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Abstract: The present work focusses on machine learning assisted predictions of the fatigue crack
growth rate (FCGR) of Ti6Al4V (Ti64) processed through laser powder bed fusion (L-PBF) and post
processing. Various machine learning techniques have provided a flexible approach for explaining the
complex mathematical interrelationship among processing-structure-property of the materials. In the
present work, four machine learning (ML) algorithms, such as K- Nearest Neighbor (KNN), Decision
Trees (DT), Random Forests (RF), and Extreme Gradient Boosting (XGB) algorithms are implemented
to analyze the Fatigue Crack growth rate (FCGR) of Ti64 alloy. After tuning the hyper parameters
for these algorithms, the trained models were found to estimate the unseen data as equally well as
the trained data. The four tested ML models are compared with each other over the training as well
as testing phase, based on their mean squared error and R2 scores. Extreme Gradient Boosting has
performed better for the FCGR predictions providing least mean squared errors and higher R2 scores
compared to other models.

Keywords: titanium alloy; additive manufacturing; machine learning; fatigue crack growth rate

1. Introduction

Ti6Al4V is known for its high specific strength, fracture toughness, high temperature
mechanical properties, and excellent corrosion resistance properties. Consequently, it
is widely adopted in aerospace and biomedical applications which predominantly are
geometrically complex shapes. This material is responsible for higher tool wear and worse
machined surface integrity [1–3]. Many cutting tool materials are in fact chemically reactive
to the titanium alloys, which makes it difficult to machine using traditional methods. To
address these problems, apart from traditional manufacturing methods, Laser Powder
Bed Fusion (L-PBF) has become a popular metal additive manufacturing method for
producing geometrically complex shapes [4–6]. L-PBF is an additive manufacturing process
in which successive layers of powder are selectively melted by the interaction of a high-
energy-density laser beam. The successive layers consolidate to form the required solid
shape. After the printing process, to improve the surface properties and enhance the
microstructural homogeneity, surface and heat treatments such as hot isostatic pressing,
shot peening, and laser shock peening are performed over the as built samples [7–10].
As this manufacturing technique allows the fabrication of more intricate geometries, it
is used in aerospace and biomedical applications. Especially in aerospace applications,
some of the components such as spars, ribs, and longerons are made of Ti alloys which
experience high vibrations. Due to these rigorous operating conditions, vibrations lead
to fatigue-induced failures, which reduces the useful life of the component [11–15]. On
account of few inherent defects in additively manufacturing methods, such as poor bonding
defects, porosities, and edge crack initiations, makes the components vulnerable to cyclic
loading. E. Pessard et al. [16] have studied the effect of pores and tested volume size on
fatigue performance of additively manufactured Ti6Al4V alloy. The different number of
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hemispherical surface holes are introduced to locally raise the stress and change the size
of highly stressed volume. In their study on the relationship between thermal expansion
and residual stresses, M. Yakout et al. [17] concluded that the volumetric laser energy
density could be used as a design tool for identifying part flaws expected during the LPBF
process. Processing parameters hence play a huge role in determining the microstructure
as discussed in Section 5, as it eventually affects the fatigue performance of the material.
Y.W. Luo et al. [18] have adopted a machine learning approach to predict the fatigue life of
IN718 alloy influenced by pores, which revealed that increase in the size and the number of
pores and decrease in the distance from the center of the pore to the surface of the specimen
may promote fatigue crack initiation and therefore could decrease the fatigue life. Hence,
it is important to understand how the fatigue crack grows, which in succession would
decide material performance so as to avoid catastrophic disasters occurring due to dynamic
loading conditions [4,19].

Stress Intensity Factor (SIF) is the most important parameter that is used in fracture
mechanics for estimating the fatigue crack growth rate. The crack growth rate (da/dN) is
dependent on the stress intensity factor range (∆K), which in turn depends on the crack size
(a). The governing equation used to characterize the FCGR problem is the Paris law [20,21].
The plot from the crack growth rate versus ∆K contains predominantly three regions:
region 1 is the near-threshold or crack initiation region in which the curve becomes steep
and approaches asymptote ∆Kth, which is the lower limiting ∆K; region 2 corresponds to
the stable macroscopic crack growth; and region 3 corresponds to unstable crack growth
just before final failure and is controlled primarily by the fracture toughness of the material.
Other than Paris law, two more relationships are used to estimate the FCGR, which are the
NASGRO equation and Walker equation. These two equations account for the stress ratio,
which is not accounted for in Paris equation. In this study, the data plotted using the Paris
equation is analyzed and used for predictions using ML models.

During crack nucleation, fine microstructures are favorable because of the lower
quantity of long slip bands. This causes lesser irreversible slipping to occur, which leads
to fewer nucleation sites. Also, the morphology of defects will affect the crack nucleation
stage. The stress risers in the vicinity of the crack affect the slip activation rate indirectly.
The LPBFed materials propagating cracks are perpendicular to the built layers and the exact
direction as the orientation of the elongated grains. It is evident from the SLM fabricated
Ti6Al4V samples that columnar grain structure is visible as a result of successive layer
deposition [22]. The as-built (AB) sample exhibits martensitic morphology consisting of α1

plates. When stress is relieved to 650 ◦C, the AB martensitic structure partially decomposes
towards acicular α. When heat-treated to 890 ◦C, the reformed β phase transforms upon
cooling to Widmanstätten α/β structure. L. Thijs et al. [23] investigated the microstructural
evaluation during laser powder bed fusion of Ti6Al4V and reported that the direction of
the elongated grains depends on the local heat transfer condition, which is determined
by the scanning strategy and is the independent variable for this current study. These
microstructural features ought to be optimized for fatigue design and the manufacture of
components using additive manufacturing technology. The microstructure and property
correlation are discussed in Section 5.

The fatigue experiments are highly expensive and time-consuming, especially in the
case of the Ti64 alloy, which is very costly. In recent times, because of the improved
computing power and data storage capacities, data handling and analysis have become
exponentially faster and cheaper. Therefore, advanced data interpretation methods have
been used to solve the complex nonlinear damage mechanics problems. Machine learning
(ML) algorithms are capable of estimating the patterns available in the data, classifying the
data, and clustering, each finding its application in the mechanical and material science
fields. The literature shows that the data-driven modeling has been used for estimating the
mechanical properties and predictions in the area of fatigue and fracture mechanics [24–26].
As the availability of data becoming easier, many researchers are exploring the adoption
of Machine learning and Deep learning models to accelerate the predictions of material
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properties. Using a backpropagation neural network (BPNN) and extreme learning machine
(ELM), Raja et al. [24] have estimated the FCGR of Al 2014 alloy and concluded that ELM
performed better on the dataset. Nguyen et al. [25] predicted the fatigue crack propagation,
adopting deep learning models such as the multi-layer neural network and long-short
term memory method, and found out that the multilayer neural network is less effective
than the long-short term memory method. Wang et al. [26] compared three machine
learning algorithms, which were the ELM, radial basis function network (RBFN), and
genetic algorithms optimized backpropagation network (GABP) to predict FCGR of Al2024-
T351 alloy. Z. Zhan et al. [27] have used ANN and RF models for fatigue life predictions of
Additively Manufactured AlSi10Mg, Ti6Al4V, and SS316L. They [28] have analyzed the
effects of processing parameters on Additively Manufactured SS316L using Multi Layered
Perceptron algorithm and compared it with SVM and RF models. S. Moon et al. [29]
utilized the dropout neural networks to understand the impact of surface and the pore
characteristics on the fatigue life of laser powder bed fusion fabricated Ti6Al4V alloy.
However, the chosen variables which influence the crack growth rate are different in
each case.

In this work, the FCGR of Ti64 fabricated through LPBF is predicted using K- Near-
est Neighbors (KNN), Decision Trees (DT), Random Forest (RF), and Extreme Gradient
Boosting algorithms (XGB). The prediction using the KNN algorithm, in general, is based
on the unknown’s nearest neighbors. The nearest neighbors can be tuned based on the
requirement. The decision trees are the tree-based algorithm where the data is split based
on the lowest mean squared error, whereas the other two algorithms are used as ensemble
techniques that construct multiple decision trees which collectively make the predictions.
These tree-based algorithms predominantly are used to identify the nonlinearity present
in the data set. The experimental FCGR data of Ti-64 alloy reported by V. Cain et al. [22]
were taken for the analysis using ML models. The independent variables include the
post-processing technique, the built orientation during fabrication, and the stress intensity
factor. These three parameters significantly influence the FCGR and are independent of
each other [3,11,30–33]. Given these three independent variables, the ML models are used
to estimate the FCGR of Ti-64 alloy. After modeling the data, the performance of the
models was evaluated and the best performing algorithm was employed to carry out the
feature importance analysis. Feature importance analysis provides the rankings of the
independent variables based on their importance. This analysis showed that SIF is the most
influencing parameter followed by post processing technique and built orientation for the
FCGR behavior of Ti64 alloy fabricated using LPBF.

2. Data Description

In order to build the ML models, relevant experimental Fatigue data of Ti-64 alloy
is collected from the literature. The experimental studies on Ti-64 alloy contain standard
compact tension (CT) specimens were manufactured from grade 5 Ti6Al4V spherical
powder for the determination of FCGR properties. The powder particle sizes ranged from
15 µm to 45 µm. FCGR experiments were conducted as per the ASTM E647 standard. Prior
to commencing the FCGR evaluation, a 1 mm long pre-crack was developed and machined
using EDM. The cyclic loading at 5 Hz and Stress Ratio 0.1 during testing conditions were
reported by V. Cain et al. [22], by varying three different built orientations, such as XY,
XZ, and ZX, and with three different post processing techniques, such as as-built, stress
relieved, and heat treated. The stress relieved specimens were soaked at 650 ◦C for few
hours, and heat treated specimens were subjected to annealing treatment at 890 ◦C for 2 h.
The process parameters were optimized and the post-processing parameters mentioned
above were collected from the literature [22]. The data from the Paris law graphs for each
different processing and post-processing condition are collected and used for the predictive
analysis of the FCGR of Ti64 alloy. The design of experiments is shown in Table 1.
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Table 1. Experiments Design [22].

Post Processing Technique Built Orientation

As Built XY
Stress Relieved XZ
Heat Treated ZX

As Built XY
Stress Relieved XZ
Heat Treated ZX

As Built XY
Stress Relieved XZ
Heat Treated ZX

For these 9 different specimen conditions, the tests are conducted and Paris curves
were plotted for each of the experiments. The data was collected for each of the 9 different
specimen conditions and data points were taken from the Paris law curves, which were
plotted. The data points which were collected are plotted for visualization during the
analysis and shown in the Figure 1.
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Orientation and (c) ZX Specimen Orientation.

From the above graphs, it is observed that the effect of build direction is noticeable
when compared to the stress relieved and heat treated specimen conditions. The FCGR is
drastically increases when the build orientation is changed from XY to ZX or XZ, whereas,
for the heat-treated specimen, the crack growth rate decreases when the built orientation is
changed from XY to XZ or ZX. On the other hand, when we analyze the influence of post
processing, the as-built specimen has performed better than the stress relieved and heat
treated specimens in XY built orientation, showing an increase in FCGR in the XZ and ZX
built orientations.

2.1. Model Building

The individual data points in Figure 1 are considered as one data point. For each
individual data point in the graph, a corresponding output is generated. In this manner,
the dataset is formed for each of the nine experiments, which are shown in Table 1. This
data set is utilized for model building and predictions of FCGR for the Ti64 alloy.
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2.2. Feature Selection

For building a predictive model, the feature selection plays a major role which even-
tually contributes to the target value prediction. All the variables cannot be included in
the data; the variables that are mostly influencing the target variable, which is FCGR for
this study. Based on the domain knowledge and looking at the graphs in Figure 1, we can
presume that the post-processing technique and build orientation could be independent
variables for the analysis. Additionally, from the Paris law graphs, ∆K would be another
independent parameter. The sample data points after preparation of the data set are shown
in Table 2.

Table 2. Sample of collected data for Ti-64 alloy.

Post Processing Built Orientation ∆K (MPa
√

m) Crack Growth Rate (m/Cycle)

As Built XY 20.7 3.87 × 10−7

Heat Treated XZ 22.5 2.83 × 10−7

Stress Relieved ZX 14.3 1.05 × 10−7

2.3. Model Development

A series of models were built for the nine different specimen conditions, which are
shown in the Table 1, for the FCGR predictions of Ti6Al4V alloy using four different
algorithms. The train and test data are split into 85% and 15%, respectively, where the train
data is used for building model and hyper parameter optimization and the test data are used
to check performance of the model on the unseen data. The data has been split into train
and test datasets as there are no experimental results to validate the model that was built
other than the test dataset, whereas, the model is validated by comparing the performance
of the model on the train and test datasets to verify whether the model is overfitting
or underfitting in the present work. The scikit-learn library was utilized for adopting
algorithms, which are optimized algorithms [34]. A brief mathematical understanding of
each algorithm is provided in the following section.

2.3.1. K-Nearest Neighbour Algorithm

Among all the ML Algorithms, KNN is the simplest algorithm. This algorithm can be
used for both classification and regression problems. This algorithm uses feature similarity
to predict the values of unseen data points. The new data point is assigned a prediction
on how closely it resembles the data points in the training dataset. For this dataset, as
this is a regression problem, the average value of the k nearest neighbors in the training
data is taken as a prediction for the unseen data. There are few methods to calculate
nearest neighbors of the smallest distance, including the Euclidean distance, Manhattan
distance, and Hamming distance. For this study, we have used the Euclidean distance for
calculating the distances between the data points. The Euclidian distance ‘d’ is calculated
by the formula shown below in the Equation (1):

d =

√√√√ k

∑
i=1

(xi − yi)
2 (1)

where xi is the new point and yi is the existing point. K value in this algorithm is the
hyperparameter which has to be tuned to get the better result. For this problem, the value
of k = 3 has got least mean squared error when compared to other k values, which tells us
that taking 3 nearest neighbors and averaging the value gives us the better results.

2.3.2. Decision Trees

A Decision Tree is a supervised machine learning algorithm used for both classification
and regression problems. A decision tree segments the features by applying a set of decision
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rules. After segmenting the feature space, a constant piecewise approximation, such as the
mean, is used for predictions. Starting with the parent node containing the whole training
data, the decision tree is built by recursive partitioning. Recursively, the nodes are split
based on the minimization of mean squared error on the child nodes. The minimization
function for splitting the nodes is as follows.

1
NA
· ΣA

(
Y− ŶA

)2
+

1
NB
· ΣB

(
Y− ŶB

)2 (2)

ŶA =
1

NA
· ΣAYi and ŶB =

1
NB
· ΣBYi (3)

where, Y is the predicted value in corresponding child node, ŶA is the average of the
predictions in the child node A and ŶB is the average of predictions in the child Node B.
Decision trees are interpretable and versatile and able to identify complex relationships. In
spite of being able to identify the nonlinear patterns, decision trees often tend to overfit. A
small variation in the dataset which leads to a significant change in the tree structure could
alter the overall predictions. To avoid overfitting, the tree structure should be controlled
by providing the hyperparameters such as constraining the depth of the tree, minimum
samples in the leaf nodes etc. In the present work, Decision trees with a maximum depth of
6 provides the best results on train and test datasets.

2.3.3. Random Forest

Random Forest is the tree-based ensemble method which is used for both classification
and regression problems. To overcome the limitations in Decision Trees, the random
forest algorithm is trained through bagging (bootstrap aggregation), which is an ensemble
approach that improves the accuracy of the CART algorithm. In bagging, the decision trees
are built in parallel based on the feature and data sampling. Multiple decision trees are built
on those respective samples; hence, for achieving an overall better model, this algorithm
results in a greater diversity of trees which trades on a higher bias for lower variance.
In regression problems, this algorithm establishes the outcome based on the predictions
of the decision trees which are built in parallel. The prediction of the unseen data is the
average of the outputs from various decision trees. Increasing the number of trees increases
the precision of the outcome. It is more accurate than decision trees, gives reasonable
predictions without hyper-parameter tuning, and also solves the issue of overfitting in
decision trees.

2.3.4. Extreme Gradient Boosting Algorithm

Extreme Gradient Boosting (XG Boost) is an optimized Gradient Boosting algorithm
which is highly efficient and flexible to most datasets. This algorithm uses a regularization
term which makes this algorithm robust [35]. The objective function which ought to be
minimized is the sum of loss function and regularization term, shown in the below equation.

L = ∑
i

l
(
ya, yp

)
+ Σkβ( fk) (4)

where L = loss function representing the difference between the actual target value and the
predicted target value and β( fk) is the regularization term.

β( fk) = γT + 0.5 · λ ·ω2 (5)

where T represents, number of trees,ω represents, the leaf weight, γ represents, the pruning
index, and λ is the scaling factor of the weights, which are the hyper parameters. Since
the residuals of the preceding regression tree are trained to the succeeding regression
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tree, the objective function at t-th instance gets an additional term ft(xi) as shown in the
below equation.

L = ∑
i

l
((

ya, yt−1
p

)
+ ft(xi)

)
+ β( ft) (6)

As this is an objective function which is the function of functions, traditional opti-
mization methods in Euclidian space cannot be used for solving this problem. Hence, we
use Taylor’s approximation to transform that objective function to a function in Euclidean
domain, which helps us to use traditional optimization techniques. First and second terms
of the Taylor’s approximation are taken and other terms are eliminated. The equation is
given below.

L = ∑
i

l
((

ya, yt−1
p

)
+ gi ft(xi) + (0 · 5)hi f 2

t (x)
)
+ β( ft) (7)

where gi is the first derivative of the loss function and hi is the second derivative of the loss
function. Finally, after removing the constants, the loss function becomes,

L = ∑
i

(
gi ft(xi) + (0 · 5)hi f 2

t (x)
)
+ β( ft) (8)

The above loss function needs to be minimized and next decision tree is built based on
the errors predicted in the previous trees. Hence, eventually patterns are identified when
the residuals approach zero.

2.4. Hyper Parameter Optimization

Hyper parameter tuning is necessary to improve the performance of the model. Es-
pecially in decision tree-based models when the hyperparameters are kept default, the
model tries to build deeper trees which eventually gives better results on the train data
but performs poorly on test data. Hence, to restrict model to overfit and to generalize the
model, hyper-parameters are tuned. In order to obtain the best set of hyper-parameters that
predicts the FCGR behaviour closest to the experimental values, Bayesian optimization is
performed over the hyper-parameter space to minimize, the root mean squared error. Let H
be the overall hyperparameter space, ‘h’ be the vector in H and ‘O’ be the objective function
that has to be minimized. In the Bayesian approach, P(O|h) is used for hyper-parameter
sampling and updated iteratively to obtain optimum hyper-parameters. The least root
mean squared error is obtained in XGB, hence the hyper parameters were optimized for
that algorithm using Optuna package. The optimized hyper parameters for XG Boost
algorithm obtained after Bayesian Optimization are shown in Table 3.

Table 3. Optimized Hyperparameters for XGB.

Hyper Parameters Values

Booster Dart
Learning Rate 0.084

Maximum depth 3
Estimators 96

Alpha 0.188
Lambda 0.0088

Figure 2 represents the optimization process graphically, adopted for the FCGR mod-
elling. As can be seen, the objective value approaches the best value more closely as the
number of trials keeps increasing.
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3. Methods
3.1. Model Validation

After developing the models, the predicted results are compared with the actual data.
To analyze this, the experimental and predicted curves are plotted together to visualize
the closeness of the data points. When the curves of experimental results and predicted
results approach closer to each other, the predictive ability becomes stronger. The closeness
of the 9 different specimen conditions is plotted using the XGB model, which gives the best
results for this dataset. The actual and predicted results are plotted below.

The performance of the developed models was analyzed using few metrics. As this
was a regression problem, the metrics were the mean squared error, mean absolute error,
and R2 Scores. The model was trained on the train data and the performance was checked
on the test data. In order to check if the model was over-fitting or under-fitting, the
performance is checked both on train and test data. The performance metrics formulae are
shown in the equations provided below.

mse =
1
N

[
∑
(
ya − yp

)]2
(9)

mae =
1
N

Σ
∣∣ya − yp

∣∣ (10)

R2 = 1− ∑
(
ya − yp

)2

∑ (ya − ym)
2 (11)

where, ya is the actual value, yp is the predicted value and ym is mean of the actual values.
The Paris Curves in general have 3 regimes which are crack initiation region, stable

crack growth and unstable crack growth. In these three regimes, the crack initiation and
unstable crack growth are non-linear when observed from the curves, whereas the stable
crack growth region which is region 2 is linear. When the graph plotted is converted to
mathematical terms which is:

da/dN = C*∆Km (12)

which is exponential curve which accounts for linearity in all the three regions when it is
converted to logarithmic scale, where as it is evident from the Figures 3–5 that the non-
linearity is accounted for the 1st and 3rd regimes only using the developed ML model.
Hence, the actual graphs can be replicated given the features that account for the FCGR.
The models that are developed are compared using some of the performance metrics. When
the R2 score for the test data and train data are almost similar, then the model is said to be
performing similar to the train data on the unseen data. The performance measures are
plotted for all the 4 algorithms and compared as shown in the figures below.
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From Figure 6, it is observed that the DT, RF, and XGB were much superior to KNN.
The KNN is the rudimentary ML algorithm which predicts the values based on its nearest
neighbors. Due to the non-linearity of the data set in the present work, decision tree-
based algorithms were able to predict the patterns. It could be such situations when
traversing through non-linear data, wherein the data points in particular direction could
be further away from other data points and therefore, this KNN algorithm tries to move
in the direction where the data points are nearer. Therefore, the performance of KNN
algorithm was not comparable to Decision tree-based algorithms for the data analyzed in
the present work.
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3.2. Feature Importance Analysis

Feature Importance analysis is carried out to determine the most influencing inde-
pendent variables on the target column. For the dataset chosen, the features considered
are Post Processing Technique, built orientation and ∆K. Figure 7 shows the result of the
performed feature importance analysis. It is found that the most influencing feature is
∆K as this is the testing condition having direct influence on FCGR through Paris law.
However, the Post Processing parameter and Built Direction are the two conditions whose
importance are analyzed by Feature Importance analysis for the chosen dataset. After the
Hyper parameter tuning of XGB algorithm, the feature importance test was performed
using the optimized hyper parameters. The importance was calculated based on each
decision tree plotted and importance of each independent variable was taken from each
decision tree and aggregated to get the final important features. For the prediction of FCGR
of Ti6Al4V with 3 different post processing techniques and 3 different built orientations
present in the dataset, the post-processing technique was found to be more important
feature than the built orientation. As shown in the Figure 7, the feature with high F-score is
more important when compared to other features.
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In predicting the FCGR of Ti6Al4V alloy manufactured using LPBF, Post Processing
technique and Built Orientation are two independent parameters whose importance which
is measured can be justified by the experimental analysis provided in the literature. For
the as-built condition, XY oriented specimen demonstrates lowest FCGR, whereas the
ZX and XZ oriented specimens demonstrated similar FCGR and higher compared to as-
built XY oriented specimen. When the specimen is heat treated, the performance of ZX
and XZ is improved whereas XY oriented specimen performed slightly poorer. It is clear
that in as-built condition the relation between the built directions is more noticeable. In
other post processing conditions, the microstructural developments have occurred which
is the function of heat treatment temperature and residual stresses are relieved which
alter the FCGR. When the post processing is performed, it leads to the Hmogenization
of microstructure and the Paris law curves for all the build directions approach closer to
each other, where the significance of Build direction diminishes. Hence, Post Processing
technique is more important feature when compared to Build Orientation.

It is shown that machine learning model is capable of predicting the experimental re-
sults accurately as well as to identify the influence of independent parameters appropriately.

4. Microstructure-Property Correlation

The fatigue crack growth behaviour of additively manufactured Ti alloys is highly
microstructural dependent and therefore it is essential to discuss the microstructural con-
stituents of the alloys influenced by post-processing (such as heat treatment cycles), AM
built orientation, composition, etc., in this section. These microstructural features also
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influencing the static properties such as stress intensity factor (SIF), tensile, and hardness
along with dynamic properties (fatigue). Hence, these influencing microstructure and
associated property are accounted here to develop better understanding on ML assisted
prediction of fatigue properties of the Ti6Al4V alloy.

The microstructural evolution of Ti alloys occurs based on thermodynamic kinetics
principles. The Ti alloys are categorized mainly in terms of commercially pure (CP),
α/near α, α + β, and β types of alloys along with Ti-xAl type intermetallic compounds,
which are utilized based on its microstructural characteristics and properties in different
applications [36]. All the above constituent phases of the alloys are obtained primarily
based on α/β transus temperatures, martensitic start (Ms), martensitic finish (Mf), and
cooling rate parameters. The α alloys or super-α alloys contain major amount of α stabilizer
with a lean amount of β stabilizer to achieve good fatigue crack growth and creep resistance.
Such alloys are widely reported and collected to utilize in FCGR prediction through ML
modelling. Usually, such α alloys (hcp) exhibit suppressed ductility and toughness at
cryogenic temperature but could be improved by reducing interstitial contents, known
as Extra Low Interstitial (ELI) alloys. Along with creep properties, ELI grade α alloys
possess excellent combination of ductility, toughness, and fatigue properties which are
used extensively in engineering structural components. The Ti-5Al-2.5Sn is one of the ELI
grades α Ti alloys exhibits high fatigue strength besides its good tensile properties. The
Ti-6Al-2Sn-4Zr-2Mo-0.1Si, Ti-6242S(c)(e), IMI 685, IMI 829, and IMI 834 are the example of
Super-α alloys which show good fatigue properties.

The addition of α and β stabilizers would produce α + β dual phase Ti alloys which
influences cyclic strength significantly and hence fatigue crack growth resistance too. Alu-
minum is the example of α stabilizer whereas vanadium or molybdenum are β stabilizers.
The sufficient presence of β formers could assist to reach beyond β transus temperature
(e.g., 994 ◦C for Ti-64) while heating, where uniform single phase β (bcc) is obtained. Cool-
ing down from the β transus, would help to retain β phase or martensitic transformation.
Such a solution treatment followed by aging would strengthen the α + β alloys through
the formation of transformed-β/martensite (α′) and retained-β/acicular-α which show
higher high cycle fatigue strength and lower fatigue crack growth. The solution treatment
is followed by quenching either through water, oil or suitable quenchant solution. The
optimized process parameters in additive manufacturing could lead to α + β Ti alloys
with the desired morphology for reducing the number of post-processing steps prior to
its use. The α + β microstructure is dependent on alloy composition, solution treatment
condition, cooling rate, and section size. Aging of α + β alloys are usually performed
in between 480 ◦C to 650 ◦C, which precipitate the α phase or fine α/β combinations in
retained-β phase. Also, the adequate solution treatment and aging of this alloy could
lead to enhanced strength more that 30% which might be the reason for higher fatigue
crack growth behaviour too [37–41]. The few α + β Ti alloys are Ti-6Al-4V, Ti-6Al-4V-ELI,
Ti-6Al-6V-2Sn, UNS 56080, UNS 56740, Ti-6242, Ti-17, Ti-6Al-2Sn-2Zr-2Cr-2Mo, Ti-3Al-2.5V,
Ti-8Al-1Mo-1V(e), etc.

5. Conclusions

Fatigue crack growth rate behaviour of Ti6Al4V alloy fabricated by LPBF with respect
to 9 different specimen conditions was analyzed by using machine learning techniques.
The following conclusions are made based on the present work.

1. The influence of postprocessing treatments and built orientation on and FCGR of
Ti6Al4V fabricated using LPBF, analyzed through different ML algorithms, have
shown that the former has influenced its fatigue life significantly compared to the latter.

2. It was observed that the XGB algorithm has led to best R2 score and least mean
squared error in predicting the FCGR of Ti64 alloy.

3. In the feature importance analysis, apart from ∆K, the important parameters identified
are Post Processing technique and Built Orientation for predicting the FCGR of Ti-
64 alloy.
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Since the optimization of processing and postprocessing parameters are still in devel-
oping stage in metal additive manufacturing, data-driven models can help in establishing
the appropriate set of input variables. An effective property predictive model can improve
the understanding of FCGR mechanisms which would help to design the materials with
high performance.
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