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Abstract: The dynamic marine atmospheric corrosion behavior of AZ31 magnesium alloy was inves-
tigated in situ exposed on the deck of marine scientific research vessel for 1 year. The marine scientific
research vessel carried out five voyages from the coast of China to the western Pacific Ocean, while
the navigation track and environmental data were collected and analyzed. The corrosion rate and
characteristics were evaluated by using weight loss tests, scanning electron microscopy (SEM), X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The
corrosion rate from weight loss values was 52.23 µm·y−1 after exposure for 1 year, which was several
times higher than that of the static field exposure test in marine atmospheric environment of other
reported literature. The main corrosion products were Mg5(CO3)4(OH)2·4H2O, MgCO3·3H2O and
Mg2(OH)3Cl·4H2O. The corrosion was initiated from pitting corrosion and evolved into general corro-
sion gradually. The serious corrosion maybe due to the harsh corrosive environment with alternating
changes in temperature and relative humidity caused by multiple longitude and latitude changes,
and particularly high deposition rate of chloride during voyage, which was nearly twenty times that
on the coast of China. This study provides effective data for the application of magnesium alloy in
shipboard aircraft and other equipment, and provides a reference for indoor simulation experiments.

Keywords: magnesium alloy; dynamic marine atmospheric; corrosion; ocean voyage

1. Introduction

As the lightest structural metals, magnesium alloys possess good machinability and
high thermal conductivity, which have been widely used in marine equipment, shipboard
aircraft, and other fields [1–6]. However, magnesium alloys are susceptible to corrosion due
to the high chemical and electrochemical activity, which limits its application, especially in
corrosive atmospheric environments [7,8].

Many researchers have conducted a series of studies about the influence of environ-
mental factors on magnesium alloys. Esmaily et al. [9] reported that atmospheric corrosion
of Mg–Al alloy AM50 was strongly reduced with decreasing temperature. The research of
Merino et al. [10] showed that corrosion attack of Mg and Mg–Al alloy under the salt fog
test increased with increasing temperature. The relative humidity also affects the corrosion
behavior of magnesium alloys significantly. The study of Lebozec et al. [11] showed that
when the relative humidity increased from 75% to 95%, the corrosion rate of Mg–Al alloy
AZ91D and AM50 increased accordingly. In addition to temperature and relative humidity,
aggressive ions such as Cl−, accelerate the atmospheric corrosion process of magnesium
alloys obviously, especially in high relative humidity environment. Jönsson et al. [12]
studied the corrosion behavior of Mg–Al alloy AZ91D, which was exposed in humid air
at 95% relative humidity (RH) with deposition of 70 µg/cm2 NaCl. The results showed
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that the corrosion attack starts at locations with higher NaCl contents. However, most
research on the atmospheric corrosion process of magnesium alloys has performed tests
in simulated environment [13–19] that cannot fully simulate the synergistic effect of real
atmospheric environmental factors.

Recently, some further studies on atmospheric corrosion of magnesium alloys have
been conducted on the basis of exposure tests in actual atmospheric environments.
Jönsson et al. [20] reported that the corrosion rate of AZ91D exposed in the marine atmo-
spheric environment of 3–5 m from Atlantic shore Brest France was 4.2 µm/a, exposed in
the rural atmospheric environment of 100 km west of Stockholm was 2.2 µm/a, and ur-
ban atmospheric environments of Stockholm was 1.8 µm/a. Liao et al. [21] found that the
corrosion rate of AZ31B in the marine atmospheric environment (Shimizu, Japan) was
much higher than that in urban areas (Osaka, Japan). These results indicated that mag-
nesium alloys suffered more serious corrosion in the marine atmospheric environment.

There have been few studies of the corrosion behavior of magnesium alloys in dynamic
marine atmospheric environment, and current research on atmospheric corrosion behavior
of magnesium alloys were conducted with static field exposure test at permanent location,
such as the coast or island. In contrast to static field exposure tests, marine equipment
in application is mostly mobile in the ocean, and the harsh corrosive environment with
high relative humidity, high deposition rate of chloride [22] and alternating changes in
temperature and relative humidity caused by multiple longitude and latitude changes may
affect the corrosion behavior of magnesium alloys. The corrosion behavior of magnesium
alloy in the dynamic marine atmosphere environment of real ocean voyage has not been
widely reported, and the dynamic marine atmospheric exposure experiment is a necessary
complement to static exposure experiments and simulated atmospheric environments, and
can provide effective data for the corrosion behavior research of magnesium alloys in the
marine atmospheric environment.

In this work, the corrosion behavior of AZ31 magnesium alloys in the dynamic marine
atmosphere during ocean voyage was studied through the atmospheric exposure experi-
ment on the deck of Research Vessel KEXUE. In addition, the corrosion characteristics were
evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelec-
tron spectroscopy (XPS) and electrochemical measurements. This study provides effective
data for the application of magnesium alloy in shipboard aircraft and other equipment.

2. Materials and Methods
2.1. Material Preparation

The specimen in this work was as-extruded AZ31 magnesium alloy, the extrusion
temperature was 350 ◦C. The chemical composition was as listed in Table 1. Speci-
mens for field exposure test were all 100 mm × 50 mm × 3 mm. All specimens were
ground with 800 grit emery papers, degreased with acetone, dried with flowing air and
weighed. Four replicate metal samples were retrieved from the exposure site after 1, 3, 6
and 12 months. Three replicas were used to determine weight loss of specimens, and the
other one was used to analyze the corrosion morphology, corrosion products.

Table 1. The nominal chemical composition of AZ31 magnesium alloys (wt. %).

Material Al Zn Mn Si Fe Cu Ni Mg

AZ31 3.19 0.81 0.30 0.025 0.006 0.002 0.0006 Bal.

2.2. Dynamic Natural Environment Exposure Test

The dynamic natural environment exposure test was carried out on the open deck of
the Research Vessel KEXUE of the Institute of Oceanology, Chinese Academy of Sciences
(Qingdao, China). As is shown in Figure 1a,b, the specimens of AZ31 magnesium alloy (as
circled in red in Figure 1) were installed on the test rack with the angle of 45◦ horizontal to
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the deck. The cumulative atmospheric exposure time was 1 year. As is shown in Figure 1c,
the navigation range was around China offshore (Qingdao, China) to the western Pacific.
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2.3. Determination Method for Natural Environmental Factors

The temperature, relative humidity (RH) and wind speed were measured by the
automatic weather station of Research Vessel KEXUE.

The determination method for the deposition rate of chloride at the exposure test site
described below was based on GJB 8894.1-2017. A double-layer medical gauze used to
collect chloride ions with an area of 100 cm2 was exposed at the exposure site for 7 days.
Three parallel specimens of the gauze were collected each time. The collected gauze was
fully cleaned, and the chloride ions concentration in the solution was measured.

2.4. Corrosion Rate Measurements

The corrosion rate was measured by weight loss measurements, and the corrosion
products were removed by immersion in 200 g/L CrO3 + 10 g/L AgNO3 for 10 min at 25 ◦C,
and then the samples were rinsed with distilled water and alcohol, dried and weighted.
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The weight loss of AZ31 magnesium after exposure for different periods was calculated
by using the following equation:

C = (w0 − w1)/S (1)

where C is the weight loss of the metal due to corrosion, w0 is the original weight, w1 is the
final weighted, S is the surface area.

The corrosion rate of AZ31 magnesium after exposure for different periods was
calculated by using the following equation:

v = (w0 − w1)/(S·T·ρ) (2)

where v is the corrosion rates of the metal due to corrosion, w0 is the original weight, w1 is
the final weight, S is the surface area, T is the experimental time, ρ is the density.

2.5. Corrosion Products Analysis

Corrosion morphology of corrosion products was observed by scanning electron mi-
croscope (Regulus 8100, HITACHI, Tokyo, Japan) and Laser confocal scanning microscopy
(OLS5000, Olympus, Tokyo, Japan). Phase composition was analyzed by X-ray diffraction
(Ultime IV, Rigaku, Tokyo, Japan), and the element types and valence states of the corrosion
products were analyzed by X-ray photoelectron spectroscopy (ESCALAB 250Xi, Thermo,
Waltham, MA, USA).

2.6. Electrochemical Measurements

Electrochemical measurements were performed with a electrochemical workstation
(PARSTAT 4000, Princeton Applied Research, Oak Ridge, TN, USA) in 3.5% NaCl solution in
a conventional three-electrode cell, where the magnesium alloy specimen was the working
electrode, saturated calomel electrode was the reference electrode and Pt foil was the
counter electrode. The test system was always in a steady state with no stirring. The
working electrode surface was covered with silicone rubber to leave an exposed area of
1.0 cm2. Prior to testing, the working electrode was stabilized for about 30 min with
open circuit potential measurement. Potentiodynamic polarization test was measured
in the range of ±0.5 V vs. the open circuit potential with the scan rate 1 mV/s. All the
measurements were performed at ambient temperature (25 ± 2 ◦C) and repeated at least
three times to maintain the reproducibility.

3. Results
3.1. The Environment of Field Exposure

The exposure environment of the specimens is the deck of the Research Vessel KEXUE,
which is quite different from the static field exposure test at permanent locations such as
the coast or islands reported in other studies.

Firstly, the duration of navigation in the western Pacific Ocean accounted for most of
exposure time. During the exposure period, the proportion of the time of dynamic state
(navigation in western Pacific Ocean) was 58.1%, and static state (stopping at Qingdao)
was 41.9%. The ratio of the dynamic state and static state of exposure was about 3:2,
which is more consistent with the real application environment of magnesium alloys in
marine equipment.

Secondly, the Research Vessel KEXUE went to the western Pacific Ocean to carry out a
series of scientific investigations, and traveled between Qingdao and the western Pacific
five times during the exposure period, experiencing large changes in temperature during
four of them. During the exposure period, the average temperature in western Pacific
Ocean was about 29 ◦C, the average relative humidity was about 78%. In Qingdao, the
annual average temperature was 14.4 ◦C, and the lowest temperature was below 0 ◦C in
winter. The annual average relative humidity was 75.0%. Figure 2 shows the daily average
temperature and relative humidity at exposure test site during voyage. As is shown in
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Figure 2, after exposure for 3 months, the Research Vessel KEXUE returned to Qingdao from
the western Pacific Ocean with a hot and humid environment, while at that time it was
winter in Qingdao, so the temperature and relative humidity of the exposure site changed
significantly. A few days later, the Research Vessel KEXUE went to the western Pacific, and
the temperature and relative humidity rose again. The changes in temperature and relative
humidity in other voyages were similar. In static exposure tests, only the change in season
causes the slow change of temperature and humidity, but the specimens exposed on the
deck experience rapid change of temperature and humidity several times in one year. The
circulation of temperature change may cause more serious corrosion [23].
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Figure 2. Daily average temperature and relative humidity at exposure test site during voyage:
(a) temperature, (b) relative humidity.

Thirdly, the specimens exposed on the deck were subjected to the severe marine
environment. Table 2 shows the range and average value of environment factor during the
exposure period. Figure 3 shows the proportion of different range of temperature, relative
humidity, deposition rate of chloride and wind speed during the ocean voyage, according
to the hourly average value. Table 3 shows the range and average value of environment
factor during ocean voyage. The temperature was higher than average temperature (26 ◦C)
for most of the time, the maximum humidity was 97%, and the maximum wind speed was
above 20 m/s. It is worth noting that during ocean voyage, the deposition rate of chloride
was extremely high, and was above 100 mg/m2 d most of time, and the highest value was
above 1100 mg/m2 d. The deposition rate of chloride was much higher than the value
reported in other research measured in the static marine atmospheric exposure test, as
shown in Table 4.

1 
 

 

Figure 3. The proportion of environment factors during ocean voyage. (a) Temperature, (b) relative
humidity, (c) wind speed, (d) deposition rate of chloride.
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Table 2. The range and average value of environment factor during exposure period.

Environment Factor T
(◦C)

RH
(%)

Cl−
(mg/m2d)

Wind Speed
(m/s)

Range −0.9~33.1 18~97 63.9~1130.0 0~20.2
Average value 21.1 75.4 232.4 5.2

Table 3. The range and average value of environment factors during ocean voyage.

Environment Factor T
(◦C)

RH
(%)

Cl−
(mg/m2d)

Wind Speed
(m/s)

Range −0.9~33.1 18~97 63.9~1130.0 0.2~20.2
Average value 26.0 75.7 380.4 6.8

Table 4. The deposition rate of chloride in static marine atmospheric exposure test.

Location Climate Type Deposition Rate of Chloride
(mg/m2d)

The Gulf of Mexico [24] subtropical monsoon 110~311
Zhanjiang, coastal of China [25] subtropical monsoon 100~600

Xisha Islands, China [22] tropical marine climate 64.39
Qingdao, coastal of China [26] temperate monsoon 25
Shimizu, coastal of Japan [21] temperate monsoon 4.2

It has been reported that chloride ions and relative humidity in the marine atmosphere
significantly impact the corrosion processes of magnesium alloy [10,12,27]. Many studies
illustrate the well-known corrosiveness of NaCl towards Mg alloys, and NaCl can form
aqueous solution by absorbing water at RH > 75% [9]. As shown in Figure 3, the proportion
of time when RH > 75% was 56%, which indicated that AZ31 magnesium alloy was covered
by the thin electrolyte layer of high concentration of Cl− for more than half of the time
during the ocean voyage. The thin electrolyte layer covering the surface of specimens
provided the reaction environment for the electrochemical reaction during the corrosion
process and made large areas on the surface become electrochemically connected.

Additionally, the chemical and electrochemical reactions involved in the anodic and
cathodic reactions are thermally activated [28,29], and the effect of high temperature may
also accelerate the anodic and cathodic reactions during ocean voyage.

Considering the synergistic effect of high temperature, high humidity, and high depo-
sition rate of chloride, AZ31 magnesium alloy may suffer severe corrosion in hash dynamic
marine exposure test compared with the static field exposure test at permanent location
during ocean voyage.

3.2. Corrosion Rate

The weight loss of specimens exposed to the marine atmospheric environment during
ocean voyage is shown in Figure 4. For the first month of the exposure period, the corrosion
rate was 29.81 µm·y−1. However, after exposure for 3 months, the slope of the curve of
weight loss increased significantly. In addition, then the weight loss of specimens increased
at the similar rate with the elapse of exposure time. After exposure for 1 year, the corrosion
rate was 52.23 µm·y−1, which was significantly higher compared with other static exposure
studies. It was almost 3 times higher than that of the Xisha Islands [22] and 1.6 times higher
than that of the Shimizu, Japan [21]. This means that AZ31 magnesium alloy suffered more
serious corrosion in dynamic marine atmospheric environment.
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Figure 4. The weight loss of AZ31 magnesium alloy in the marine atmospheric environment during
ocean voyage.

Figure 5 shows the monthly average values of temperature, relative humidity and
deposition of chloride ion during exposure time. It can be seen that relative humidity
and the deposition of chloride ion remained at high level. In addition, at the beginning
of exposure, the deposition of chloride ion increased continuously, the maximum value
appeared at the time of exposure for 3 months, almost 2 times higher than that of the first
month. Therefore, the corrosion rate of AZ31 magnesium alloy increased significantly
after exposure for 3 months. During the following exposure period, the AZ31 magnesium
alloy was covered by thin electrolyte layer of high concentration of chloride ion in most of
time under the high relative humidity and high deposition of chloride ion. Therefore, the
corrosion rate of specimens remained at a high level.
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3.3. Surface Morphology Analysis

Figure 6 shows the surface appearance of AZ31 magnesium alloy specimens with
corrosion products and without corrosion products after exposure for different periods in
dynamic marine environment of ocean voyage. The specimens lost their metallic luster after
exposure for 1 month, and many corrosion products formed on the surface. After exposure
for 12 months, the whole surface of specimens was covered by corrosion products. After
removing the corrosion products, we found that the amount of corrosion pits increased, and
the corrosion pits connected with each other continuously with the elapse of exposure time.
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Figure 6. Surface appearance of AZ31 magnesium alloy specimens exposed for different periods in
marine environment of ocean voyage: (a) with corrosion products, (b) without corrosion products.

Figure 7 displays the SEM of AZ31 magnesium alloy specimens exposed for different
periods in the marine environment. A trace amount of corrosion products appeared on the
surfaces of AZ31 magnesium alloy specimen after exposure for 1 month. After removing
corrosion products, it can be seen that there were obvious corrosion pits on the surface
of AZ31 magnesium alloy (as pointed by the arrow in Figure 7b). After exposure for
3 months, corrosion pits increased, and corrosion products completely covered the whole
surface. After exposure for 6 months, a large number of corrosion products gathered on the
surface of the specimens, part of surface of specimen appeared the detachment of corrosion
products (as circled in red in Figure 7a), and corrosion pits connected with each other
(as circled in red in Figure 7b). After exposure for 12 months, thick corrosion product layers
covered the whole surface of specimen with cracks.
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Figure 7. SEM images of the surface of AZ31 magnesium alloy specimens with corrosion products
exposed for different periods in marine environment of ocean voyage: (a) with corrosion products,
(b) without corrosion products.

Figure 8 shows SEM images of the cross-section of AZ31 magnesium alloy specimens
exposed for 12 months in dynamic marine environment of ocean voyage. After exposure
for 12 months, a corrosion product layer with a thickness of more than 50 µm was formed
on the surface of specimens. However, it could also be seen that there were some small
cracks in corrosion product layer. The thin electrolyte layer of high concentration of Cl−

might permeate into the matrix through these cracks, which might weaken the protection
of corrosion products.
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Figure 8. SEM images of the cross-section of AZ31 magnesium alloy specimens exposed for 12 months
in dynamic marine environment of ocean voyage.

Figure 9 shows the laser confocal scanning microscopy (LCSM) analysis of AZ31
magnesium alloy specimens exposed for different periods in marine environment. The
maximum pit depth presented a significant increase with prolonged exposure time. The
maximum pit depth of specimens after exposure for 1, 3, 6 and 12 months were 44.213 µm,
63.048 µm, 172.344 µm and 276.366 µm, respectively. The research of Cui et al. [22] showed
that the deepest pits of AZ31 magnesium alloy exposed on Xisha Island, with a tropical
marine climate, after exposure for 1,3 and 6 months were all in the order of 30 ± 3 µm.
The value of pit depth of AZ31 magnesium alloy exposed in dynamic marine atmospheric
environment was significantly higher compared with other static exposure studies.
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Figure 9. Laser confocal scanning microscopy (LCSM) of AZ31 magnesium alloy specimens without
corrosion products exposed for different periods in marine environment of ocean voyage. (a) 1 month,
(b) 3 months, (c) 6 months, (d) 12 months.

The analysis of the surface morphologies shows that the corrosion of AZ31 magnesium
alloy was influenced by dynamic marine environment significantly. At the beginning of
exposure, the corrosion products were formed at active sites under the corrosiveness of
chloride ion. After exposure for 3 months, the average deposition rate of chloride ion
was highest (in Figure 5). Under the synergistic effect of high temperature, high relative
humidity and high deposition rate of chloride ion, a lot of corrosion products were formed
on the surface of specimens after exposure for 3 months. After exposure for 6 months,
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specimens experienced temperature difference caused by ocean voyage from Qingdao to
the western Pacific several times. The volume changes in the matrix and the corrosion
product layer was different when temperature changed rapidly. Therefore, there was
obvious stress at the interface between matrix and the corrosion product layer, which
accelerated the detachment of corrosion products and the formation of cracks. The change
in temperature and hash environment factor such as high wind speed and storm damaged
the integrity of corrosion product layer seriously. As discussed in Section 3.1, the specimens
were covered by a thin electrolyte layer of high concentration of chloride ions in most
of time during ocean voyage. Therefore, the solution contained chloride ions that had
stubbornly penetrated into the corrosion product layer through destroyed area of corrosion
product layer, causing the amount and depth of the local corrosion to increase continually.
With the extension of exposure time, more and more corrosion pits connected with each
other, leading to the general corrosion and expansion of corrosion to the matrix.

3.4. Corrosion Product Analysis

The composition of corrosion products can be analyzed by XRD [30]. Figure 10 shows
the composition of corrosion products formed on AZ31 magnesium alloy after exposure
for 12 months. The results showed that the main corrosion products generated on AZ31
magnesium alloy were carbonate-containing compounds Mg5(CO3)4(OH)2·4H2O (JCPDS
25-0513) [31] and MgCO3·3H2O(JCPDS 70-1433) [32], and chloride-containing compound
Mg2(OH)3Cl·4H2O (JCPDS 07-0412) [33]. This indicates that CO2 and Cl− participated in
the corrosion process.
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Figure 11 shows the XPS spectrum of corrosion products formed on AZ31 magnesium
alloy exposed for 12 months in the marine environment of ocean voyage. The element C
existed as CO3

2−, C-O, C=O and C-H or C-O, and carbon-containing pollutants existed
on the surface of specimens. The element O existed as CO3

2− and OH−. The ratio of
CO3

2− and OH− in the corrosion products was about 5.5:1, which indicated that CO2
participated in the corrosion reaction process in the hot and humid environment and there
were a large amount of CO3

2−containing compounds in the corrosion products. This was
consistent with the results of XRD. As shown in Table 5, the proportion of Cl 2p was 12.69%.
Combined with the previous analysis of XRD and the high deposition rate of chloride, the
Cl 2p in the whole-range spectra was due to chlorine-containing corrosion products and
the deposition of chloride ions.
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Figure 11. The XPS binding energy spectrum of corrosion products formed on AZ31 magnesium
alloy exposed for 12 months in the marine environment of ocean voyage: (a) narrow scan spectrum
of C 1s, (b) narrow scan spectrum of O 1s, (c) whole spectrum, (d) proportion of the different states of
element O.

Table 5. The XPS analysis of the corrosion products formed on AZ31 magnesium alloy exposed for
12 months.

Element S 2p Cl 2p C 1s O 1s Mg 2p Zn 2p

Atomic % 1.99 12.69 29.6 41.71 13.7 0.3

3.5. Electrochemical Behavior Analysis

Figure 12 shows the polarization curves of AZ31 magnesium alloy matrix and after
exposure for 12 months. The corrosion potential and current density are listed in Table 6.
Compared with the AZ31 matrix, the specimens after exposed for 12 months showed a
current density decreasing and a positive shift of corrosion potential. The current density
decreased about one order of magnitude. This indicates that the corrosion products gen-
erated on the surface of specimens might impede the ion diffusion process [34]. With the
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extension of exposure, more and more corrosion products were generated on surface of the
specimens under the synergistic effect of high temperature, high relative humidity and the
high deposition rate of chloride ion, making the plugging effect of the corrosion product
layer more obvious.
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Table 6. The corrosion potentials (Ecorr) and corrosion current density (icorr) obtained from anodic
polarization curves of AZ31 magnesium alloy.

Specimens Potential
(Ecorr /V)

Corrosion Current Density
(icorr /Acm−2)

Matrix −1.532 1.054 × 10−4

12 months −1.508 2.984 × 10−5

4. Discussion

Figure 13 shows the corrosion process schematic of AZ31 magnesium alloy during
exposure in the dynamic marine atmosphere.
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During the initial stage of the reaction, chloride ions attached to the defects on the
specimen surface and reacted with magnesium substrate and magnesium corrosion prod-
ucts, and destroyed the integrity of the surface. The thin electrolyte layer of high chloride
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ion concentration covered on the surface of specimens provides the reaction environment
for the electrochemical reaction and make large areas on the surface become electrochem-
ically connected, the corrosion occurs rapidly, and corrosion products are generated on
the surface.

The degradation of AZ31 magnesium alloy was dominated by the chemical reaction
process including oxidation and hydration reactions at the beginning [9].

Anodic reaction:
Mg→Mg2+ + 2e− (3)

Cathodic reaction:
2H2O + 2e−→2OH− + H2 (4)

With the extension of exposure time, the location of local corrosion increased, Cl− dif-
fused into the matrix through corrosion pits, and the anodic reaction taken place inside the
magnesium alloy matrix, which induced deep pits in specimens. At the same time, cathodic
reaction had taken place on the specimen surface to generate OH−, which could combine
with Mg2+ to form magnesium hydroxide and magnesium hydroxyl-carbonate layer.

According to the phase diagram of the system MgO / CO2/H2O [35], brucite reacted
with CO2 to form MgCO3 as follows [15]:

Mg(OH)2 + CO2→MgCO3 + H2O (5)

CO2 reacted with H2O to form HCO3
−, and then reacted with brucite [22]:

5Mg(OH)2 + 4HCO3
− + nH2O→Mg5(CO3)4(OH)2·4H2O + 4OH (6)

Brucite reacted with H+, Cl− and H2O to form Mg2Cl(OH)3 as follows [36]:

2Mg(OH)2 + H++Cl− + 3H2O→Mg2Cl(OH)3·4H2O (7)

With the extension of exposure time, the location of local corrosion increased under
the continuous action of high temperature and the thin electrolyte layer of high chloride
ion concentration, the corrosion pits continuously sprout on the surface and connect with
each other, the specimen evolved into general corrosion. Due to the synergistic action of
the change of temperature, high wind speed and storms, corrosion products were peeled
off from specimens, and all these harsh dynamic environmental factors accelerated the
corrosion process.

5. Conclusions

The effect of the dynamic marine atmospheric environment on the corrosion process
of AZ31 magnesium was investigated in this work. The results of this study are applicable
to the coastal areas of China and the Pacific Ocean marine environment, and could provide
effective data for the application of magnesium alloys in carrier plane during ocean voyage.
The results can be summarized as follows:

1. The corrosion rate of AZ31 magnesium alloy after exposure for 1 year in dynamic ma-
rine atmospheric environment ocean voyage was 52.23 µm·y−1, the maximum depth
of corrosion pits was 276.366 µm, which is much higher than that of other research
studied with static field exposure test at permanent location in marine environment.
After exposure for 1 year, the main corrosion products were Mg5(CO3)4(OH)2·4H2O,
MgCO3·3H2O and Mg2(OH)3Cl·4H2O. The corrosion was initiated from pitting corro-
sion and evolved into general corrosion.

2. The dynamic marine atmospheric environment is hash, with high temperature, high
relative humidity and high deposition rate of chloride. The average temperature was
26.0 ◦C. The relative humidity was 75.7%, the proportion of time when RH > 75% was
56%. The average deposition rate of chloride ion was 380.4 mg/m2d.
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3. The synergistic effect of high relative humidity and chloride ion plays an important
role in the corrosion process of AZ31 magnesium alloy. During ocean voyage, the
AZ31 magnesium alloy was covered by thin electrolyte layer of high concentration
of chloride ion in most of time, which accelerated the corrosion of AZ31 magnesium
alloy significantly.
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