temperature measurement for process with lg = 1.48 mm (fiber core diameter 600 µm), vft = 2 mm/s, 1000 W laser
power, absorbed power Ptotal 325 W (simulation), Gaussian power profile with standard deviation of 523 µm, (b) simulated
temperature and temperature gradient at surface. The dashed lines indicate the current position of the laser beam.

4.3. Validation of Microstructure, Hardness, and Residual Stress Calculation

Figures 9 and 10 summarize the measured and simulated modifications of the same
workpiece presented in Figure 8. In Figure 9, the calculated phase amounts (a) and the
according micrographs are presented. In the middle (b) and right part (c) of the figure the
hardened zone with a width of approximately 445 ± 20 µm is clearly visible. The laser
beam length of 10 mm has a considerable impact on the hardening result. It can be seen
that the calculated depth of the hardened zone is lightly overestimated (Figure 9a,c).
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Figure 10. (a) Measured and simulated hardness and (b) residual stresses. QT30HRC experiment with a Gaussian power
profile (lg = 1.48 mm), vft = 2 mm/s, 1000 W laser power, absorbed total power Ptotal = 325 W (simulation).

Figure 10 compares measured results with simulated data for the hardness and resid-
ual stress distribution. Similar to Figure 9, the calculated 1st zero-crossing seems slightly
deeper than the measured value. The absolute values of the simulated compressive resid-
ual stresses in the surface near area are about 80 MPa higher than the measured data.
Schwenk [26] founds similar deviations of measured and calculated data for quenched
and tempered AISI40, too. Up until now, the reason for that deviation has not been clear.
However, besides these deviations, the comparison of measured and simulated data reveals
overall a good and sufficient quality for the target quantities.

4.4. Simulation Study for Laser Hardening

Sections 4.2 and 4.3 present experimental and related simulation results for a laser
hardening process. To achieve Process Signature components for this process, further
simulations are necessary. Table 2 presents the simulation parameters for the numerical
determination of further points in the diagrams for Process Signature components. Ac-
cording to Section 2 the target quantities are the residual stress at the surface and the 1st
zero-crossing of the residual stress distribution. The associated descriptive values are the
temperature gradient (grad θ)max normal to the surface for the residual stress at the surface.
For the depth of the 1st zero-crossing ∆θ2

max·
√

tc is chosen.
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Table 2. Parameters applied for the simulation study and the resulting values for the considered descriptive values. The
Peclet number is calculated with a mean thermal diffusivity κ of 10.7 mm2/s. The parameters are applied for the initial
microstructures QT30HRC and QT47HRC.

Laser Beam Width
lg [mm]

Feed Velocity
vft [mm/s]

Heating Time
tc [s]

Total Power
.
qtotal

[W]
Peclet Number

Pe [-]
θmax
[◦C]

(grad θ)max
[K/mm]

∆θ2
max·
√

tc
[105 K2 s1/2]

1.48 0.5 2.960 165 0.017 1098 588 19.98
1.48 1 1.480 264 0.035 1120 729 14.73
1.48 2 0.749 323 0.069 1125 894 10.50
1.48 4 0.370 385 0.138 1129 1166 7.47
1.48 8 0.185 490 0.277 1123 1877 5.24
1.48 12 0.123 555 0.415 1077 2386 3.93
1.48 16 0.925 625 0.553 1072 2754 3.37
1.48 20 0.074 680 0.692 1052 3045 2.90

Figure 11 presents the results of this study. The diagrams show the correlations be-
tween material modifications and the corresponding load descriptive and are therefore
components of the Process Signature for laser hardening. For the simulated surface resid-
ual stress the differences between both quenched and tempered variants are not large.
Additionally, some measurements are added to this diagram. The agreement between sim-
ulation and experiment is acceptable. The differences are of the same order of magnitude
as for the validation (Figures 9 and 10).
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comparison with measured data is again acceptable.

4.5. Comparison of Laser Hardening with Grind and Induction Hardening

Figure 12 compares the simulated data for laser hardening with simulated data for
induction and grind hardening of QT30HRC. Obviously, the laser hardening results reveal
for the residual stress on the surface considerable higher compressive stresses than for
grind hardening. The values for the 1st zero-crossing are in the investigated range for both
surface heat sources almost equal. The depth range of induction hardening, on the other
hand, is significantly larger, which is due to the generation of heat by eddy currents below
the surface.
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5. Discussion

In general, thermal loads can lead to modifications such as residual stresses, if per-
manent density changes, plasticity due to yield strength exceeding, and transformation
induced plasticity occur. Essentially, the results are expected. Because of the harden-
ing and the accompanied lower density of martensite compressive stresses occur at the
surface for all three investigated processes. If the maximal temperature is significantly
above AC3, the depth of the hardening increases for higher maximal temperature and for
slower processes. All three processes can be traced back qualitative to the same mecha-
nisms. Quantitative very different values of the same internal material loads occur which
cause similar mechanisms. These differences are the content and reason for considering
process signatures.

5.1. Residual Stress at the Surface

Figure 12a presents simulated residual stress values for the surface for induction,
grind, and laser hardening plotted over (grad θ)max.

The maximal temperature gradient seems to be a very important parameter for the
evolution of the residual stresses. The explanation for that observation is that the tempera-
ture gradient generates strains due to thermal expansion. If the resulting stresses exceed
the yield strength plastic deformation is generated.

In case of induction heating only low gradients can be generated. The reason for
that behavior is the volume heating. The power is distributed over a relatively large area.
Because of this the maximal temperature gradient occurs below the surface and cannot
increase very much [7]. In case of surface heating the maximal gradient occur on the
surface [7]. It depends on the quotient of applied heat flux density and heat conductivity
.
q/λ. In comparison to induction heating these values can be significantly higher.

Although heating by grinding and laser are both surface heating methods, the residual
stress at the surface differ significantly (Figure 12a). There are two main differences between
both processes. These are the power profile and the Peclet number. The power profile of
the grinding process is assumed to be constant during the contact of sample surface and
grinding wheel. The power profile of the laser process is only constant perpendicular to
the moving direction. In moving direction it has a Gaussian profile (Figure 7).

The Peclet numbers of the grind hardening process are higher than 1, whereas for laser
hardening the values do not exceed 0.7. To investigate the influence of these factors on the
target quantities three different cases with two different power profiles and two different
Peclet numbers are investigated (Table 3). The power profiles of these three cases are
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presented in Figure 13. The Peclet number of the grinding example in Table 3 is 1.87. The
Peclet number of the presented laser heating process is considerablly lower and equals 0.15.

Table 3. Comparison of different power profiles and Peclet numbers.

Process Laser Laser Grinding

1 Power profile Gaussian rectangular rectangular

2 vft [mm/s] 4 4 20

3 lg [mm] 1.5 1.5 4

4 tc [s] 0.4 0.4 0.2

5 Pe [-] 0.148 0.148 1.87

6
.
qeq[W/mm2] (Equation (6)) 26.00 24.00 25.71

7 max.
.
q [W/mm2] 29.31 24.00 25.71

8 θmax [◦C] 1110 1118 1084

9 (grad θ)max [K/mm] 1203 1326 1376

10 Surface εpl II [-] (end of process) 0.00068 0.00066 −0.0008

11 Surface σII [MPa] (end of process) −637 −606 −437
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For comparison reasons the processes have similar power densities. Hence the gener-
ated maximal temperature gradients differ not too much (173 K/mm in row 9 of Table 3).
The width of the sources lg and the related heat source velocities lead to different Peclet
numbers but to similar maximal temperature on the surface (row 8).

A comparison of the residual stresses simulated with the low Peclet number of 0.15
reveals only small differences (row 11). In addition, the plastic strains on the surface are
almost equal (row 10). Therefore, it can be assumed that the power profile has in the
range of the investigated process parameters only a slight influence on the evolution of the
residual stresses at the surface.

However, the grinding process with higher Peclet number reveals significant differ-
ences to the results with low Peclet numbers. The compressive residual stress on the surface
is considerably lower than in case of processes with lower Peclet numbers. The reason
is probably the different development of the negative plastic strains during the heating
period. As shown in Figure 14 the maximal negative plastic deformation during the heating
period is much larger in case of high Peclet number.
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In case of low Peclet number a preceding temperature front occurs [27]. It is visible in
Figure 14 on the left (a) and middle picture (b). Before the active heating starts (indicated
by the dashed lines) the surface temperature has reached values of about 800 ◦C. Because of
this preheating the first plastic strains are not observable until high temperatures of several
hundred ◦C are reached. The resulting maximal negative plastic strain is about −0.004. In
case of the high Peclet number (Figure 14c) no significant preceding temperature front is
detectable [26]. The plastic deformation begins at relative low temperatures and reaches
significant larger values of about −0.01. Further on the negative plastic strains decrease
and reach positive values. However, the maximal positive plastic strain is in case of high
Peclet numbers lower than in case of low Peclet numbers. For low Peclet numbers this
behavior leads at the end of the processes to positive plastic strains and negative values
in case of high Peclet numbers (row 10 in Table 3). The positive plastic strains add up to
the positive transformation strains due to the martensite formation [28] and increase the
compressive residual stresses. In case of the high Peclet number the negative plastic strain
decreases the total strain and hence decreases the compressive stresses.

Therefore, the lower the temperature at which plastic deformation is generated by
thermal expansion, the lower the surface compressive residual stresses at the end of the
process. With other words, the strains during the heating period have a large influence on
the stresses at the end of the process. A similar behavior is found for induction heating.
If the material is preheated up to several hundred degrees higher compressive stresses of
200 MPa are found [29].

This behavior can be explained by the temperature differences inside the material.
The lower the temperature differences the lower are the thermal gradients. Because of the
fixation (Section 3.6) the workpiece cannot bend; the temperature gradient must generate
elastic strains. For generating plastic deformation, a specific value of elastic strain, which
corresponds to the yield limit, is necessary. To reach this strain the difference of the
temperatures inside the workpiece must be high enough. Figure 15 presents thermal
gradients of two cases with a low and a higher Peclet number at approximately 800 ◦C
during the heating period. At the surface, the gradients are nearly equal. However, in
deeper areas they differ significantly. The preheated case with a low Peclet number reveals
inside the material lower thermal gradients than the not preheated sample with the high
Peclet number. The generated elastic strains are therefore lower and hence the generated
plastic deformation should be lower too.

Although the measured compressive residual stresses on the surface are systematically
lower than the calculated data, they support the hypotheses of the influence of the Peclet
number (Figure 16). The differences are larger in case of high thermal gradients. For lower
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gradients, the described residual stress differences decrease. Probably they converge for
thermal gradients lower than 500 K/mm.
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The reason for the systematic deviation to lower values is not fully understood. Maybe
relaxation processes reduce the stresses [30]. The observation that the measured residual
stresses are lower than the calculated data is also overserved by other authors [17,25] for
laser and induction hardening.

5.2. The 1st Zero-Crossing of the Residual Stress Distribution

Figure 12b compares the depth of the 1st zero-crossings of the three different processes.
For induction heating the depth is higher because the heat distribution inside the material
is not only generated by thermal diffusion but also due to eddy currents (volume heating).
In case of surface heating processes such as grinding and laser heating the values are nearly
the same.

The load descriptive ∆θ2
max·
√

tc was found more or less by trial and error. A stringent
physical justification cannot be given up to now. As mentioned before, the depth of the
1st zero-crossing of the residual stress curve and the depth of 50% martensite amount
are very similar [7]. One reason for that is that the martensite density is significantly
lower than for all other phases [28] and promotes therefore compressive stresses within
the martensite phase. This means that the depth of the 1st zero-crossing correlates with
the transformation kinetic from initial microstructure to austenite, because only generated
austenite can generate later on martensite during the quenching period. In the range of
laser hardening conditions presented here, very fast self-cooling processes occur. Therefore
it can be assumed that the complete amount of generated austenite transforms later on
to martensite.
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The transformation to austenite depends on alloying elements, initial microstructure
and the heating rate [21]. In case of martensitic hardened but not tempered steel, a high
amount of carbon is dissolved within the crystal matrix. AC1 is rather low in that case. The
carbon distribution changes if a tempering process is applied to the material. The higher
the tempering temperature and the tempering time the more carbide which bound the
carbon will be formed [31]. Hence AC1 increases in comparison to the initial not tempered
martensitic structure.

For common steels, the formation of austenite occurs in the temperature range between
750 and 950 ◦C. In Figure 12b this effect can be seen for the quenched and tempered variants.
QT47HRC has a lower AC1 temperature than QT30HRC. Therefore the 1st zero-crossing is
deeper in case of the QT47HRC variant.

However, the chosen descriptive value ∆θ2
max·
√

tc includes not any hints on the de-
scribed transformation mechanism. Therefore it is likely that this descriptive value has
restrictions and is only valid for a limited range of process and material parameters. There-
fore it seems necessary to find an alternative descriptive value for the 1st zero-crossing.

For that reason, some considerations of the analytical solution of a moving heat source
will be given [27]. Although the analytical solution of the moving heat source considers not
any phase transformation and not any external cooling [27], this solution can give hints at
which position a defined temperature (for example a transformation temperature) can occur.
The analytical solution considers a half infinite work piece, for a material with temperature
independent thermal parameters (heat capacity, thermal conductivity, and density).

Table 4 and Figure 17 present depth of a characteristic temperature (here 850 ◦C)
calculated under the conditions of the analytical solution [27]. The temperature diffusivity
κ is assumed to be 10.7 mm2/s. The width of the moving heat source lg is set to 5 mm for all
cases. The heating conditions are chosen in that way that the surface temperature reaches
approximately 1000 ◦C, 1100 ◦C, and 1200 ◦C. The Peclet numbers vary from 0.1 to 10.
Figure 17a presents the results and compares the calculated depth for reaching 850 ◦C as a
function of ∆θ2

max·
√

tc. It can be seen that this plot depends still on temperature. Therefore,
the maximal temperature is not completely eliminated by the chosen load characterization.

Table 4. Maximal temperature on surface and depth for reaching 850 ◦C calculated according the analytical solution of a
moving heat source for Peclet numbers between 0.1 and 10.

.
q [W/mm2] vft [mm/s] tc

[s]
Peclet

[-]

.
q
√

tc
[Ws1/2/mm2] θmax [◦C] grad θ

[K/mm]
Depth of 850 ◦C

[mm]

41.47 86 0.06 10.0 10.00 1093 −1378 0.21

29.83 43 0.12 5.0 10.17 1094 −991 0.29

21.67 21.5 0.23 2.5 10.45 1093 −721 0.41

19.60 17.2 0.29 2.0 10.57 1092 −652 0.46

17.25 12.9 0.39 1.5 10.74 1093 −574 0.53

14.54 8.6 0.58 1.0 11.09 1091 −484 0.62

13.93 7.74 0.65 0.9 11.19 1092 −464 0.65

13.27 6.88 0.73 0.8 11.32 1091 −442 0.68

12.61 6.02 0.83 0.7 11.49 1094 −420 0.73

11.86 5.16 0.97 0.6 11.68 1091 −396 0.77

11.07 4.3 1.16 0.5 11.93 1091 −369 0.83

10.18 3.44 1.45 0.4 12.27 1090 −340 0.90

9.22 2.58 1.94 0.3 12.84 1093 −307 1.02

8.07 1.72 2.91 0.2 13.75 1095 −269 1.20

6.44 0.86 5.81 0.1 15.52 1099 −214 1.60
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Figure 17. The depth of 850 ◦C is reached for different maximal temperature at the surface, calculated
by the analytic solution of a moving heat source, (a) plotted over the descriptive value ∆θ2

max·
√

tc,
(b) plotted over the descriptive value (Θmax − 850 ◦C)

√
tc.

On the right hand side in Figure 17b a modified descriptive value is chosen: (θmax–
850 ◦C)

√
(tc). By use of this parameter as load descriptive the depth of 850 ◦C depends

not explicitly on the maximal temperature. This approach can be generalized by using
a material and initial microstructure dependent start temperature of austenite formation
instead of 850 ◦C. The depth of 1st zero-crossing Z1 should correlate with the temperature
at which 50% of the initial microstructure is transformed to austenite. This temperature is
estimated with θt = (AC1 + AC3)/2 with start and end temperature of austenite formation.
Hence the proposal for a new descriptive load value is given by:

Z1 =

(
Θmax −

AC1 + AC3

2

)
·
√

tc (7)

5.3. Comparison with Measured 1st Zero-Crossings for Different Initial Microstructures

The mean value of AC1 and AC3 for the quenched and tempered material with a
hardness of 47 HRC is 790 ◦C, and 830 ◦C for the material with 30 HRC [7]. The values
are valid for a heating rate of approximately 1000 K/s. The plot of the measured 1st
zero-crossing over the new proposed descriptive value given in equation (5) reveals a very
good agreement to the simulated values (Figure 18). The agreement is significantly better
than in Figure 11b. For higher values of Equation (5) the grinding and the laser hardening
process split up.
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6. Conclusions

Correlations between internal material loads, process quantities, and material mod-
ifications provide a possibility to engineer the workpiece surface layer properties in a
knowledge-based way. In this paper, laser hardening was investigated and compared with
induction and grind hardening. The following conclusions can be given:

• If a specific residual stress at the surface and a specific zero-crossing is sought, the nec-
essary internal material loads and with the availability of process models-the necessary
process parameters are determinable. This this determinability is the fundamental
goal of Process Signatures.

• Process Signature components for the target quantities “residual stress on the heated
surface” and the “1st zero-crossing of the residual stress profile” are elaborated for
laser hardening.

• The investigations presented here extend the description of the Process Signature. It
includes the influence of the initial microstructure and correlates the modifications
with associated physical properties such as thermal conductivity and phase kinetics.

• The maximal temperature θmax, the maximal temperature gradient perpendicular to
the heated surface (grad θ)max, and the heating time tc are parameters for the descriptive
values of the considered target quantities.

• The formulation of the descriptive values is mechanism orientated. The temperature
gradient (grad θ)max is a measure for the strains inside the material. It influences the
residual stress on the surface. (AC1 + AC3)/2 is important for the 1st zero-crossing,
because it indicates the mean temperature for austenitizing. In combination with Θmax
and
√

tc it describes the depth of the 1st zero-crossing.
• The target quantities depend additionally on the applied Peclet number of the moving

heat source. It shows that the initial temperature is an important factor for heat
treatment with moving heat sources.
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