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Abstract: It has been reported that the duplex bainite microstructure obtained by austempering (AT)
shows higher strength, ductility and impact toughness than quench and tempered (QT) martensite
structure in SAE9254 spring steel. However, there seems to be no research on the very high cycle fa-
tigue (VHCF) and tribology characteristics of bainite structure for durability design of next generation
spring steel from the perspective of engineering and industrial applications. This is a follow-up study
that quantitatively analyzed the mechanical properties, microstructural deformation characteristics,
and impact toughness of bainite and martensite using EBSD (Electron Backscatter Diffraction) and
SEM (Scanning Electron Microscope) analyses. In this study, VHCF, HCF, tribology characteristics
and UNSM (ultrasonic nanocrystal surface modification) effects under duplex bainite and single
martensite microstructures were quantitatively studied and analyzed by fracture mechanics from the
engineering and industrial point of view to improve durability and weight reduction in spring steels.
The bainite AT and martensite QT specimens showed a 56% and 33% increase in fatigue limit for as
received AR specimens. Fisheye cracks in duplex bainite AT specimens are similar to ‘facet internal
cracks’ that initiated in the absence of inclusions. Generally fisheye crack fracture mode is preferred
in VHCF, but fisheye crack was not found in the QT and the AR specimens at all. The UNSM-treated
specimens showed fatigue limits that were about 33~50% higher than the untreated specimens.

Keywords: spring steel; bainite; martensite; austempering; very high cycle fatigue; tribology;
ultrasonic nanocrystal surface modification

1. Introduction

Recent studies about duplex microstructures and mechanical properties of spring steels
after quenching and tempering (QT) and austempering (AT) reported that the poly phase
structures with bainite, martensite and retained austenite showed high strength, ductility
and impact toughness [1–14]. The final microstructure of this spring steel is tempered
martensite by QT heat treatment, but this microstructure showed the basic problem of
hydrogen embrittlement when strengthening. Therefore, if the final tempered martensite
microstructure of spring steel can be replaced by duplex bainite microstructure, it will be
very helpful in the development of high strength and long-life products.

Nie et al. [1] reported that mixed microstructure of bainite and martensite showed much
superior fatigue strength to an only martensite microstructure in the case of spring steels.

Suh et al. [2] studied the impact toughness of spring steels after transformation of
bainite and martensite and reported that the duplex bainite microstructure exhibits better
mechanical properties and impact behavior than the single martensite microstructure.

A study about fatigue behavior of high strength steel with duplex phase of bainite
and martensite by Wei et al. [13] reported that it showed higher fatigue strength and
lower crack propagation rate. These findings appear to be very useful in practice and
applied engineering.
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However, it seems that there are few systematic studies on the Very High Cycle
Fatigue (VHCF) and friction properties of duplex bainite microstructured steel required
for durability design of next-generation spring steel [15–28]. In particular, there seems to
be no study on the surface treatment effects of UNSM (Ultrasonic Nanocrystal Surface
Modification) on duplex bainite microstructured steel [29–33].

Therefore, in this study, considering the practical viewpoints for the duplex bainite
microstructure and the single martensite structure, it is judged whether or not it can be
effectively applied to the industry from the structural and engineering viewpoints.

This is a follow-up study that quantitatively analyzed the mechanical properties,
microstructural deformation characteristics, and impact toughness of duplex bainite and
single martensite. In the previous study, these factors were quantitatively analyzed using
EBSD and SEM analyses, and it was confirmed that they were duplex bainite and single
martensite microstructures [2].

(a) The change in impact toughness and mechanical properties according to the duplex
bainite and single martensite formation of spring steel, which is important for engineering
and industrial applications but has few published data; (b) quantitative analysis of lath
length and width after duplex bainite and single martensite formation; (c) quantitative
analysis of phase transformation properties; and, (d) comparative analysis of duplex bainite
and single martensite formation with a pole figure.

In this study, the VHCF, HCF, tribological properties, and UNSM effects of spring steels
with bainitic and martensitic microstructures were quantitatively studied through fracture
mechanics and fracture surface analysis methods from the engineering and industrial point
of view to improve durability and weight reduction in spring steels of SAE9254 confirmed
in the previous study.

Therefore, the following studies were conducted according to microstructures in
this study. In other words, (a) Comparison of S-N curves and VHCF characteristics;
(b) Comparison of the UNSM effects according to microstructures; (c) SEM observation and
analysis of fatigue fractured surfaces; (d) Variation in friction coefficients, wear amounts,
specific wear rates and SEM analysis of wear surface; and (e) The excellent UNSM ef-
fects were verified on the VHCF and wear properties of spring steels with bainitic and
martensitic microstructures.

2. Materials and Experimental Methods
2.1. Test Materials and Heat Treatment Method

The spring steel used in this study was SAE9254 (similar to SUP12), and the chemical
composition of the AR spring steel was 0.55% C, 1.5% Si, 0.7% Mn, and 0.7% Cr. The
received specimen was called AR (as received), and QT (quenched and tempered) and AT
(austempered) specimens were made with heat treatment cycles.

Round AR spring steel was cut to a diameter of 13 mm and a length of 110 mm. The
QT heat treatment used in this study was austenitized in the air at 980 ◦C for 15 min,
water-quenched at 60 ◦C for 5 min, salt bathed at 430 ◦C for 90 min, and then air-cooled.
Subsequently, the same specimen was austenitized at 980 ◦C for 15 min, salt bathed at
300 ◦C for 30 min, and then air-cooled for austenitization of AT specimen. QT martensite
specimens and AT bainite specimens were obtained by salt bathing.

Since the Ms temperature of the specimen was evaluated as 265 ± 4 ◦C and the AC line
temperature as 755 ± 5 ◦C, martensite transformation did not occur during austempering.
These heat treatment cycles were suggested by the manufacturer. Fatigue, tensile and tribol-
ogy specimens were prepared using the heat-treated specimens by precision machining.

2.2. Experimental Methods

The spring steel was machined into a tensile test specimen (ASTM A370). Tensile tests
were performed using a universal testing machine (Autograph AGS-X, Shimadzu, Kyoto,
Japan) at a strain rate of 0.02 mm/s according to the specifications of ASTM A370.
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The hardness of the specimen was measured using a Vickers hardness tester (JP/HM-
112, Mitutoyo, Kawasaki, Japan) and measured 12 times under a 5 kN load, primary and
secondary, based on the center. In addition, to observe the microstructure and measure
the hardness, we selected a part of the test specimen that was not stressed or deformed.
An etching solution of 5 mL HCl, 1 g picric acid, and 100 mL ethanol (95%) was used to
observe the optical microstructure (OM).

EBSD of the sample was performed after electropolishing with a mixed solution of
10% perchloric acid and 90% acetic acid. No additional cleaning processes were required.
In this study, an EBSD measurement system (DigiView EBSD Camera, EDAX, Mahwah, NJ,
USA) was used, and measurement conditions with an accelerating voltage of 18 kV were
used. The crystal size was set to 0.3 µm or larger.

The diameter and radius of curvature of the fatigue specimen are 3.0 mm and 7.0 mm,
respectively. In addition, the stress concentration factor Kt of the fatigue specimen is 1.02.
Specimens were polished using # 100 to # 2000 abrasive paper to obtain mirror surfaces
according to the purpose.

Fatigue and VHCF characteristics at room temperature were obtained using a can-
tilever rotating bending fatigue tester (YRB200, Yamamoto, Nagaoka, Japan) as shown in
Figure 1A. This tester can test four specimens simultaneously under 53 Hz and stress ratio
R = −1 in air. The fractured fatigue specimens were magnified and analyzed by fracture
surface analysis using a SEM (S-4200, Hitachi, Tokyo, Japan) and EDS (energy dispersive
spectroscopy, Horiba, Kyoto, Japan) analysis equipment.

Figure 1. Rotating fatigue testing machine (A) and reciprocating tribology test machine (B).

Since the UNSM treatment technology [29–33] used in this study hits the metal surface
more than 20,000 times per second, it becomes a nanostructured metal surface while forming
fine dimples, and the surface roughness is improved while compressive residual stress is
formed deeply. Table 1 shows the UNSM treatment conditions applied to this study.

Table 1. UNSM conditions.

Specimen Frequency, kHz Generator
Power Level, % Static Level, N Feed Rate,

mm/rev Speed, rpm Tip Diameter, mm

AR 20 30 15 0.04 120 2.38
AT 20 30 30 0.04 120 2.38
QT 20 30 30 0.04 120 2.38

Rectangular wear specimens of 13 W × 58 L × 4 T (mm) were machined from a bar
of 13 mm diameter for this study. Tribology test conditions are shown in Table 2, and the
reciprocating tribology test machine (TE77 AUTO, Plint & Partners, Newbury, UK) used
for this study is shown in Figure 1B. Tribology test was conducted at dry condition by
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applying 50 N and 100 N for 1800 s and 1200 s, and tribology characteristics were compared
depending on the duplex bainite and single martensite spring steels of the rectangular
wear specimens.

Table 2. Tribology test conditions.

Load, N Frequency, Hz Stroke, mm Time, s Counter Part, SAE 52,100 Condition

50, 100
2 15

1800
10 mm

Untreated, dry
100 1200 UNSM treated, dry

3. Test Results and Discussion
3.1. Tensile Test

The tensile test results are summarized in Table 3. The AR specimen obtained a
maximum tensile strength of 991.5 MPa, a yield strength of 526.5 MPa, and an elongation
rate of 19.5% in the tensile test. Tensile strengths of the AT and QT specimens are measured
at 1824.4 MPa and 1723.1 MPa, 84% and 73.8% higher than the AR specimens.

Table 3. Mechanical properties.

Specimen Tensile Strength, MPa Yield Strength, 0.2%, MPa Elongation, % Reduction in Area, %

AR 992 527 20 52
AT 1824 1682 13 50
QT 1723 1612 12 40

In addition, the duplex bainite AT specimen showed a 5.9% higher tensile strength
than the single martensite QT specimen. The increase in tensile strength of AT and QT
compared to the AR specimen resulted from the change in microstructure owing to the
formation of duplex bainite and single martensite by the heat treatment.

The elongation and area reduction rates predominate despite the increase in tensile
strength. Usually, as the tensile strength increases, the elongation decreases and the area
reduction rate also decreases, but the duplex bainite AT specimen showed increased
properties compared to the single martensite QT. Such physical properties seem to be
greatly influenced by the size and shape of the lath [2].

3.2. Hardness Test

Table 4 summarizes the average Vickers hardness values of the specimens used in
this study. The AR specimen showed a standard deviation (S.D.) of 12.7, the AT specimen
showed the lowest values of 10.1 and the QT specimen showed 14.9. The bainite AT and
martensite QT specimens showed an increase in hardness of 102.6% and 84.5%, respectively,
compared to the AR specimen.

Table 4. Results of Vickers hardness test.

Cond. AR AT QT

Hv 276 559 509
S.D. 12.7 10.1 14.9

In addition, the AT specimen showed a 9.8% increase compared to the QT specimen.
The significant increase in AT and QT hardness values compared to that of the AR specimen
resulted from the duplex microstructure of bainite and single martensite phase structures
and the microscopic transformation according to the heat treatment condition.



Metals 2022, 12, 901 5 of 19

3.3. Microstructural Transformation
3.3.1. Variation in Microstructure by the Heat Treatment Cycles

Figure 2a shows an optical microscope (OM) photograph (500×) of the AR specimen,
showing a mixed structure of ferrite (white color), pearlite (gray color), and cementite with
an average grain diameter of approximately 11 µm.

Figure 2. OM (optical microscope) photographs of (a) AR, (b) AT, and (c) QT specimens.

Figure 2b shows the OM structure (500×) of the AT specimen after the heat treatment
cycle. In the AT specimen, the needle shaped laths were developed well within a prior
austenite grain boundary (PAGB) owing to the microstructural formation, with bainite
predominantly formed.

Figure 2c shows the OM structure (500×) of the QT specimen, which shows a refined
microstructure after the heat treatment cycle. Some ferrites were formed owing to compo-
sitional heterogeneity, and the rest were transformed into martensite, resulting in white
areas appearing in the QT specimen.

3.3.2. Electron Microscopy Observation According to Microstructure

Figure 3 shows the microstructures observed using a scanning electron microscope.
The bainite and some retained austenite (see arrows) structures were observed at 20,000×
in Figure 3a of the AT specimen. Some other studies reported that duplex phase structures
of bainite and martensite were also obtained by austempering [1–14].

Figure 3. SEM photographs at 20,000× of (a) AT and (b) QT specimens.

Figure 3b is a photograph of the QT specimen at 1.5 mm from the surface, where
martensite and tempered martensite structures is well observed at 20,000×.

3.4. EBSD Analysis According to Microstructure
3.4.1. EBSD Analysis of the AR Specimen

Figure 4 shows the AR specimen data using EBSD, and the average grain size of the
microstructure is approximately 11 µm. Figure 4 shows a phase map showing the crystal
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orientation with isotropic grains, and shows two phases of 76.9% ferrite (red color) and
23% Fe3C (green color). This figure shows that the microstructures of the AR specimen of
the spring steel used in this study have a uniform orientation.

Figure 4. Phase map of EBSD of the AR specimen (Scale bar is 70 µm).

3.4.2. EBSD Analysis of the AT Specimen

Figure 5 shows the inverse pole figure map and phase map of the AT specimen
examined with EBSD. Some locally dark areas were observed among many laths, which
were removed by filtering. The length of the long plate type lath was measured at a
maximum of 29.4 µm, a minimum of 7.1 µm, and an average of 15.5 µm due to its non-
uniform chemical composition. The width of lath was measured at a maximum of 5.29 µm,
a minimum of 0.59 µm, and an average of 1.76 µm. In addition, the AT specimen showed
about 6.5% of the FCC γ-Fe ratio, which is much larger than 1% of the QT specimen.
However, the fraction of BCC α-Fe is 93.5%, which shows that existing austenite was not
fully transformed to bainite and a considerable amount of retained austenite occurred, as
seen in Figure 3a.

Figure 5. Inverse pole figure map (a) and phase map (b) of austenite and ferrite of the AT specimen.
(Scale bar is 30 µm).

Figure 5a shows the IPF maps of FCC (face centered cubic) and BCC (body centered
cubic). Figure 5b illustrates the shape and orientation of bainite made of lath in various
cases. About 6.5% of this FCC phase, γ-Fe, is present. The inside of the prior austenite grain
region has a locally similar crystal orientation. It can be seen that the laths have similar
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colors locally, but it can also be confirmed that they do not only appear in the same color.
In addition, a phenomenon with a slightly different internal crystal orientation can also be
confirmed. These factors lead to consideration of two degrees of possibilities.

First, various austenite crystals are generated in the austenitic process, and phase
transformation occurs in the cooling process. Different orientations are clearly represented
by different colors.

Second, the different orientation is due to the behavior inside the same prior austenite
crystal during phase transformation. When bainite is generated by the phase transformation
phenomenon, microplastic deformation is applied to the surrounding austenite. This is
because such microplastic deformation applies a deformation of the local crystal orientation
of austenite. This enables a more accurate analysis by looking at and judging the orientation
of retained austenite together with the method of tracing prior austenite grain boundaries
(PAGB) with the Kurdjumov–Sachs relationship orientation [2].

3.4.3. EBSD Analysis of the QT Specimen

Figure 6 shows the inverse pole figure map and phase map of the QT specimen,
where red color is α-Fe with BCC crystal structure, light green color is γ-Fe with FCC
crystal structure, and black color is the area not expressed because of inappropriate filtering
condition. A lath martensite phase with a BCT (body centered tetragonal) structure with an
average width of less than 0.81 µm (maximum 2.76 µm, minimum 0.55 µm) was identified.
EBSD equipment used in this study recognizes all BCT phases as BCC crystal structure.

Figure 6. Inverse pole figure map (a) and phase map (b) of austenite and ferrite of the QT specimen.
(Scale bar is 30 µm).

As shown in Figure 6, plate-like structures with lengths of 2 to 10 µm were formed
owing to the inhomogeneity of the local chemical composition. However, most structures
were lath-shaped martensite with a width of less than approximately 1 µm. At the time
of EBSD measurement, the BCC and FCC structures were used for imaging. However,
analysis showed that more than 99.6% was BCC, and about 0.4% was FCC. This means
that when the specimen was cooled to 60 ◦C, all existing austenite underwent a phase
transformation in martensite as Figure 6a [9–13].

The IPF photo in Figure 6b reveals martensite consisting of laths with a maximum
number of 24 cases from one PAGB. This made it possible to track the grain boundary,
which was the parent phase, immediately before water cooling [11].

3.4.4. Quantitative Analysis of Laths of the QT and AT Specimens

Table 5 compares the length and width of the laths analyzed using the IPF maps in
Figure 5b (AT specimen) and Figure 6b (QT specimen). Here, the lath length of the AT
specimen was measured with a maximum of 29.4 µm, a minimum of 7.1 µm, and an average
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of 15.5 µm, and the width of the AT lath was measured with a maximum of 5.29 µm, a
minimum of 0.59 µm, and an average of 1.76 µm.

Table 5. Comparison of length and width of laths in the AT and QT specimens.

Dimension AT QT

Length (µm) Width (µm) Length (µm) Width (µm)

Average 15.5 1.76 3.06 0.81
Max. 29.4 5.29 9.37 2.76
Min. 7.1 0.59 2.20 0.55

In addition, the lath length of the QT specimen was measured with a maximum of
9.37 µm, a minimum of 2.2 µm, and an average of 3.06 µm, and the width of the QT lath
was measured with a maximum of 2.76 µm, a minimum of 0.55 µm, and an average of
0.81 µm.

Here, the length of the lath of the duplex AT specimen was approximately five times
that of the single martensite QT specimen, and the width was about twice that of the
QT specimen. The average length and width of the lath of the AT specimen were longer
and wider than those of the QT specimen. The good lath properties of duplex bainite AT
specimens were in good agreement with the tendency that mechanical properties such as
tensile strength, hardness, elongation, and impact energy are better than those of the single
martensite QT specimen, and it is judged as a good parameter to predict these properties
such as the previous study [2].

3.5. Comparison of S-N Curves and VHCF Characterristics According to Microstructure

Figure 7 compares the S-N curves of the spring steels obtained by rotary bending
fatigue test. The S-N data of the AR specimen at room temperature are shown as ‘∆’ in
Figure 7, and the fatigue limit is about 450 MPa. Number 2 on figure means that two data
points have overlapped, and arrows in VHCF represent no failure in the current fatigue life.

Figure 7. Comparison of S-N curves of spring steel before (AR) and after the heat treatment (AT and
QT).

In addition, the martensite QT specimens are shown as ‘
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The increase in fatigue strength of bainite and retained austenite AT specimens com-
pared to single martensite QT specimens is thought to be due to changes in the shape of the
bainite microstructure as long and wide laths and duplex microstructures (Figures 5 and 6).
The structural transformation with bainite and retained austenite phase was analyzed for
the excellent strength, ductility, and fatigue limit of spring steel specimens. These excellent
increases in physical properties seem to be in good agreement with current and structural
transformation studies on quantitative analysis of lath length and width.

Other studies showed that spring steels with duplex structures of bainite and marten-
site showed better strength and toughness than the single martensite structure [1–7]. A
study about fatigue behavior of high strength steel with duplex phase of bainite and
martensite by Wei et al. [13] reported that it showed higher fatigue strength and lower
crack propagation rate.

3.6. Comparison of S-N Curves and UNSM Effects According to Microstructure
3.6.1. UNSM Treatment Effect of AR Specimen

Figure 8 is indicated by the ‘∆’ mark in the S-N data obtained for the AR specimen,
and the fatigue test results of the AR specimen treated with UNSM are shown as ‘
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Figure 9. Comparison of S-N curves before and after UNSM treatment of the AT specimens.

It can be seen that the S-N fatigue data of the UNSM-AT specimen increase the fatigue
limit by 50% greater than that of the AT specimen, and the scatter band of the data is
small. This can be explained as an advantage of UNSM processing. That is, when UNSM
treatment is performed, the surface is changed to being nanostructured, decreased in
surface roughness, improved surface hardness, and large and deep compressive residual
stress is formed on the surface.

3.6.3. UNSM Treatment Effect of QT Specimen

Figure 10 compares the fatigue data of ‘#’ mark on the single martensite QT specimen
with ‘
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In this study, UNSM-AR, UNSM-AT and UNSM-QT specimens treated with UNSM
have about 33~50% better fatigue properties than untreated AR, AT, and QT specimens. This
result is similar to other reports because the UNSM treatment resulted in a nanostructured
surface, a decrease in surface roughness, improved surface hardness, and large and deep
compressive residual stress on the surface [29–33].

3.7. Observation of Fatigue Fractured Surfaces According to Microstructure
3.7.1. AT Specimen

In Figure 11, the fish-eye crack, which is the part where the crack initiated, is indicated
by arrows (center). In this specimen, the FGA (fine granular area) is indicated by a circle as
an internal originating fracture type. This is a completely different result from the fish-eye
cracking, initiation, growth, and coalescence process of common bearing steels [15–17].

Figure 11. SEM photographs of a fatigue fractured AT specimen (800 MPa, Nf = 1.8 × 107) when
observed at (a) 300× and (b) 1000×.

Figure 12 shows the SEM fracture surface of the AT specimen (1000 MPa, Nf = 3 × 105)
observed at 500 to 3000×. Here, the fisheye crack initiation site is indicated by a small
square. This is an internal originating fracture type, circled FGA, and the results are different
from other reports of fisheye crack initiation modes in common bearing steels [15–22].

Figure 12. Cont.
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Figure 12. The fractography of a fisheye crack center on the AT specimen (1000 MPa, Nf = 3 × 105).
(a) 500×, (b) 1000×, (c) ‘facet’ by 3000, and (d) data of EDS analysis of the crack initiation site in
(a) indicated by a square.

Here, the traces of TiN and Al2O3 inclusions often observed in the center of fisheye
cracks were not observed in structurally transformed to the duplex bainite AT specimen.
The bainite lath observed with EBSD in Figure 5 can be easily seen in Figure 12b. The
initiating site of the split type fisheye crack is indicated by an arrow in Figure 12c, and its
width is a plane of about 35 µm.

The results of EDS analysis of the crack initiation site in Figure 12a, indicated by a
square, are 11.51% C, 1.05% Si, 0.67% Cr, 0.61% Mn, and 0.57% Al, as shown in Figure 12d.
This analysis result is slightly different from the main component of the specimen, but is the
same as the fracture surface analysis results of other AT specimens. For reference, the chem-
ical composition of the spring steel was 0.55% C, 1.5% Si, 0.7% Mn, and 0.7% Cr. Therefore,
the fatigue crack initiated at a place where the carbon content was 21 times higher.

Fisheye cracks of bainite AT spring steel were similar to those formed in the ‘facet’
of Ti alloy, and occurred in a split type where there were no inclusions. It is also not a
fractured fisheye crack that typically initiates and grows from an internal inclusion [15–22].

This is consistent with Nie’s result of the fisheye cracks formed on the ‘facets’ in the
spring steel UFT test [1]. In general, fisheye cracks are the preferred type of fracture in
VHCF, but no fisheye cracks were found in QT specimens and AR specimens in VHCF.

3.7.2. QT Specimen

Figure 13a is SEM photographs of the fracture surface of single martensite QT specimen
(650 MPa, Nf = 7.4 × 106). The arrow in Figure 13b indicates the location of fatigue crack
initiation, and the semicircle in the figure indicates the morphology of crack propagation.

Figure 13d,e show EDS analysis data of the rectangular area of Figure 13c. In addition,
Figure 13c shows the same place as the rectangular area of Figure 13a. In addition, the main
component of this sample is shown in photos and data for each of the six components. As
a result, the components of each element were uniformly distributed, and the contents of
each element were analyzed as Si, 0.92%, Cr, 0.64%, and Mn, 0.59%, which were similar
to the main component of the specimen except for C, 18.52%. Therefore, it seems that the
central part of the test piece tends to have a high proportion of carbon.
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Figure 13. SEM photographs of the fracture surface of the QT specimen (650 MPa, Nf = 7.4 × 106).
(a) 50×, (b) 100×, (c) 100×, (d,e) example of EDS analysis in (c).

3.7.3. UNSM-Treated AT Specimen

Figure 14 is SEM photographs of the fracture surface of UNSM-treated AT specimen
(1100 MPa, Nf = 1.47 × 107). The fisheye crack, which is the crack initiation part, is circled
in Figure 14b, and an arrow indicates that the central part of the crack initiating site is
magnified and observed 100× to 2000×, respectively. The FGA is indicated by a circle
in the fracture morphology that occurred inside the UNSM-treated fatigue specimen. In
addition. traces of inclusions mainly composed of TiN and Al2O3, which are often observed
in the center of fish-eye cracks of ordinary bearing steels, were not founded in this study.

Figure 14. Cont.
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Figure 14. SEM photographs of the fracture surface of UNSM-treated AT specimen (1100 MPa,
Nf = 1.47 × 107). (a) 30×, (b) 100×, (c) 500×, and (d) 2000×.

3.8. Tribology Characteristics According to Microstructure
3.8.1. Variation in Friction Coefficient

Figure 15 shows the variation of friction coefficient using reciprocating tribology tester
under 50 N and 100 N until 1800 s in dry sliding condition. Figure 15a compares the
tribology test results of AT and QT specimen, shows a slight variation in friction coefficient,
but it is kept at 0.6~0.94 under 50 N and at 0.78 under 100 N after about 450 s. Friction
coefficients are more affected by normal load than specimens, and the result of 100 N shows
less variation than that at 50 N.

Figure 15. Variation in friction coefficient of AT, QT, and UNSM treated specimens under reciprocating
dry sliding condition.

Figure 15b shows the experimental result of variation in friction coefficient as a function
of time measured under 100 N until 1200 s in a dry sliding condition treated under the
UNSM conditions of Table 1. Variation in the friction coefficient is kept at 0.73~0.78 in each
specimen, and the UNSM treated specimen shows smaller and more stable values than
the untreated specimen, as seen in Figure 15a. It was identified that the UNSM treated
specimen showed better tribology characteristics in spring steel than some other steels,
with better fatigue properties than the untreated specimen [29–33].

3.8.2. Comparison of Wear Amount and Tensile Strength According to Microstructure

Table 6 and Figure 16a compare the weight loss after the tribology test, and wear
amount was increased at 100 N compared to 50 N. Weight loss of QT and AT specimen at
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50 N and 100 N was large as much as 53~90% compared to AR specimen. The significant
reduction in the amount of wear due to the morphology of the microstructure is judged to
have good material properties in which the duplex bainite microstructure with large lath
length and width has a lower wear amount than other microstructures.

Table 6. Comparison of weight loss according to microstructure.

Specimen and Static
Load Weight Loss (g) Percentage (%) Specific Wear Rate

[mm3/(N·m)]

AR-50 N 0.0029 Base 2.04 × 10−4

QT-50 N 0.0011 −62.1 0.78 × 10−4

AT-50 N 0.0003 −89.7 0.21 × 10−4

AR-100 N 0.0038 Base 1.34 × 10−4

QT-100 N 0.0018 −52.6 0.64 × 10−4

AT-100 N 0.0008 −78.9 0.28 × 10−4

UNSM-AR-100 N 0.0013 Base 0.69 × 10−4

UNSM-QT-100 N 0.0008 −38.5 0.42 × 10−4

UNSM-AT-100 N 0.0002 −84.6 0.11 × 10−4

Figure 16. Comparison of weight loss of the specimens (a) and the UNSM treated specimens
(b) according to microstructure.

Figure 16b compares the weight loss of UNSM treated spring steel according to
microstructure after tribology test under 100 N until 1200 s at dry sliding condition. The
UNSM-QT and UNSM-AT specimens reduced the weight loss by approximately 38 to
85% compared to the UNSM-AR specimen, and the UNSM-AT specimen had the smallest
weight loss. Improved wear resistance of UNSM-treated specimens compared to untreated
specimens is due to formation of nano-surface structure, improved surface hardness, and
large and deep compressive residual stress at the surface by UNSM treatment, as shown in
other studies [29–33].

3.8.3. Comparison of Specific Wear Rate According to Microstructure

Specific wear rate (SWR) calculated from the measured weight loss is compared in
Table 6. This specific wear rate is generally used as a parameter to compare the wear
characteristics, and is given as Equation (1).

We =
∆m
∆t

1
υρFN

(1)

Here, We is specific wear rate [mm3/(N·m)] to compare the degree of wear of materials.
∆m is amount of wear after test, ∆t is testing time, υ is test speed, ρ is material density, and
FN is normal load [6,26–28].

Figure 17 is a graph showing linear inverse relationship between the specific wear
rate and the tensile strength of specimen. That is, the duplex bainite AT specimen with the
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largest tensile strength showed the least specific wear rate. The specific wear rate of UNSM
treated specimen at 100 N is also compared, shown as ‘�’ in this figure. Specific wear rate
of UNSM treated specimen also showed a linear inverse relationship with tensile strength,
three UNSM treated specimens with three microstructures showed the smallest specific
wear rate, and the duplex bainite AT specimen with the largest tensile strength showed the
smallest specific wear rate.

Figure 17. Correlation between specific wear rate and tensile strength.

3.8.4. SEM Observation of Wear Surface According to Microstructure

Figures 18 and 19 show SEM observations of the central part of the wear surfaces of
AT and QT specimens after the wear test under 50 N until 1800 s in dry sliding conditions.
The QT specimen, which had about 62% less wear than AR, had a rougher wear surface
than the AT specimen, which had about 90% less wear. The UNSM-AT specimens and the
UNSM-QT specimens show very similar images to those in Figures 18 and 19, respectively,
except for the wear rate reduction.

Figure 18. SEM images at the center of wear track of the AT specimen by (a) 100×, (b) 300×, and
(c) 500×.

Figure 18 is an SEM image of duplex bainite AT specimen with two arrows in
Figure 18a indicating the position of wear track and surface state. Figure 18b,c are SEM
images magnified at the central part indicated by the rectangle of Figure 18a at 300× and
500×, respectively.

The AT specimen showed mainly smooth surface in the wear track and adhesive
sliding (Ad-S) types were observed in the SEM, as seen in Figure 18b. However, in the
enlarged Figure 18c, it is judged to be a local adhesive wear (Ad-W) type. That is, as
indicated by several arrows, it can be observed that the localized surface structure reached
fracture toughness and was peeled off by adhesion with other particles.
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Figure 19. SEM images at the center of wear track of the QT specimen by (a) 100×, (b) 300×, and
(c) 500×.

Figure 19 is an SEM image of a martensite QT specimen, with the two arrows in
Figure 19a indicating the positions of the wear track and surface state. Figure 19b,c are
enlarged SEM images magnified at the central part, indicated by the rectangle in Figure 19a
at 300× and 500×, respectively.

SEM observation of Figure 19b of QT specimen showed mainly rough surface in
the wear track and surface formation by abrasion sliding (Ab-S) in the sliding motion.
Figure 19c shows some plastic deformation as indicated in the photograph, and rough
surface by abrasion wear (Ab-W) which occurred by a combination of micro polishing,
micro cutting, and particle dropout. These are thought to come from high hardness and
high possibility of brittleness, and lowered toughness by quenching.

The duplex bainite AT specimen showed more adhesion type in the wear surface, and
single martensite QT specimen showed more abrasion wear type. The difference of wear
type is thought to be related to tendency of less wear amount of the AT specimen than the
QT specimen.

4. Conclusions

The VHCF, HCF, tribological properties, and UNSM effects of spring steels with duplex
bainitic and single martensitic microstructures were quantitatively studied through fracture
mechanics and fracture surface analysis methods from the engineering and industrial
point of view to improve durability and weight reduction in spring steels. The results are
as follow:

(1) The bainite and retained austenite AT specimens exhibited a fatigue limit of
700 MPa. The martensite QT specimen showed a fatigue limit at 600 MPa. This is a
56% and 33% increase in fatigue limit for AR specimens compared to 450 MPa, respectively.
In particular, the increase in fatigue strength of AT specimens compared to QT specimens
in the VHCF range is believed to be due to changes in microstructural characteristics by
bainite and retained austenite microstructure.

(2) Fisheye cracks in duplex bainite AT specimens are not the type of fatigue cracks
originating from internal inclusions, but are similar to ‘facet internal cracks’ that initiated
in the absence of inclusions. Generally, fisheye crack fracture mode is preferred in VHCF,
but fisheye crack was not found in the QT and the AR specimens at all.

(3) The UNSM-treated-AT, -QT, and -AR specimens showed fatigue limits that were
about 50~33% higher than the untreated AT, QT, and AR specimens. Fisheye cracks were
not detected in the fracture surfaces of UNSM-QT and UNSM-AR specimens, but were
only detected in a VHCF range in UNSM-AT specimens.

(4) The weight loss for QT and AT specimens was significantly reduced by approx-
imately 53% to 90% compared to that for AR specimen. In addition, the weight loss for
UNSM treated QT and -AT specimens was reduced by about 38% to 85% compared with
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that of the UNSM treated AR specimens. The number of UNSM-AT specimens was reduced
the least.

(5) The specific wear rates of the AT and QT and the UNSM treated specimens were
linearly inversely proportional to the tensile strength. In addition, the three UNSM treated
specimens had the lowest specific wear rate.

(6) The duplex bainitic AT specimen had a lot of adhesive sliding (Ad-S) areas in
the wear surface, but locally developed adhesive wear (Ad-W). In the case of the single
martensitic QT specimen, local plastic deformation occurred, and many traces of abrasion
sliding (Ab-S) were observed. The difference of wear type is thought to be related to the
tendency to lesser wear in the AT specimen than the QT specimen.
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