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Abstract: Q&P steel has the advantages of high strength and high elongation, but the key to the pro-
duction of Q&P steel is the control of heat treatment temperatures, such as the annealing temperature
and the partitioning temperature. In this work, SEM, TEM, EBSD, and other methods are used to
study the effects of different partitioning temperatures on the microstructure and properties of 2.0 Mn
low-carbon Q&P steel during the continuous annealing process. The results show that the grain size
and quantity of the residual austenite (RA) increase significantly with the increase in the partitioning
temperature, and the strength of the machine can reach 27.2 GPa% at the partitioning temperature
of 370 ◦C. Meanwhile, the retention mechanism of the residual austenite at the partitioning stage is
also clarified.

Keywords: Q&P steel; partitioning temperature; residual austenite; mechanical properties

1. Introduction

Automobile exhaust pollution has become a major cause of pollution with the increase
in car traffic. According to the reports of the World Steel Association [1], each kilogram
of advanced high strength steel utilized reduced CO2 emissions by 8 kg, or 5.7 percent
throughout the life of vehicle. As a result, innovative high strength steel is developed to
lighten the weight of cars and decrease exhaust emissions. Not only does it have good met-
allurgical performance but also numerous advantages required by vehicle manufacturing,
such as safety, durability, formability, and economy [2,3]. In recent years, many researchers
have been working on the third generation of high strength steel for automobiles. It is con-
sidered as the most promising automotive steel, such as quenching and partitioning (Q&P)
steel [4–6], due to the better mechanical properties, lower cost, and alloying. It is crucial to
obtain the excellent mechanical properties of a sound microstructure for Q&P steel [7–10].
There are two stages to the Q&P process: in the first step (annealing), a particular quantity
of hard phase martensite (M) is obtained by managing the annealing temperature to achieve
a higher Q&P steel strength; in the second stage, the carbon diffuses from the martensite
to the residual austenite, making the residual austenite more stable at ambient tempera-
ture in order to obtain high strength and good ductility simultaneously [11]. It has been
reported that the volume fraction and stability of the RA affect the mechanical properties
of Q&P steel, such as strength, impact toughness, abrasive resistance, and so on [12–14].
The stability of the RA is closely related to its size and shape, as well as the surrounding
matrix [15–18]. Generally, the lamellar RA can resist plastic deformation and delay the
strain-induced martensite transformation, while the block RA is prone to transform to
martensite at low strain.

Based on the above statement, the volume fraction, stability, and morphological
character of the RA are the main factors for the mechanical properties, while the fact that
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the mechanical properties are susceptive to the RA character. Meanwhile, the partitioning
temperature is dominant are influential factors for the RA character [19].

While many scholars have conducted vast research about the partitioning of Q&P
steel [20–22], the present research ignores the slow cooling stage after critical annealing.
It is well known that the transformation dynamics are affected by the incubation period.
In the slow cooling stage, the initial ferrite promotes the transformation and reduces
the incubation period, and the transformation from austenite to ferrite occurs during
the slow cooling stage. Therefore, the rate of the austenite after the slow cooling stage
is less than that formed in the critical annealing stage, and the morphology of the RA
evolves due to the transformation in the slow cooling stage. As a result, there is a need to
explore the processing window of continuous annealing, taking the slow cooling stage into
consideration.

Hence, this research investigated the influence of the partitioning temperature on the
microstructure and mechanical properties by simulation continuous annealing, in order
to obtain the reasonable partitioning temperature range for 980 MPa Q&P steel industrial
production. Combined with electron back-scattered diffraction (EBSD) and the transmission
electron microscope (TEM) characteristic, the size and partitioning of the RA are discussed,
and the effects of the different partitioning temperatures on the RA are analyzed.

2. Experimental Procedure

The chemical composition of the Q&P steel in the research was C: 0.2 wt.%, Mn: 2.0 wt.%,
Si: 1.55 wt.%, S: 0.009 wt.%, P: 0.010 wt.%, Al: 0.017 wt.%, and bal. Fe. Ac1 = 745 ◦C,
Ac3 = 893 ◦C, Ms = 380 ◦C, and Mf = 170 ◦C were measured by Gleeble 3500 (DSI, St. Paul,
MN, USA). The Ac3 is the transition temperature from liquid phase to austenite and Ac1
is the austenite transition end temperature. The heat treatment process of the cold-rolled
steel plate was shown in Figure 1. The muffle furnace was used to heat the specimens.
The specimens were homogenized at 790 ◦C for 300 s in the furnace, then slowly cooled
to 720–740◦C at a cooling rate (<10 ◦C/s) and followed by quenching to 280 ◦C, 310 ◦C,
340 ◦C, and 370 ◦C for 500 s respectively, to simulate the partitioning processing during the
industrial continuous annealing.
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Figure 1. The schematic diagram of heat treatment.

Subsequently, the annealed metallographic specimens were etched in 4% nitric acid
alcohol solution for 6 s, and the microstructure was observed by the JEM-2800F field
emission scanning electron microscope (SEM, JEOL, Beijing, China). Electrolytic polishing
was carried out with alcohol perchlorate electrolyte and phase analysis was carried out
with an X-ray diffractometer (XRD) in order to eliminate the possible stress during the
mechanical polishing. Based on the results of XRD, the RA fraction and carbon content were
calculated by the integral intensity of (200)γ, (220)γ, (311)γ, (200)α and (211)α peaks [23].
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The specimens were subjected to EBSD analysis by Oxford Nordly MAX3 (Oxford
Instruments plc, Shanghai, China). The measurement parameters were as follows: the
acceleration voltage was 20.00 KV, the sample tilt angle was 70◦, the acquisition speed was
320 Hz, and the sample area was scanned with a step size of 0.1 µm. Finally, the compre-
hensive mechanical properties were characterized by the UTM3000 universal electronic
tensile testing machine (SUNS, Shenzhen, China) at a tensile speed of 1 mm/min, and the
size of tensile is shown in Figure 1.

3. Results
3.1. Microstructural Characterization

The microstructure at the different partitioning temperatures is shown in Figure 2. It
was obvious that the microstructure of Q&P steel was mainly composed of ferrite (F) and
martensite after different temperature partition. The black matrix was F, and the gray block
and strip was M. The martensite was lath and block at 280 ◦C. The size of the martensite
decreases obviously when the temperature increased to 370 ◦C. The morphology of the
martensite changed from laths to islands by SEM images. The partitioning temperature
was close to the martensite transition temperature, which would cause the decrease in
martensite fraction. Meanwhile, the martensite lath size also decreased with the increase
in the partitioning temperature [24], resulting in the interfacing between the M and RA
during the partitioning processing. The atomic diffusion coefficient was smaller and the
diffusion driving force was lower at lower temperatures. Therefore, the C diffusion rate
(from M to RA) was low at the 280 ◦C and 310 ◦C. As a result, there was some poor C zone
in the austenite during the partitioning processing. It was well known that the C was the
stable element of the austenite. Therefore, the poor C zone would transform into secondary
martensite (b-M) during the cooling processing after the partition. Accordingly, the fraction
of the b-M was related to the partitioning temperature. The fraction of the b-M increased
with the increase in temperature. A small amount of the M occurred decomposition, and the
b-M was islet. Meanwhile, there were some fine particles with diameters ranging from 50
to 70 nm at the partitioning temperatures 340 ◦C and 370 ◦C. These small particles derived
from the martensite-tempered decomposition and were considered as carbides [25,26]. The
size of the M decreased and the fraction of carbides increased slightly with the increase in
temperature. The fraction of the M decreased about 11.2% and the average size decreased
from 1.1 µm to 0.75 µm with the increase in temperature from 280 ◦C to 370 ◦C, respectively.
The morphology of the martensite lath is shown in Figure 2d at 370 ◦C.
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Figure 2. SEM micrographs of specimens at different partitioning temperatures: (a) 280 ◦C, (b) 310 ◦C,
(c) 340 ◦C, and (d) 370 ◦C. Where RA is residual austenite, and M is martensite, and F is ferrite.
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Figure 3 showed the EBSD images of the specimens at the different partitioning
temperatures. The white part was F and M, and the red part was RA. It was obvious that
most of the austenite were islands, and the RA distributed at grain boundary of the F more
than in the M. The RA gradually migrated into the grain and the size increased as the
partitioning temperature increased.
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the white part is ferrite and martensite, and the red part is residual austenite.

The grain size of the RA at the different partitioning temperatures is shown in Figure 4.
The average size of the RA grains increased as the partitioning temperature increased.
The RA orientation of the different partitioning temperatures is shown in Figure 5. The
misorientation was mainly concentrated at the low angles grain boundaries (LAGBs) of
1–2◦ and the high angles grain boundaries (HAGBs) of about 60◦. The LAGBs gradually
decreased as the partitioning temperature increased, but the HAGBs increased. The highest
fraction of HAGBs was obtained at 370 ◦C, which indicated that the residual austenite at
the large angle grain boundary was obtained easily.
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Figure 4. The statistical partitioning of residual austenite grain size in samples: (a) 280 ◦C, (b) 310 ◦C,
(c) 340 ◦C and (d) 370 ◦C.
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Figure 5. Misorientation of RA after different partitioning temperatures: (a) 280 ◦C, (b) 310 ◦C,
(c) 340 ◦C and (d) 370 ◦C.

The RA fraction was quantitatively analyzed by XRD, and the carbon concentration
in the RA was calculated according to Equations (1) and (2) [27,28]. Figures 6 and 7 show
the results.

Cγ = (αγ − 3.547)/0.046 (1)

αγ =
λ
√

h2 + k2 + l2

2sinθ
(2)

where 3.547 is lattice spacing of the retained austenite, 0.046 is the value of the tangential
function, λ is the wavelength of the Cu target ray (1.5406), Cγ is the carbon content in the
RA, αγ is lattice parameter, h and k as well as l are lattice constants.
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Figure 6. (a) XRD spectra and (b) enlarged view of (200)γ. where (200)γ, (220)γ, and (311)γ are the
austenite peaks and (200)α and (211)α are the ferrite peaks.
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Figure 7. Relationship between RA fraction, carbon content and partitioning temperature.

The fraction of the RA increased from 6.7 to 10.2% as the temperature increased from
280 ◦C to 370 ◦C. The result was higher than that of the EBSD, which indicated that some
thin film RA was not measured by the EBSD due to the thickness less than the step size of
the EBSD. The carbon content of the RA determined the stability at room temperature. The
(200)γ peak after amplification is shown in Figure 6b, and the offset of the peak indicated
that the carbon content of the RA was different [29]. According to the calculation, the
RA fraction was 6.8% and the average carbon concentration was 1.27% at 280 ◦C. The RA
fraction increased to 10.2% and the average carbon concentration reached to 1.43% at 370 ◦C.
It indicated that the RA fraction was positively related with the temperature variation. The
relationship between the RA and Cγ as well as the partitioning temperature is shown in
Figure 7, and the trend of the Cγ variation agreed with that of the RA. The carbon content
in the RA affected the occurrence of the TRIP effect by altering the stability of RA [30].

3.2. Mechanical Properties

The mechanical properties and engineering stress–strain curves after heat treatment at
different partitioning temperatures are shown in Table 1 and Figure 8a, respectively. The
tensile curves showed the continuous yield characteristic after heat treatment at different
temperatures. The tensile strength decreased from 1238 to 963 MPa, and the elongation
increased from 19.4% to 28.3% when the partitioning temperature increased from 280 ◦C
to 370 ◦C. However, the yield strength had little change under different partitioning
temperatures. The proportion of soft phase ferrite increased and the proportion of hard
phase martensite decreased, which would cause the decrease in tensile strength with
the increase in partitioning temperature. Meanwhile, the increase in ferrite and residual
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austenite also increased the elongation of the specimen. The reduction in yield strength
was mainly attributed to the TRIP effect of the residual austenite. Figure 8b showed the
relationship between the mechanical properties and partitioning temperatures. The tensile
strength (Rm) was reversely related to the variation of partitioning temperatures, while the
elongation (A) was positively correlated to the variation of the partitioning temperature.
The product of tensile strength and elongation (Rm·A) increased with the partitioning
temperature. Therefore, the strongest plastic product reached 27,252.9 MPa·% at 370 ◦C.

Table 1. Mechanical properties of steel treated at different partitioning temperatures.

Partitioning Temperature (◦C) RA (%) Rm (MPa) A (%) Rm·A (MPa·%)

280 6.7 1238 19.4 24,017.2
310 7.2 1126 22.9 25,785.4
340 8.7 1029 25.8 26,548.2
370 10.2 963 28.3 27,252.9Metals 2022, 12, x FOR PEER REVIEW 7 of 12 
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Figure 8. (a) Engineering stress–strain curves of experimental steels and (b) The relationship between
mechanical properties and partitioning temperature of test steel.

4. Discussion
4.1. Effect of Partitioning Temperature on Microstructure

The microstructure was mainly composed of soft phase ferrite, hard phase martensite,
and a few RA after heat treatment at different temperatures.

The high tensile strength of Q&P steel was mainly determined by the M. In this
work, the M was composed of much of the block M and a little of the lath M at the lower
partitioning temperatures (Figure 2a,b). Some researchers [31,32] showed that the strength
decreased in turn of the lath M, block M, dispersed island M. In this research, the fraction of
the block M decreased as the partitioning temperature increased, but the island M increased.
Therefore, the strength of Q&P steel decreased. The annealing temperature determined
the fraction of the prior austenite. The partitioning temperature between Ms and Mf
determined the fraction of the M and RA. Moreover, the morphology of the martensite
did not only relate to the prior austenite, but also had a great relationship with the carbon
content. When the carbon content was low, the lath M was formed in the prior-austenite
grain obviously, so the stability of the lath M was higher than that of the block M. Similarly,
the substructure of the martensite was mainly high-density dislocation, so the dislocation
density of the lath martensite was higher than that of the block martensite [33,34].

The martensite and ferrite could be distinguished according to the band slope map [35],
and the evolution of the RA at the interface of the M and F could be determined based
on it. The ferrite with a lighter color and closed to the white color was ferrite, and the
martensite with a darker color (blue) was martensite. A small amount of green belongs to
the unrecognized area, which was identified as RA (yellow and green) combined with the
XRD and EBSD analysis, as shown in Figure 9.
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It was obvious that most of the RA trended to distribute at the interface of the marten-
site laths and grain boundaries. The participation time was not enough for C to diffuse
from M to RA. It was an important reason for the fine grain of the RA, as shown in Figure 9.

The dislocation density promoted the stability of the austenite at the prior-austenite
interfaces, cementite, carbides, and ferrite. It increased the interface between the austenite
and martensite and shortened the diffusion distance of the element C from the martensite
to the RA. At the same time, the dislocation density increased, the number of vacancy and
gap atoms increased, and the stronger distortion energy also increased the free energy and
diffusion rate. The position fault density of block M was lower compared with the lath
M. Therefore, the higher the partitioning temperature made it less stable. The average
C content of the RA was low due to the increase in RA during the participation stage at
higher temperature, which decreased the stability and led to the formation of the block M.

Massive martensite was prone to decomposition at a higher partitioning temperature,
a part of C precipitated in the form of Fe3C [36,37], and the other C enriched in RA. It
formed a “competitive” relationship. TEM could more intuitively and accurately reflect the
appearance of the RA and its surrounding dislocation partitioning, which proved the above
views. In Figure 10a, there was no obvious dislocation around the RA, and its size reached
1290 nm. In Figure 10c, it was found that there were many stepped dislocations near the
RA, whose sizes were only 253 nm and 716 nm, which were much smaller than that of
Figure 10a. Therefore, the increase in the quantity and stability of the residual austenite
could be attributed to the increase in the dislocation density.

The schematic diagrams of the RA evolution are presented in Figure 11. The carbon
and manganese diffused from the matrix to the austenite due to the chemical potential
during the intercritical annealing. However, the distribution of C and Mn was not uniform,
which would lead to the stability difference of the austenite. Therefore, the unstable
austenitic phase transformed to the martensite and the carbon-rich austenite formed the
RA. During the partition stage, the carbon enriched in the martensite would enrich in the
RA due to the chemical potential. In addition, the dislocation density around the martensite
and grain boundary was significantly higher than that of others region. Accordingly, the
carbon would be more pinned to the martensite and grain boundary during the diffusion,
which caused the RA near the martensite and grain boundary to be more stable and retained
at room temperature easier.



Metals 2022, 12, 2165 9 of 12Metals 2022, 12, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 10. The TEM micrographs of the sample partitioning at 370°C: (a,c) bright-field images and 
(b,d) dark-field images. 

The schematic diagrams of the RA evolution are presented in Figure 11. The carbon 
and manganese diffused from the matrix to the austenite due to the chemical potential 
during the intercritical annealing. However, the distribution of C and Mn was not uni-
form, which would lead to the stability difference of the austenite. Therefore, the unstable 
austenitic phase transformed to the martensite and the carbon-rich austenite formed the 
RA. During the partition stage, the carbon enriched in the martensite would enrich in the 
RA due to the chemical potential. In addition, the dislocation density around the mar-
tensite and grain boundary was significantly higher than that of others region. Accord-
ingly, the carbon would be more pinned to the martensite and grain boundary during the 
diffusion, which caused the RA near the martensite and grain boundary to be more stable 
and retained at room temperature easier. 

However, the higher dislocation density also affected the diffusion speed of the 
carbon element, which increased the difficulty of the carbon element diffusion to the re-
sidual austenite, so that the final volume of the residual austenite retained near the mar-
tensite was significantly smaller than that of the independent residual austenite in the 
matrix. 

Figure 10. The TEM micrographs of the sample partitioning at 370 ◦C: (a,c) bright-field images and
(b,d) dark-field images.

Metals 2022, 12, x FOR PEER REVIEW 10 of 12 
 

 

 
Figure 11. Schematic diagrams of microstructure evolution with residual austenite. 

4.2. Effect of RA on Mechanical Properties 
The research showed that the tensile strength was a reflection of the material’s abil-

ity to resist deformation and damage caused by the external load. During the precipita-
tion, the dislocation density of the M decreased, the strengthening effect was abated, and 
the tensile strength decreased. Meanwhile, the carbon in the martensite diffused to the 
austenite made the RA fraction and carbon content increase (as shown in Figure 7). The 
distortion energy in the M decreased, the solid solution strengthening effect was weak-
ened, resulting in the increase in specimen elongation. It could be obtained that the 
elongation was related to the RA fraction, while the tensile strength was mainly deter-
mined by the martensite. 

As shown in Figure 8, the tensile strength increased and the elongation decreased 
with the increase in the partitioning temperature. It would be attributed to the parti-
tioning temperature increasing from 280 °C to 300 °C. The C supersaturated in the M 
diffused into RA, increasing the austenite stability at room temperature. The tensile 
strength decreased while the elongation increased. A part ofC precipitates and formed 
carbides in the martensite matrix when the temperature further increases, which further 
reduces the content of C in the martensite. Meanwhile, the high dislocation density 
formed during the martensitic transformation was reduced due to the high partitioning 
temperature. Due to the tempering reaction of the primary quenching martensitic, the 
dislocation was rearranged or annihilated, resulting in a continuous decline in tensile 
strength. The elongation was mainly determined by the RA fraction and the degree of 
martensite tempering. The TRansformation Induced PlasticityTRIP effect of the RA dur-
ing the deformation provided the elongation of the steel. When the partitioning temper-
ature was higher, the effect of the martensite tempering also played an important role in 
improving the ductility. 

5. Conclusions 
In this work, we studied the effects of different partitioning temperatures on the 

microstructure and mechanical properties of Q&P steel with low carbon and low man-
ganese during continuous annealing. The main conclusions are as follows: 
(1) The microstructure of Q&P steel after heat treatment at different partitioning tem-

peratures was mainly composed of F, M, and RA. The fraction of martensite de-
creased about 11.2% and the average size decreased by 0.12 μm with the increase in 
temperature from 280 °C to 370 °C. 

(2) The partitioning temperature played a key role in the morphology and quantity of the 
RA. Two forms of RA were found at higher temperatures. One was a large island of 
austenite, mainly distributed between the ferrite and martensite with lower disloca-
tion density and fewer grain boundaries. The other was a smaller film and granular 
RA, mainly distributed between the lath martensite and massive martensite with 
high dislocation density and dense grain boundaries. 

Figure 11. Schematic diagrams of microstructure evolution with residual austenite.

However, the higher dislocation density also affected the diffusion speed of the carbon
element, which increased the difficulty of the carbon element diffusion to the residual
austenite, so that the final volume of the residual austenite retained near the martensite
was significantly smaller than that of the independent residual austenite in the matrix.
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4.2. Effect of RA on Mechanical Properties

The research showed that the tensile strength was a reflection of the material’s ability
to resist deformation and damage caused by the external load. During the precipitation, the
dislocation density of the M decreased, the strengthening effect was abated, and the tensile
strength decreased. Meanwhile, the carbon in the martensite diffused to the austenite made
the RA fraction and carbon content increase (as shown in Figure 7). The distortion energy
in the M decreased, the solid solution strengthening effect was weakened, resulting in the
increase in specimen elongation. It could be obtained that the elongation was related to the
RA fraction, while the tensile strength was mainly determined by the martensite.

As shown in Figure 8, the tensile strength increased and the elongation decreased
with the increase in the partitioning temperature. It would be attributed to the partitioning
temperature increasing from 280 ◦C to 300 ◦C. The C supersaturated in the M diffused
into RA, increasing the austenite stability at room temperature. The tensile strength de-
creased while the elongation increased. A part ofC precipitates and formed carbides in
the martensite matrix when the temperature further increases, which further reduces the
content of C in the martensite. Meanwhile, the high dislocation density formed during the
martensitic transformation was reduced due to the high partitioning temperature. Due
to the tempering reaction of the primary quenching martensitic, the dislocation was rear-
ranged or annihilated, resulting in a continuous decline in tensile strength. The elongation
was mainly determined by the RA fraction and the degree of martensite tempering. The
TRansformation Induced PlasticityTRIP effect of the RA during the deformation provided
the elongation of the steel. When the partitioning temperature was higher, the effect of the
martensite tempering also played an important role in improving the ductility.

5. Conclusions

In this work, we studied the effects of different partitioning temperatures on the
microstructure and mechanical properties of Q&P steel with low carbon and low manganese
during continuous annealing. The main conclusions are as follows:

(1) The microstructure of Q&P steel after heat treatment at different partitioning temper-
atures was mainly composed of F, M, and RA. The fraction of martensite decreased
about 11.2% and the average size decreased by 0.12 µm with the increase in tempera-
ture from 280 ◦C to 370 ◦C.

(2) The partitioning temperature played a key role in the morphology and quantity
of the RA. Two forms of RA were found at higher temperatures. One was a large
island of austenite, mainly distributed between the ferrite and martensite with lower
dislocation density and fewer grain boundaries. The other was a smaller film and
granular RA, mainly distributed between the lath martensite and massive martensite
with high dislocation density and dense grain boundaries.

(3) The maximum tensile strength, elongation, and residual austenite of the tested steel
were 1238 MPa, 28.3%, 27.2 GPa·% and 10.2% at the temperature range from 280 to
370 ◦C, respectively.
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