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Abstract: Friction stir processing (FSP), a severe plastic deformation process, was applied on pure
Cu to obtain a stir zone with a very fine grain size. Yet, when FSP is used, the stir zone is as wide
as the diameter of the shoulder at the upper surface of the weld and markedly narrower near its
opposite surface. This property, as well as the differences between the advancing side and the
retreating side, makes it impossible to obtain a uniform cross-section as far as the microstructure
and mechanical properties are concerned. For these reasons, a new approach is proposed in which
the material was processed on both sides, thus yielding a wider, rectangular and more homogenous
stir zone from which all the specimens were machined out. Processing the material from both sides
eliminated any microstructural difference between the upper and the lower side, at least within the
gauge length’s cross-section of the creep specimens. Although grain refinement was detected, the
mechanical properties of the friction-stir-processed (FSP’ed) material are inferior relative to those of
the parent material. The TEM study reported in the current paper revealed the existence of nanosized
grains in the FSP’ed material due to dynamic recrystallization (DRX) occurring during the processing
stage. Because both X-ray inspection and fractography showed that the FSP’ed material was free of
defects, the material may not comply with the Hall–Petch relation due to lower dislocation density
caused by XRD occurring during FSP. The inverse Hall–Petch effect may also be considered as an
assistive mechanism in mechanical property deterioration.

Keywords: friction stir processing; Cu alloys; microstructure; mechanical properties; dislocations

1. Introduction

Friction stir processing (FSP) was derived from friction stir welding (FSW) in 2000
and was first reported by Mishra et al. [1]. FSP is identical to FSW except that, in FSP,
the rotating tool does not weld the parts to one another. Because it is a severe plastic
deformation process, FSP aims to attain a stir zone with a very fine grain size and hence
improve the mechanical properties of the material being processed.

Copper and its alloys are known for their high thermal and electrical conductivity.
Yet, pure copper has the drawbacks of low strength and poor wear and fatigue resistance
that limit its use. Applying severe plastic deformation processes such as FSP seems to be a
promising way to improve the mechanical properties of the material. Several publications
discuss FSP applied to pure Cu [2–18], as summarized in the following paragraph.

Cartigueyen and Mahadevan [2,9] studied the influence of process parameters and
tool shape on the microstructure and mechanical properties of a 6 mm thick processed ma-
terial. Relying on optical microscopy, they observed the existence of recrystallization grain
refinement from 35 to 5–20 µm within the stir zone, together with an increase in hardness
of up to 97 HV. However, the tensile properties were found to be inferior compared to the
parent material. Barmouz et al. [3] studied the influence of multipass process parameters
on the microstructure and the mechanical properties of 6 µm thick plates. Relying also
on optical microscopy, they observed grain refinement from 50–60 to 0.7–0.8 µm. Yield
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strength and ultimate tensile strength increased from 145 and 150 MPa to 200 and 215 MPa,
respectively, while fracture surface analysis yielded microvoid coalescence [3]. Xue et al. [4]
applied water-cooling-assisted FSP on 5 mm thick plates. Optical microscopy revealed
equiaxed grains of 730 nm. Hardness varied between 105 and 110 HV, while the yield
strength and ultimate tensile strength obtained were 330 and 340 MPa, respectively. In
another publication also dealing with water-cooling-assisted FSP [6], Xue et al. achieved an
ultimate tensile strength of about 400 MPa. However, the tensile specimens used for this
study were dog-bone-shaped 0.6 mm thick specimens machined from the stir zone. The
TEM study reported in [6] also revealed submicron grains of 700 and 400 nm, depending
on the process parameters. Surekha and Els-Botes [4] processed 3 mm thick plates and re-
ported grain refinement down to 3 µm, compared to the 19 µm grain size of the base metal,
as detected by optical metallography. They also observed an increase in hardness from
84.6 to 13.6 HV, together with an increase in yield strength and ultimate tensile strength
from 209 and 270 MPa to 261 and 328 MPa, respectively. Galvao et al. [7] processed 1 and
3 mm thick plates under various parameters and observed grain refinement down to about
1 µm, as revealed by optical microscopy, together with a hardness increase of up to about
130 HV0.2 under certain parameters. Salahi and Rezazadeh [8] processed a 5 mm thick
plate. They reported an increase in ultimate tensile strength of up to 271 MPa as well as
grain refinement; however, they did not publish the grain size data. Barmouz et al. [10]
reported the processing of a 4 mm thick plate and recorded a grain size of about 1 mm
after a single pass of processing and 600 nm after a double pass. In another publication
dealing with 6 mm thick plate optical microscopy and SEM, Barmouz et al. [12] observed
grain refinement from 40 to 50 µm in the case of the parent material down to a few mi-
crons. Moreover, the hardness values of the stir zone reached 75 HV, while the yield and
ultimate tensile strengths measured for the processed material were markedly lower than
those of the parent metal. Leal et al. [11] reported hardness values of up to 130 HV0.2
and grain refinement down to submicron size, relying on optical microscopy and TEM.
They also observed decreasing dislocation density when the tool rotation was increased to
transverse speeds ratios (ω/v). Wang et al. [13,14] reported achieving an ultimate tensile
strength of 550 MPa and the formation of nanosized grains, together with grain refinement
during the cryogenic friction stir processing of 3 mm plates. They based their findings
on a qualitative TEM study. They also reported dislocation cell structure and changes in
the dislocation density as a function of the process parameters. In another publication
focusing on processing 3 mm thick plates, Wang et al. [15] reported achieving an even
higher ultimate tensile strength of ~570 MPa. A TEM study of the processed material
yielded grain refinement to an average size of 109 nm, together with high- and low-angle
grain boundaries as well as dislocation pile-ups in some grains. Wang et al. [16] processed
3 mm thick plates and reported an increase in hardness from 74.5 to 111.3 HV and an
average grain size of ~710 nm, as revealed by TEM. Moaref and Rabiezadeh [17] studied
the underwater FSP of 5 mm thick copper plates and obtained a hardness value of 103 HV.

It is well known that the stir zone of a friction-stir-processed material has a wedge
shape. This shape is as wide as the diameter of the shoulder at the upper surface of the
weld and markedly narrower near its opposite surface, not to mention the differences
between the advancing side and the retreating surface. For these reasons, it is impossible
to obtain a uniform cross-section as far as the microstructure and mechanical properties
are concerned. Hence, the current paper offers a new approach that the authors have
already applied on aluminum alloys [18]. In this approach, the material was processed
on both sides, thus yielding a wider, rectangular and more homogenous stir zone. The
mechanical properties, namely tension and hardness, were studied in both conditions as
well. A quantitative TEM study compared the parent material and the stir zone of the
FSP-processed material. Reports in the literature are ambiguous. Some researchers reported
improved mechanical properties achieved by FSP [4–6,10,11,17], while others reported
achieving either improvement or deterioration, depending on the process parameters [3,7,8]
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or on hardness improvement together with tensile deterioration [2,9,12]. The current paper
offers a way to settle these discrepancies.

2. Materials and Methods
2.1. Material Processing

The material used for this study was commercially pure Cu in the form of 200 mm× 100 mm
plates, 3.175 mm thick. The above plates were subjected to FSP using a SHARNOA CNC
milling machine. Two H-13 steel processing tools were used, both with a 20 mm diameter
shoulder and a 2.6 mm long pin. The first tool had a Ø5.5 mm cylindrical pin, while the
second had a 5 mm × 5 mm square pin. The two processing tools are shown in Figure 1.
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Figure 1. The processing tools: (a) cylindrical (b) square.

A single pass was made on one side of the plate. The plate was then flipped and
processed once again right above the first pass, which was on the bottom side of the
plate. The second pass was made so that the advancing side of the first pass became
the retreating side of the second and vice versa. The motivation was to make the stir
zone as symmetrical and uniform as possible while achieving an almost rectangular cross-
section. The various FSP experiments are listed in Table 1. All the FSP’ed specimens were
visually examined. Based on the better visual inspection results found in Experiments 1
through 6, it was decided to select the square pin and to test it under two additional sets
of parameters (Experiments 7–8). The FSP’ed plates from Experiments 4, 6, 7 and 8 were
then radiographically checked. Having analyzed the X-ray inspection results, it was found
that rotational speed ofω = 900 rpm and a transverse speed of v = 50 mm/min yielded a
defect-free stir zone and were chosen, therefore, as processing parameters.
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Table 1. Friction stir processing (FSP) list of experiments.

Experiment ω (rpm) v (mm/min) Pin

1 600 50 cylindrical
2 600 50 square
3 900 50 cylindrical
4 900 50 square
5 900 100 cylindrical
6 900 100 square
7 900 30 square
8 1200 30 square

2.2. Metallography

The metallographic study was conducted using a Zeiss AX10 optical microscope and
an FEI Inspect SEM.

2.3. Mechanical Properties

Vickers microhardness measurements were taken using a Shimadzu microhardness
tester under a load of 200 gf. Tensile specimens with a 3 mm × 3 mm square cross-
section and a 25 mm gauge length were machined from the FSP region of the plates. The
longitudinal axis of the samples was parallel to the FSP direction so that the entire body of
the specimen was included in the stir zone.

2.4. TEM

The TEM investigation was conducted using an FEI Tecnai G2 T20 TEM. TEM speci-
mens were prepared using an FEI Helios NanoLab G3 FIB (focused ion beam).

2.5. Fractography

The fractography study was conducted on broken friction-stir-processed creep speci-
mens with the aid of an FEI Inspect SEM.

3. Results

Figure 2a shows an optical micrograph of the parent metal, while Figure 2b was taken
from the stir zone of the processed material.

Twinned grains having an average grain size of about 10–20 µm are discernible in the
parent metal, while the processed material consists of nonuniform equiaxed grains whose
size varies from about 1 µm up to about 20 µm.

Figure 3 shows three microhardness profiles taken from the stir zone of the processed
material. Profile 1 was taken as close as possible to the surface of the first pass, Profile 2
was taken at the middle of the cross-section and Profile 3 was taken near the surface of the
second pass. All the measurements were taken across the stir zone, perpendicular to its
longitudinal axis while maintaining a distance of 0.5 mm from one indentation to another.
The hardness of the parent metal was found to be 89 ± 1.5 HV0.2. Keeping in mind that
the gauge length of the tensile specimens was machined out from a ±1.5 mm wide strip
with respect to the center of the stir zone, one can see that the hardness of the stir zone
varies markedly with the location. While these variations reach almost 20 HV0.2, it may be
claimed that the parent material is harder than the FSP’ed one.
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Table 2 summarizes the tensile test results of the parent material (PM) as well as the
FSP’ed material. As can be seen from Table 2, both the yield strength and the UTS of the
FSP’ed material are lower than those of the parent material, while its elongation is higher.

Table 2. Tensile test results.

Type Yield Strength
(MPa)

UTS
(MPa) Elongation (%)

PM 208.2 265 37
PM 234 300.9 36.25
PM 209.9 269.4 36.5
PM 246.6 317.6 38.5
PM 221.6 273.6 37
PM 228.2 279.9 35

FSP’ed 115.4 217.9 49.9
FSP’ed 151.5 251.2 43.4
FSP’ed 120.6 216.5 48.5
FSP’ed 155.1 246.6 41.5
FSP’ed 114.4 218.1 49.3
FSP’ed 151.9 257.2 40.65

Figure 4a provides a general view of the fracture surface of a broken parent material
tensile specimen, while Figure 4b shows the fracture surface of a broken FSP’ed specimen.
Both micrographs were taken using an SEM under the same magnification. It is evident
that both fracture surfaces have a ductile fracture character. In the case of the parent
material, however, the sizes of the voids are uniform, while large variations are discernible
in the case of the FSP’ed material. The fracture surface of the FSP’ed material is composed
of coarse voids with a size of about 25 µm, which is close to the void size of the parent
material together with ones that are finer by an order of magnitude. The surfaces of all
the fracture specimens were observed, and none of them showed evidence of pre-existing
cracks or other defects.

Figure 5a,b are bright-field (BF) TEM micrographs of the parent material taken near
<011> Z.A. showing a twin boundary (Figure 5a) and dislocation networks (Figure 5b).
Figure 5c shows BF TEM micrographs of the processed material, while Figure 5d shows
the electron diffraction pattern of the respectively selected area. Submicron and even
nanosized grains are discernible in Figure 5d. The dark contrast typical of grains tilted to a
certain zone axis indicates that they are separate grains rather than subgrains.
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4. Discussion

The tensile test results indicate that both the yield strength and the ultimate tensile
strength of the FSP’ed material are markedly lower than those of the parent material. The
microhardness profiles shown in Figure 2 also reflect a certain drop in hardness in the case
of the FSP’ed material compared to the parent metal. In the case of pure metals, a drop in
mechanical properties can be related to defects such as cracks introduced during processing,
grain coarsening or a lower dislocation density. As for defect introduction, the processed
specimens were radiographically checked prior to tension tests and found to be defect free.
Moreover, a fractography study conducted on all the broken tensile specimens revealed
no evidence of pre-existing cracks. Hence, the existence of any sort of cracks introduced
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during friction stir processing can be ruled out. A comparison between Figure 2a,b shows
that even though, as stated earlier, the average grain size of the processed material is
nonuniform to some extent, it is almost an order of magnitude lower than that of the parent
metal. Hence, the main question that arises from the current study is the issue of why the
material does not comply with the Hall–Petch relation.

Reports in the literature are ambiguous. Some researchers reported improved me-
chanical properties achieved by FSP [4–6,10,11,17], while others reported achieving either
improvement or deterioration, depending on the process parameters [3,7,8] or on the
hardness improvement together with tensile deterioration [2,9,12]. Reports of improved
mechanical properties attributed this to grain refinement [4–6,17], i.e., to the Hall–Petch
relation, increased dislocation density [10] or both [11]. Mixed results are attributed to
dislocation density and grain refinement [3], solely to grain refinement [2,7,9] or solely to
dislocation density [8,12]. To summarize, reports in the literature seem to agree that FSP
leads to grain refinement in all cases due to DRX. Nevertheless, two opposite contributions
can be expected. On the one hand, grain refinement leads to increased hardness and yield
strength according to the Hall–Petch relation, while, on the other hand, reduced dislocation
density resulting from DRX leads to reduced mechanical properties. The dominance of one
of these two contradictory trends eventually dictates whether the processed material will
show improved or inferior mechanical properties. This notion seems to be applicable in the
current study as well. A simplified model can be based on the well-known Taylor equation,
here rewritten in a simplified form:

σ = σ0i +
kHK√

d
+ αmGb

√
ρ (1)

where m is the Taylor factor, σ0i represents the stress required to move a dislocation in a
very coarse-grained metal in the absence of other dislocations, b is the Burgers vector, d is
the grain size, G is the shear modulus and α is a constant. Substituting the following values:

σ0i = 7 MPa [19]
kHK = 0.144 MPa m−0.5 [20,21]

d = 3 µm
m = 3.06, α = 0.19, G = 4.75 × 104 − 17T [MPa], b = 2.56 × 10 − 10 [m] [22]

results in a yielding stress of 132 MPa, with ρ = 5× 1013 m−2. In the case of the parent alloy,
the average yielding stress is 225 MPa. The material of the present study is a copper sheet
in an F240 half-hard state. This condition can be achieved by applying, after annealing, a
skin-pass rolling. According to Equation (1), a sheet that underwent skin-pass, that, for
example, imparted 10–15% strain hardening to reach the F240 state, with a dislocation
density ranging from 3 × 1014 m−2 [23] to 9 × 1014 m−2 [24] and a grain size of 15–20 µm,
will exhibit a yield strength of 180–233 MPa, which is reasonably close to the measured one.
To summarize, in the case of the half-hardened sheet, after FSP, one can expect a reduction
in strength, because the Hall–Petch strengthening cannot compensate for the reduction of
the dislocation hardening term.

Based on the TEM results, which showed even finer grains, we propose that another
factor, i.e., the inverse Hall–Petch effect, may to some extent contribute to the deterioration
of the mechanical properties. Several researchers [25–30] have observed and reported
the inverse Hall–Petch effect in Cu. According to these publications, the Hall–Petch
relation breaks down in submicron grain-sized materials. In other words, the yield strength
decreases rather than increases with decreasing grain size. According to Song et al. [25],
there is evidence of a transition from a normal to an inverse Hall–Petch relation at a critical
grain size of 33 nm. As stated earlier concerning Figure 5d, tilting the specimen to <011>
Z.A revealed nanosized grains. Moreover, given that the DRX is the grain refinement
operative mechanism, the entire spectrum of grain sizes is expected to exist, ranging from
nanograins up to 20 µm, as detected by optical microscopy. The yielding process may
therefore occur in stages, during which grains smaller than the critical size yield first; that
is, part of the cross-section is still within the elastic range while the other part has already
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yielded. This means, in turn, that the effective cross-section for yielding is smaller than
the original one, and the yield strength is therefore reduced accordingly. It is hard to
say what fraction of the cross-section is composed of grains smaller than 33 nm. In the
case of Figure 5d, it looks as if one-third of the cross-section is composed of nanosized
grains. Nevertheless, this problem requires further quantitative analysis to obtain well-
established statistics. It should be kept in mind that even if Figure 5d represents the grain
size distribution at one single point along the specimen’s gauge length, this point can
become a bottleneck and hence will dictate the yield strength.

5. Conclusions

• Pure Cu underwent FSP on both sides with the aid of a square pin, thus yielding a
more rectangular and homogenous stir zone.

• Although showing grain refinement, the FSP’ed material proved to be mechanically
inferior to the parent material.

• X-ray inspection and the fractography study ruled out the existence of any crack or
other kind of defect inside the stir zone.

• The TEM study provided evidence for DRX, yielding ultrafine and even nanosized grains.
• The inferior mechanical properties in the case of the processed material can be ex-

plained on the basis of a reduced dislocation density due to DRX, as shown quantita-
tively by relying on the simplified Taylor equation

• Further quantitative analysis is still required in order to obtain a well-established
statistic of grain size distribution. Such an analysis will make it possible to determine
the contribution of the inverse Hall–Petch effect
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