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Abstract: The current study presents a detailed investigation for the equal channel angular pressing
of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing
at room temperature and the second was ECAP processing at 200 ◦C for up to 4-passes of route
Bc. The grain structure and texture was investigated using electron back scattering diffraction
(EBSD) across the whole sample cross-section and also the hardness and the tensile properties.
The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of
about 3.89 µm down to submicrons with a high density of twin compared to the starting material.
Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed.
This microstructure was found to be homogenous through the sample cross section. Further straining
up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable
heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes
enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the
simple shear texture with about 7 times random. Conducting the ECAP processing at 200 ◦C
resulted in a severely deformed microstructure with the highest fraction of submicron grains and
high density of substructures was also observed. ECAP processing through 4-passes at room
temperature experienced a significant increase in both hardness and tensile strength up to 180% and
124%, respectively.

Keywords: ECAP; ultrafine-grained; severe plastic deformation; crystallographic texture; EBSD

1. Introduction

Copper (Cu) and Cu alloys have been found to possess fairly high strength, outstand-
ing thermal conductivity, resistance to corrosion while being easy to fabricate; as a result,
they have gained popular appeal in applications like automobile manufacturing, railway
transportation, electrical and electronic industries, structural applications and applica-
tions involving heating or temperature measurement [1–5]. Due to its known softness
and ductility, industrially utilizing pure Cu is kept to a minimum in many engineering
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applications [6]. A common fix to this problem is the refinement of the grain structure
on the nano-scale level using severe plastic deformation (SPD) techniques [7–9]. This
produces ultrafine-grained (UFG) Cu that possesses many appealing properties such as the
coexistence of high strength and ductility [4,10,11].

Currently SPD methods have achieved wide circulation because of their effect on
microstructure behavior. SPD can be used to produce UFG microstructures and to deform
pure and alloy materials that directly causes the improvement of both the physical and me-
chanical properties and the corrosion behavior of the processed materials [12,13]. Among
the plethora of SPD processes available now are high-pressure torsion (HPT) [14–17],
twist extrusion (TE) [18–21], accumulative roll-bonding (ARB) [22] and ECAP [12,23–25].
Among these processes, the most applicable of them is ECAP, which allows for extremely
large magnitudes of strain to be applied to a bulk sample through intensive simple shear;
thus, ECAP is highly capable and efficient in fabricating different types of UFG and nano-
structured materials (NS) [26–29]. Furthermore, the ductility of a material can be increased
through ECAP since the improvement of a duplex microstructure formed by NS grains
sized coupled with micrometric or UFG without sacrificing the martials strength [30]. As a
result, of its relative simplicity and its ability to produce large amount of material, ECAP is
an available candidate for further utilization and deployment in industry [31].

The ECAP process can be applied to samples of different shapes like rectangles,
squares, or circles. The SPD of the microstructure occurs without any significant changes
in dimensions, which means the materials can undergo an unlimited number of passes
and can be pressed indefinitely to achieve a higher total strain [27]. The die of ECAP
includes two channels with the same cross-section intersecting at a channel angle Φ, and
with an angle of curvature, Ψ. The equivalent plastic strain imposed to the ECAPed
sample is largely dependent on the die angles and the number of processing passes [32].
The magnitude of equivalent effective plastic strain (εeq) after N passes can be calculated
from the following relationship [33]:

εeq =
N√
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2 cot
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)
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(
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In addition, using a large number of ECAP passes increases friction between the
processed billets and the die walls that results in increased density of the high-angle
boundaries, which enhances the mechanical properties of the processed materials signifi-
cantly [23,25,28,34–36].

Several studies are investigating the effect of ECAP processing parameters on the
microstructural evolution and mechanical properties of pure copper. Wang et al. [37]
processed pure Cu with routes Bc, A and new route has a specific rotation angle of the
sample between consecutive passes called X. They found that processing pure Cu via
new route X up to eight passes at room temperature (RT) is more effective than routes
A and Bc in lower dislocation density and grain size in addition to improved strength
and ductility of processed samples. As demonstrated by Guo et al. [38], ECAP processing
led to a significant improvement in the strength of single crystal Cu. Simultaneously, the
plasticity and conductivity of Cu maintained excellent values. Blum et al. [39] observed
that the microcrystalline grains resulting from ECAP processing through two passes were
coarsening discontinuously during the creep test, which led to dramatic changes in the
creep rate. Zhu et al. [40] found that the large initial pure Cu grains were refined after
four ECAP passes, while processing for five to eight passes caused saturation and high
density of dislocation cells with a size of 500 nm is evolved inside micron grains. On the
other hand, the hardness distribution maps revealed the inhomogeneity of mechanical
properties. A crystal plasticity finite element model had been developed by Deng et al. [41]
to investigate the pure Cu texture evolution during ECAP. They reported that the crystallo-
graphic orientation was capable of rotation in three dimensions during ECAP, with higher
rotation angles around the Z-axis. It is worth mentioning here that static recrystallization
resulting from performing ECAP at 200 ◦C generates a homogenous structure as reported
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by Blum et al. [42]. Moreover, the ductility was significantly improved by worm processing.
Ebrahimi et al. [43] reported that ECAP processing resulted in a non-uniform hardness
distribution with lower hardness at the bottom region of commercial pure Cu, which
becomes more homogenous gradually by increasing the number of passes.

This study aims to provide a comprehensive analysis for the effect of ECAP on the
mechanical properties, microstructural evolution, crystallographic texture, and hardness
distribution across the ECAP processed commercial pure Cu. To this aim, a unique EBSD
analysis was carried out along the longitudinal section of the ECAPed Cu sample from the
right peripheral regions passing through the central regions down to the left peripheral
regions to investigate the influence of ECAP possessing through multiple passes on the
microstructural homogeneity and crystallographic texture. Furthermore, the microhardness
distribution was studied along both the longitudinal and transverse section and correlated
with the EBSD analysis. For better presentation, the hardness profiles and their degrees
of homogeneity were illustrated by 3 dimensional color-coded outlines. In addition,
a numerical modeling was used to investigate the induced effective stress-strain and their
distribution along the Cu processed samples and compared with the experimental findings.
Furthermore, the effect of the ECAP processing temperature on microstructural evolution
and mechanical properties was investigated.

2. Materials and Methods
2.1. Finite Element Method

Finite element (FE) analysis was carried out to simulate the strain and stress distri-
bution along the sample’s longitudinal and transverse sections during ECAP processing.
In addition, the FE analysis was compared to the experimental geometries in order to
investigate the effects of the geometric, material and process parameters on the plastic
deformation behavior of pure Cu rods during the ECAP process. The ECAP process was
modeled at RT to fully utilize the grain refinement effect and strain hardening results.
To simulate the ECAP process, the cold forming extrusion module was used. The model
consisted of the plunger, the ECAP die that consists of two halves, and the ECAPed rods.
For clarity and improved visualization, all parts were invisible apart from the Cu sam-
ples during simulation. The 2-half die, and the plunger were modeled as discrete rigid
elements made of an imaginary non-formable material whereas the Cu rod was modeled
as a deformable object. The dimensions of the die and work-piece were the same as the
experimental values. Pure Cu was selected from the ANSYS software (19.1, ANSYS Inc.,
Canonsburg, PA, USA) built-in library as the material of the work-piece and its mechan-
ical and thermal properties were pre-described. Furthermore, hexahedral mesh, which
is typically used in computational modeling of 3-dimensional (3D) regular shapes, was
used with a mesh size of 0.5 mm. This gave a total number of nodes ranging from 9500
to 15,000 elements depending on specimen’s degree of distortion and in accordance with
the mesh sensitivity analysis. The ECAPed material was modeled both as an isotropic
linear elastic material and as a strain hardenable rigid plastic material. Tracked elements
were located at specified regions on the plane in the middle of the specimen. The regions
chosen were at the edge where max strain occurs and at the center where SPD has the
lowest effect. Ram speed was chosen to be 0.15 mm/s, which equal the ram speed used
experimentally. In previous studies [41,44], the coefficient of friction of µ = 0.05–0.1 showed
good results. Therefore, the Coulomb’s friction model was used with die friction factor 0.07
in this study. As an added measure due to deformation, a remeshing criterion was set to
take into consideration any changes in the geometry and dimensions of the rod processing.
Remeshing criteria were used based on a strain change of 0.1 mm and an element size of
1 mm.

2.2. Experimental Procedure

Experiments were carried out on a commercial pure Cu billets (99.9% in mass), which
were received in the form of rolled billets with a 20 mm diameter and length of 50 cm.
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The Cu billets were sectioned and machined using high precision cutting machine and a
lathe to form ECAP samples with a diameter of 20 mm and a length of 70 mm. The billets
were annealed at 500 ◦C for 1 h under an inert atmosphere before ECAP processing
followed by furnace cooling to attain an initial homogenous and fully recrystallized starting
microstructure with average grain size 5.14 µm and hardness of 55 HV. Cu rods were
processed through ECAP for 1, 2 and 4 passes through route Bc (with the sample being
rotated 90◦ along its longitudinal axis in the same direction after each pass) at RT with a ram
speed of 0.15 mm/s. To investigate the effect of processing temperature, another ECAPed
sample was processed for 1 and 4 passes using route Bc at 200 ◦C to enhance dynamic
recrystallization during the processes and to create possible high-angle grain boundaries
(HAGBs). A graphite-based lubricant was applied to reduce the friction between the
ECAPed samples and the die’s inner walls before each pass. The ECAP process was
performed using a split die shown in Figure 1 in which the two parts of the channel
intersected with an internal channel angle of ϕ = 120◦ and with an additional outer corner
angle of ψ = 20◦. The die geometry imposed an equivalent strain of about 0.65 per pass
according to Equation (1).
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Figure 1. (a) Schematic of the right half ECAP die and (b) picture of the assembled die.

The billets before and after the ECAP process were sectioned along the central longi-
tudinal lines parallel and perpendicular to the extrusion direction, and then grinded and
polished to a mirror-like surface. Vicker’s microhardness tests (HV) were conducted on the
sample. Microhardness values were measured by taking readings following a rectilinear
grid pattern with the spacing of 1 mm between each separate indentation starting at the
billets’ peripheries and moving towards the center on sections that were cut near the top
part of the ECAPed samples. This was conducted on both parallel and perpendicular
sections to the extrusion direction to evaluate the hardness variation across the ECAPed
rods’ longitudinal and transverse sections (LS and TS). The LS was of a square area with
dimensions 20 × 20 mm2, whereas the TS was of a circular area with 20 mm diameter.
Both the longitudinal and transverse sections were cut near the upper part of the ECAP
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processed billets. The hardness test was carried out under an applied load of 1 kg for
15 s. The displayed results were averaged over a minimum of 5 equispaced indentations.
Additionally, the hardness profiles and their degrees of homogeneity were illustrated by
color-coded outlines created to display the hardness distribution along the LS and TS of
the ECAPed samples.

Tensile tests were performed on a 100 kN universal testing machine (Instron 4210,
Norwood, MA, USA) at RT with at a constant strain rate of 10−3 s−1. The tensile samples
were prepared according to the specifications set by the American Society for Testing of
Materials (E8M/ASTM). All the tensile samples were machined from the center of the
ECAPed samples. To ensure an accurate display of the results, two tensile specimens were
tested per processing.

Microstructural evolution of the rods before and after ECAP was characterized using a
field emission scanning electron microscopy (FESEM) (Hitachi, Ltd., Tokyo, Japan), which
equipped a NordlysMax2 EBSD detector. ECAPed rods preparation sequence was as
follows: mounting the samples, followed by sample grinding, adequate polishing using
alumina solution, and finally etching using a mixture of HCl and HNO3 solutions with a
volume ratio of 3:1 as a final preparation step.

In addition, EBSD was used to investigate the structural evolution and crystallo-
graphic texture of the Cu-rods processed with multiple passes via ECAP. Figure 2a depicts
references axes with respect to the ECAPed process. Samples for microstructural charac-
terization (EBSD) were cut from the center of the ECAP samples along their longitudinal
cross-section on the plane parallel to the pressing direction (flow plane) and perpendicular
to the entry channel of the die, as described in Figure 2, where the axes of the reference
system coincide with the extrusion ECAP direction “Y” (ED), the normal direction “Z”
(ND) and the transversal direction “X” (TD). The investigated specimens were grinded
and mechanically polished with a tripod polisher down to 1 µm diamond particle. A final
chemical-mechanically polishing with 0.05 µm colloidal silica was performed for 12 h with
a BUEHLER Vibrometer. The EBSD measurements were performed on the top surface
TD-ED plan as indicated by a red rectangle on Figure 2b using a Hitachi SU-70 SEM oper-
ating at 15 kV and at a typical current of 1.5 nA. Crystallographic orientation maps were
obtained using HKL Channel 5 acquisition system of oxford instruments. To achieve good
statistical data due to the presence of coarser grains, a larger scan area was selected for
as-annealed and processed samples. The EBSD scans were in areas of 127 µm × 95 µm
with 0.2 µm step size. In order to minimize the measurements error and the deformation
induced by the preparation stage, misorientations below 3◦ were not considered in the
post-processing data procedure. Additionally, low angle grain boundaries (LAGBs) were
defined as misorientation angles between 3◦ and 15◦ and presented in white lines on the
band contrast maps, while the high-angle grain boundaries (HAGB) were defined when
misorientation angles were greater than 15◦ and presented in black lines on the band con-
trast maps. Certainly, all grains in the outer frame of each region of interest were excluded.
In Table 1, the total number of grains and number of grains after excluding the border
grains and grains less than 4 pixels.

Table 1. The average grain size of the commercial purity Cu processed through ECAP up to 4-Bc.

Condition Average Grain
Size (µm)

Standard
Deviation (µm)

Min Grain
Size (µm)

Max Grain
Size (µm)

Total Number
of Grains

Number of
Subtotal Grains N

AA 5.1 3.7 0.2 27.2 688 324
1-P-RT 3.9 2.0 0.6 25.5 914 520
2-Bc-RT 3 2.5 1.2 24.0 2004 854
4-Bc-RT 3.5 3.0 1.2 24.0 1486 588

1-P-200 ◦C 4.4 3.4 1.2 21.7 765 379
4-Bc-200 ◦C 2.5 1.7 1.2 15.5 3669 1217
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Figure 2. (a) Representation of the references axes with respect to the ECAPed sample and (b) the
position of the EBSD data acquired shown as red square on the longitudinal cross section of the
ECAP processed sample.

3. Results
3.1. Finite Element Analysis

Color contour maps showing the distribution of the stress and plastic strains in the
longitudinal section of the simulated Cu sample after processing through 1-pass (1-P) of
ECAP at RT are illustrated in Figures 3 and 4, respectively. The plunger and die have been
removed for better visualization. As evident in Figures 3 and 4, the maximum stresses and
strains are present at the corner and peripheral areas. This surge compared to the central
areas occurs as the peripheral regions were in contact with the die’s walls. In addition,
Figures 3 and 4 revealed a slight increase in the stress and imposed strain at the top part
of the sample compared to the bottom part due to the contact with the die channel angel.
Accordingly, this finding agreed with Deng et al. [41]. On the other hand, the lower part of
the ECAPed processed samples revealed lower effective strain as compared to the upper
part due to imposing a combination of bending and shear mechanisms as depicted in
Figure 4.
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Figure 3. Simulation of effective stresses distribution in Cu samples processed through 1-P at
room temperature.

Figure 3 shows the processed rod after being processed via 1-P, where the maximum
stress experienced was in the range of 379 MPa, which occurred in the peripheral regions.
On the other hand, the bottom central region experienced lower stresses of 106 MPa, which
confirms the distribution obtained in an earlier study [45]. Moreover, it can be observed
that the upper part of the ECAPed billet experienced higher stresses (227 MPa) compared
to the lower part (15.7 MPa) as a result of the direct contact between the top ends with the
plunger. A similar trend was displayed for the strain distribution as shown in Figure 4
whereas, ECAP processing via 1-P displayed a max effective strain of 0.74, which was
depicted in the upper peripheral region, which indicates considerable agreement with the
results obtained from the analytical calculations using Equation (1). On the other hand,
the lower central region encountered a minimum effective strain of 0.15, which matches
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with the stress distribution showed in Figure 3. Similar strain distribution patterns were
noted in some earlier studies [46,47]. The increase in the effective plastic strain from the
bottom to the top can be explained by the formation of the corner gap. As the bottom part
of the ECAPed sample was no longer in contact with the die. Consequently, lower degree
of deformation occurred in the bottom of the sample [4]. Accordingly, this inconsistency
in the stresses and plastic strain values recorded along the LS of the ECAP sample will
significantly affect the homogeneity in the mechanical properties and microstructural
features throughout the sample.
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3.2. Grain Structure and Crystallographic Texture

Figure 5 shows the inverse pole figure (IPF) coloring map where the grains are oriented
with their 111 along the normal direction ND for the as annealed with its corresponding
band contrast (BC) map with the high angle grain boundaries (HAGBs) of a misorientation
angle above 15◦ are outlined as black lines and low angle grain boundaries (LAGBs) of
misorientation between 3◦ and 15◦ are depicted in white lines. The IPF microstructure of the
as annealed Cu (Figure 5a) consists of almost equiaxed grains. In addition, several twins are
present within the as-annealing microstructure with an average grain size of 5.1 ± 3.7 µm
including twins based on EBSD data with twin boundary criteria of 60 deg or less. However,
the size distribution was heterogeneous through the as-annealing microstructure, and some
finer grains down to 5 µm were visible between the coarse grains up to 27 µm. The grain
boundary map in Figure 5b indicates that the map was dominated by HAGBs and almost
free of the LAGBs, which implies that the microstructure was fully recrystallized.

Figure 6 shows three and their corresponding BC maps with the HAGBs > 15◦ in
black lines and 15◦ > low angle grain boundaries (LAGBs) > 3◦ superimposed for the 1-P
ECAP processed pure Cu at RT obtained at the two edges (a, c) and at the center (b) of
the sample LS. It can be observed that the microstructure consists of a mixture of many
relatively fine and few relatively coarse grains that can be considered a type bimodal
microstructure. This can be observed across the whole cross section with notable increase
in the density of the LAGBs relative to the as-annealed (AA) material. In addition, a
microstructure exhibiting a smaller average grain size of 3.9 ± 2.0 µm with a high density
of twins can be observed. The reduction in the average grain size can be attributed to the
formation of new HAGBs due to the high amount of strain experienced during the first
pass. The effective strain after the 1-P estimated by the numerical modeling above to be
about 0.74 at the peripheral of the billet. Cu is a medium stacking fault energy (γSFE) fcc
metal of about 80 mJ/m2 [48]. The amount of energy stored in the material due to plastic
deformation is about 1% of the work done during plastic deformation and about 99% is
dissipated as heat [49]. Thus, this condition can lead to partial recrystallization especially
the recrystallization temperature of pure Cu is about 180 ◦C [49].
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Figure 7 shows the IPF maps and their corresponding BC maps with the HAGBs and
LAGBs superimposed for the 2 passes (2-Bc) (a) and 4 passes (4-Bc) (b) ECAP processed
pure Cu at RT. It can be observed that the density of the LAGBs increased significantly due
to the strain accumulation after 2-Bc and 4-Bc passes. The average grain size after 2-Bc
and 4-Bc was also reduced to 3 ± 2.5 µm and 3.5 ± 3.0 µm, respectively. The 2-Bc passes
and 4-Bc passes led to an increase in the amount of the substructure without any effect
in grain coarsening. It was also observed that the UFG at RT were locally heterogeneous
up to the second pass, but further deformation enhanced the homogeneity of grain size
distribution. These obtained results were in good agreement with the reported [40,50].
Higuera-Cobos and Cabrera [50] studied the microstructure of pure Cu after ECAP pro-
cessing with the starting annealed equiaxed grain structure of a grain size average of about
5.5 µm. They reported that the microstructure after the 1-P consists of elongated grains
with well-developed substructure while after 4, 8 and 16 passes they reported saturated
microstructure after the fifth pass that is a heterogeneous microstructure of large grains
with ultrafine grains. Zhu et al. [40] studied the microstructure of pure Cu after ECAP with
starting extremely large grains of 410 µm. They reported grain refining to about 210 µm
after 4 passes. Then increasing the passes to 8-P resulted in the formation of dislocation
cells with a size of 500 nm up to 3 µm.
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The ECAP process also was carried out at temperature of 200 ◦C for 1-P and 4-Bc to
study the effect of temperature on the microstructural evolution. Figure 8 shows the IPF
coloring maps relative to the ND and the BC maps with the HAGBs > 15◦ misorientation in
black lines and LAGBs < 15◦ misorientation in white lines for the ECAP processed pure Cu
at 200 ◦C for 1-P and 4-Bc. It can be observed that the grains after 1-P were elongated with
notable amount of LAGBs. Increasing the number passes to 4-Bc resulted in a significant
increase in the density of the LAGBs with a clear reduction in the average grain size. The
average grain size after 1-P and 4-Bc was 4.3 ± 3.4 µm and 2.5 ± 1.7 µm, respectively.
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The grain morphology indicates the heavy deformation that experienced and resulted in
distorted grains after 1-P and more severely after 4-Bc. It is quite possible that the main
features of the microstructure formed at 200 ◦C in regime 2 were similar to that formed
at RT in regime 1. However, the amount of elongated grains decreased with increasing
the deformation temperature and sharp boundaries became more evident at 200 ◦C. The
average grain size summarized from the EBSD characterization are shown in Table 1 for
the AA, 1-P, 2-Bc, 4-Bc, 1-P-200 ◦C and 4-P-200 ◦C samples.
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Figure 9 shows the (110) and (111) pole figures of the AA and ECAP processed pure
Cu at RT and at 200 ◦C. As can be seen from Figure 9a, the as annealed Cu showed high
intensity texture of about 7 times random, which could be directly related to the previous
processing history of the billet. This strong texture was completely transformed after the
first ECAP pass towards the simple shear texture with an intensity of about 4 times random.
After 2-Bc and 4-Bc the texture completely resembled the simple shear texture with about
7 times random again. Simple shear textures of fcc metals were characterized by two partial
fibers: (i) (111)‖ND (Shear plane) containing A/A and A∗1 and A∗2 and (ii) (110))‖|ED
(shear direction) composed of A/A, B/B and C as the ideal components [51,52], Table 2
lists the partial fibers and ideal simple texture components in fcc metals. From the pole
figures after 2-Bc and 4-Bc it can be noted that the main texture components that developed
after ECAP processing are A/A and C with the miller indices of {111}/<101>,

{
110

}
/<110>

and {001}/<110> respectively. These components can be observed almost at all their
ideal positions in 111 and 110 pole figures after 4-Bc with the ideal component positions
superimposed in Figure 10. These texture components are reported to be developed at low
temperatures and low strain [51]. Li et al. [52] investigated the texture heterogeneity after
ECAP processing of pure copper via route C and reported that after two passes a significant
variation in the crystallographic texture across the sample thickness was observed and
all the textures show shear-type characteristics. This is in agreement with the texture
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characteristics observed here. Additionally, Mishin and Bowen [53] investigated the texture
of ECAP processed copper and reported a strong simple shear texture after equivalent
strain of 10.
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Table 2. Partial fibers and ideal components of simple shear texture in fcc metals [45–55].

Partial Fibers Shear Plane Shear Direction

A fiber {111} <uvw>
B fiber (hkl) <110>

Components

A fiber B fiber

A∗1
{

111
} 〈

211
〉

A∗2
{

111
}

〈112〉
A A

{
111

}
〈101〉

A A
{

111
} 〈

110
〉

B {112}
〈
110

〉
B

{
112

} 〈
110

〉
C {001}

〈
110

〉
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Figure 11 shows the grain size distribution for the as annealed Cu and after ECAP
processed at RT (1-P, 2-Bc and 4-Bc) and at 200 ◦C (1-P and 4-Bc). It can be observed that
the amount of UFG on the collected data was increased after the ECAP process. Figure 12
shows the misorientation angle distribution for the AA commercial pure Cu and after
ECAP processed at RT (1-P and 4-Bc) and at 200 ◦C (1-P and 4-Bc). It can be noted that the
amount of the LAGBs was significantly increased by the increase of the number of ECAP
passes. Both the high amount of ultrafine grains and the high amount of LAGBs represent
the main contributors in the significant improvement the mechanical properties after ECAP
processing of commercial pure Cu.
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Figure 12. Relative frequency of the misorientation angle distribution of AA commercial pure Cu
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3.3. Mechanical Properties

HV evolution through the LS of the commercial pure Cu processed after 1-P, 2-Bc
and 4-Bc at RT was plotted in color-codded hardness contour maps shown in Figure 13.
The hardness contours of the AA samples were not displayed because they were essentially
homogeneous across the whole sample with an average of HV = 55. Similar plots presented
in Figure 14 displays the hardness contour maps for the TS, which revealed that the strain
hardening was the highest at the corner and peripheral regions and decreased towards
the central regions. From Figure 13, it can be clearly observed that there is a compelling
increase in the HV after the first pass and then a slight increase with the increase of passes.
These findings are in a good agreement with the earlier studies [1,56]. On the other hand,
the first pass ECAPed samples showed the most heterogeneous structure and this behavior
was lessened at the following passes. Similar behavior was revealed as shown in Figure 14
for the hardness distribution along the ECAPed samples’ TS. From Figures 13 and 14, the
lowest hardness values were noticed at the central region of the ECAPed sample, and then
the hardness values increased radially. It is worth mentioning here that, 1-P (Figure 13a)
yielded higher hardness values at the upper part of the rod when put in comparison with
the lower parts, which concurred with the findings from the billets ECAPed via either
2-Bc or 4-Bc, as shown in Figure 13. This could be explained by contact with the applied
pushing force from the plunger, which yielded comparably higher hardness values at the
top part. Accordingly, the hardness findings in a good correlation with the FE analysis
shown in Figure 4, where the maximum imposed strain were depicted in the peripheral
areas resulting in more strain hardening and led to increasing the hardness compared to
the central regions.
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Accordingly, from Figure 13 it is clear that higher hardness values were recorded at the
periphery areas of the top surface of the billets’, which diminished toward the center and
the bottom parts. The hardness values varied, reaching 126 HV at the sample top peripheral
zone and decreasing up to 108 HV at the sample bottom central area. It was observed that
the relative uniformity of the billets’ hardness was raised along the LS when processed
via 2-Bc (Figure 13b), compared to the first pass, this increase was manifested from the
peripheries to the centre of the rod, with hardness values varying, showing 115 HV at the
center and increasing to 129 HV at the peripheries. Increasing the processing passes up to
4-Bc resulted in a significant increase in the hardness values. The recorded results revealed
increasing the hardness value up to 158 HV in the top peripheral areas while the hardness
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value in the central zone increased to 127 HV (Figure 13c). Table 3 lists the average hardness
values measured at the peripheral and central regions and the mechanical properties of the
AA billets before and after ECAP.

Table 3. Mechanical properties of commercial pure Cu processed via ECAP.

Processing
Condition

Processing
Temperature

HV-Value YS
(MPa)

UTS
(MPa)

Elongation
(%)Center Periphery

AA - 55 ± 2 55 ± 2 122 170 41.5

1-P
RT

108 ± 2 126 ± 2 280 299.5 25.3
2-Bc 115 ± 2 129 ± 2 324 364 25.3
4-Bc 127 ± 2 158 ± 3 272 381 30

1-P
200 ◦C

102 ± 1 116 ± 3 292 302 26.8
4-Bc 113 ± 2 128 ± 1 292 330 28.5

In addition, as shown in Figure 14, processing via 1-P revealed 96% and 125% rises in
the hardness values at the center and peripheries, respectively, when put in comparison
with the AA condition. This invariably implies that the distribution of hardness values
has a large degree of inhomogeneity across the transverse section of the rod (Figure 14a).
However, the hardness homogeneity of the billets across their transverse section correlated
with the number of passes as shown in Figure 14b,c. Processing through 2-Bc showed
increase in the recorded hardness results up to 7%, and 5% in the central and peripheral
areas, respectively compared to the 1-P condition. Additionally, 4-Bc correlated with rises
in hardness values across the center and peripheries by 16.6% and 29% respectively, when
compared with the 1-P condition.

Figures 15 and 16 show the hardness distribution of ECAPed Cu billets processed at
200 ◦C through 1-P and 4-Bc along the sample’s LS and TS. There was a visible enhancement
in hardness homogeneity along the LS that occurs due to ECAP processing at 200 ◦C as
shown in Figure 15 compared to RT processing (Figure 13). The hardness homogeneity
between the central and peripheral regions in the LS showed an increase of 22% after
being processed through 1-P at 200 ◦C (Figure 13a), compared to the sample processed
through the same route (1-P) at RT, which concurs with [43]. The hardness homogeneity
between the central and peripheral regions showed an increase of 50% compared to the
counterparts processed at RT when the strain was increased up to 4-Bc, which agrees
with [42]. A similar trend was visible in the hardness contour maps of the sample TS as
shown in Figure 16. The uniform hardness distribution can be attributed to the higher
strains achieved by processing multiple passes, which led to the stabilization of the sample’s
internal structure [21]. When processed at RT, the strain accumulating in the sample was
higher, which resulted in a drastic increase in hardness, accompanied by the sample’s
heterogeneity being marginally improved. The samples processed through 1-P at 200 ◦C
showed an increase in the hardness uniformity from the central region (102 HV) to the
peripheral regions (116 HV), shown in Figure 13. The sample processed through 4-Bc
showed a slight variation of hardness values between the center (113 HV) and the peripheral
regions (128 HV).
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(a) 1-P and (b) 4-Bc at 200 ◦C.

From examining Figure 15a, a trend emerged concerning hardness values. The highest
hardness values were recorded at the top of the sample near the edges. From there,
we noticed that their values decrease vertically until the bottom edges. The data confirm
this, as hardness values of 116 HV were recorded left and right of the disc section’s
longitudinal axis, decreasing to 102 HV as we moved toward the disc center; the lowest
hardness value was 100.5 HV, recorded at the bottom central area (Figure 13a).
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The samples that went through 4-Bc processing showed a distribution of micro-
hardness values, which were symmetrical on either side of the longitudinal central axis;
Figure 15b illustrates this. Moreover, the hardness values seemed to become more homoge-
nous as we increased the number of passes, meaning that the 4-Bc samples had the highest
microhardness distribution homogeneity (Figure 15b). So, as stated, the 4-Bc processing, at
200 ◦C, resulted in a more highly uniform hardness distribution. The HV values recorded
from the LS of the sample range from 128 HV near the rod’s peripheries to 111 HV at the
bottom of the central axis. A similar trend was noticed in the hardness distribution of the
TS of both the ECAPed samples processed through 1-P (Figure 16a) and that processed
through 4-Bc (Figure 16b) at 200 ◦C as more homogenous distribution of the hardness
values from the ECAPed samples central to peripheral regions can be depicted.

It is worth mentioning here that the observed surge in hardness at the peripheral
regions in comparison with the center is due to the friction between the rod and ECAP
die walls [57]. The rod’s cross section impacted the strain imposed on the billets, increas-
ing the strain inhomogeneity’ degree with the increase of the cross section; where the
peripheries had higher strain while the center of the rod had lower strain. Accordingly, the
enhancement in the hardness values after ECAP processing can be attributed to the strain
accumulation through increasing the number of processing. It is worth mentioning here
that ECAP processing is usually accompanied with production, multiplication and locking
of dislocations processes, which results in the formation of LAGBs and HAGBs and, finally,
the formation of UFG materials. In addition, it is commonly known that for the materials
with moderate SFE such as Cu, twining is an important deformation mechanism, which
resulted in grain refinement in addition to the dislocation slip during ECAP processing.
Accordingly, the UFG structured yielded from ECAP processing inhibits dislocation glide
thus leading to strengthening the material according to the Hall–Petch equation [58,59].
As mentioned above, it is reasonable to conclude that the strengthening of ECAP samples
is generally thought of as the refinement of grains, formation of twins and accumulation
of dislocations [12]. These hardness findings show good agreement with the developed
EBSD maps in Figure 7 and with the pole figures shown in Figure 9. Indeed, the EBSD
observation showed that processing through ECAP via multiple passes led to increasing
the percentage of UFG (<1 µm) up to 33% as shown in Figure 7. In addition, the increase
of the percentage of LAGBs and HAGBs after ECAP as shown in Figures 6–8, processing
hindered the mobile dislocations effectively. Hence, the refined grains make a significant
contribution to improved hardness.

Table 3 shows the tensile properties of both the AA and ECAPed Cu samples. Tensile
testing showed that the ECAPed samples had higher yield strength (YS) and ultimate
tensile strength (UTS) than the AA samples. This increase in YS and UTS came at the
expense of reduced ductility. These properties are expected since the samples underwent
refinement in grain size and a relative increase in HAGBs [60,61] as the number of passes
increased; the recorded increase in HV, YS and UTS values after being processed via
ECAP confirm this. As observed in Table 3, 1-P processing results in higher YS and UTS,
processing any further resulted in a gradual increase in YS and UTS, which agrees with the
results of [62]. Drastic increases of (129.5%) and (76%) in YS and UTS, respectively, were
noticed after processing through 1-P at RT, alongside a reduction of 39% in the ductility,
compared to the AA samples. However, the tensile properties exhibited from 1-P revealed
insignificant change when the sample was processed further up to 4-Bc at RT. Table 3 shows
that there was not any evident difference in YS, or UTS between the 1-P warm processed
samples and 1-P RT processed samples where the YS, UTS and ductility had improved
by 4.2%, 0.8% and 4.7%, respectively. The tensile properties of the 200 ◦C processed 4-Bc
samples showed 7.35% increase in the YS coupled with 13.3% and 5% reduction in the UTS
and ductility, respectively, compared to the sample processed through 4-Bc at RT. These
results are consistent with the outcomes of a recent study [13,60]. These findings confirm
that the warm processing conditions still favor the material strength increase until the first
pass [61]. On the other hand, the subsequent decrease of strength in further warm ECAP
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passes can be explained by the occurrence of dynamic recovery and discontinuous dynamic
recrystallization, which leads to the elimination of dislocations [61].

4. Conclusions

In this study, the effect of ECAP processing on the microstructural evolution, crystal-
lographic texture and hardness variation of commercial purity Cu processed at RT and
200 ◦C for up to 4 passes of route Bc was comprehensively investigated. The following
conclusions can be drawn:

1. The FE numerical model revealed that processing via 1-P of pure copper experienced
a max effective strain of about 0.74.

2. The microstructure obtained after 1-P exhibited finer equiaxed grains down to submi-
crons with a significant increase in the high angle boundaries, the substructures and
high density of twin boundaries.

3. The microstructure was homogenous through the sample cross section and increasing
the imposed strain up to 4-Bc had resulted in an increase of the deformed microstruc-
tural features.

4. The crystallographic texture after 4-Bc at RT was a strong simple shear texture dis-
playing about 7 times random.

5. Conducting the ECAP processing at 200 ◦C resulted in a severely deformed microstruc-
ture with the highest fraction of submicron grains and high density of substructures
was also observed.

6. Processing through 1-P revealed an increase of the hardness values by 125% and 96%
in the peripheral and central regions compared to the as-annealed counterpart.

7. Further straining up to 4-Bc revealed an additional increase of the hardness values by
29% and 16.6% in the peripheral and central regions compared to the 1-P counterpart.
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31. Krajňák, T.; Minárik, P.; Stráská, J.; Gubicza, J.; Dluhoš, L.; Máthis, K.; Janeček, M. Influence of temperature of ECAP processing
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