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Abstract: Adhesive-bonding has become increasingly adopted for multi-material lightweight ap-
plications (e.g., automotive structures). There is a growing interest in understanding the fatigue
behaviors in this type of joint for supporting structural durability modeling in practice. In this paper,
an analytical fracture mechanics modeling procedure is presented in the context of a generalized
sandwich specimen. Its closed form stress intensity factor solutions were then derived and applied
for the correlating fatigue test data obtained from the lap-shear and coach-peel test specimens with
demonstrated effectiveness. Some important implications of these analytical solutions on joint design
are also discussed.

Keywords: fracture mechanics modeling; stress intensity factor; fatigue; adhesive joint; aluminum alloy

1. Introduction

Multi-material structures have become a major trend in the future transportation
systems for achieving effective light-weight and smart functionalities [1–3]. In addition
to new dissimilar materials joining methods [4–9] that are currently under development,
adhesive bonding offers reliable and convenient solutions [10]. However, structural dura-
bility modeling of adhesive joints for vehicle development has been a major challenge to
meet today’s rapid virtual prototyping needs, as discussed in [4,7]. This is mainly due to
the fact that the stress state governing fatigue in adhesive joints is more complex than that
in welded joints due to the significant mismatch in the mechanical properties between the
adhesive and adherends. Most of the studies in the literature to date has been focused on
either developing empirical methods through selected durability testing for supporting
product development [11,12], which can introduce uncertainties in actual applications, or
establish effective fundamental mechanics-based models, most of which remain difficult to
be readily used for structural applications [13,14].

The existing investigations, particularly for those relevant to automotive applica-
tions, can be characterized into a few categories. The first category is the experimental
approach through performing the testing of joint static strengths and/or joint fatigue
properties [1,15–19] by focusing on joint geometry, specimen type, load level, or the load ra-
tio effects on the fatigue behaviors. As discussed in [5], it is difficult to relate the joint static
strength to fatigue performance even in an empirical sense, since the former is relatively
less sensitive to stress concentration while the latter is governed by joint stress concentra-
tion behaviors. As far as fatigue testing using simple specimen types (e.g., lap-shear and
coach-peel) is concerned, one unresolved issue is how to make use of the raw test data in
terms of the nominal stress or strain versus cycle to failure to the joint fatigue properties
that can be used as the input to the computational model of structures.

The second category can be characterized as continuum mechanics-based modeling
approach by focusing on a detailed stress state in adhesive joints either through finite
element methods or idealized analytical models. This approach offers the advantages of
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gaining mechanical insights that can be translated to broader applications. Representative
publications along this line are the shear lag model by Volkersen [13], by assuming elastic
shear deformation in the adhesive layer and elastic tension deformation in the adherend
layers, and a single lap joint model by Goland and Reissner [14], by incorporating the
bending moment due to an eccentrically applied load. These two types of models represent
the classical one dimensional (1D) linear elastic approach. Their further improvements can
be found [20–35] by considering the 2D, and even 3D effects as well as the geometric and
material nonlinearity. For the latter cases, the solutions are often only attenable through
finite element methods. As a result, most of the solutions in this category exhibit some level
of mesh-size sensitivity, therefore introducing some uncertainties at geometric discontinuity
locations in which the stress or strain singularity typically exists when sharp corners or
notches are present.

The third approach is fracture mechanics modeling by computing a fracture mechanics
parameter directly such as the stress intensity factor or energy release rate, which can then
be related to the joint fatigue behaviors. Dillard [36] summarized how the fracture mechan-
ics were developed and applied to the adhesive joint. Recently, Chen et al. [1] analyzed the
geometry influence on the fatigue performance by computing the well-established J integral
(i.e., energy release rate) of the lap-shear and coach-peel specimens of the adhesive-bonded
aluminum alloy joints. When assuming a pre-determined initial crack size, the results
seemed to show some promise in their test data correlation. However, the pre-determined
initial crack size has to be determined through experimental testing, which can introduce
uncertainties. As a result, the generality of the approach requires further study.

Cohesive zone model (CZM) is another popular analysis method that many researchers
are using to evaluate fatigue behavior [37–39]. This method avoids the stress singularity
problem and can numerically predict fatigue life, and the probabilistic method is sometimes
used to achieve a faster calculation speed than the FE method [37,38], but too many
parameters need to be calibrated to have a good result.

In this paper, we present an analytical approach by considering a general sandwich
specimen containing an adhesive layer subjected to a set of simple loading conditions, on
which closed form stress intensity factors can be developed. Through a linear superposition,
we show that the stress intensity factors for typical lap-shear and coach-peel specimens can
be obtained in closed forms and validated by finite element solutions. Then, the fatigue test
data obtained on the lap-shear and coach-peel specimens made of aluminum-to-aluminum
adhesive joints are shown to be effectively correlated into a narrow band in the form of
an effective stress intensity factor range versus cycles to failure. Insights offered by the
analytical solutions on the joint design parameters will also be discussed in light of the
present study.

2. Analytical Fracture Mechanics Modeling
2.1. Problem Idealization

Two commonly used fatigue test specimen types (e.g., coach-peel and lap-shear [1,40]),
are illustrated in Figure 1. The corresponding mechanical behaviors can be modeled by
considering a general sandwich model, as shown in Figure 2, in which f1 through f4
represent the boundary normal tractions measured in force per unit length in x; v1 through
v4 are the boundary transverse shear tractions; and m1 through m4 are the moment tractions
measured in moment per unit length in z. To facilitate the development of closed-form
solutions, it was assumed that the two adherends had the same thickness (i.e., t1 = t2 = t),
while the adhesive thickness was represented as ta.

With the descriptions given in Figure 2, the coach-peel specimen illustrated in Figure 1a
can be represented by setting all tractions being zero, except that m1 = −m2 = m0 and
v1 = −v2 = v0, as shown in Figure 3a. Through a comparison with Figure 1a, m0 and v0
can be related to remote loading as Fc/W and F/W, respectively, where W is the width
of the specimen or the width into paper. Note that L in Figure 2 is the bond length. The
stress analysis problem associated with the coach-peel specimen shown in Figure 1a is now
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reduced to the problem described as Case 1 in Figure 3a, which possesses symmetry with
respect to the mid-thickness of the adhesive layer.

Figure 1. Two commonly used fatigue test specimens for adhesive joints. (a) Coach-peel. (b) Lap-shear.

Figure 2. A sandwich model representation of the bonded section.

Similarly, the typical lap-shear test specimen shown in Figure 1b can be represented
by non-zero f1 = f4 = f0, and m1 = −m4 = m0, which can be further decomposed into
three subcases within which Case 0 has no contribution to the crack driving force (e.g.,
stress intensity factor) with respect to a hypothetical crack situated in the mid-thickness of
the adhesive layer. Case 2 is under the pure moment loading, acting symmetrically with
respect to both coordinate axes, while Case 3 represents the anti-symmetric loading with
respect to both coordinate axes. As such, Case 2 contributes the Mode I stress intensity
factor (KI) with respect to a crack situated in the mid thickness of the adhesive layer (ta),
while Case 3 contributes to the Mode II stress intensity factor (KI I). Note that the lap-shear
loading conditions considered in Figure 3b assumed that the backing plates were used, as
illustrated in Figure 1b. As a result, m0 can be expressed as m0 = f0(t + ta)/2. Then, the
fracture mechanics problems associated the coach-peel and lap-shear specimens in Figure 1
are now transformed to three basic fracture mechanics problems, namely, Cases 1 through
3, for the development of closed-form solutions.
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Figure 3. The sandwich model representations of the lap-shear and coach-peel loading conditions
through the loading mode deposition. (a) Case 1 corresponds to the coach-peel loading condition.
(b) Cases 0, 2, and 3 correspond to the decompositions of lap-shear loading condition.

2.2. Closed-Form Stress Intensity Factor Solutions
2.2.1. Case 1

Consider a sandwich specimen containing a symmetrically positioned crack of a
and remaining ligament of L, as shown in Figure 4a. Its Mode I stress intensity factor
(SIF) can be derived by defining a corresponding elastic foundation problem, as shown
in Figure 4b. It should be pointed out that Figure 4b looks rather similar to the elastic
foundation problem introduced by Kanninen [41] as a double cantilever beam for deriving
the KI expression corresponding to the symmetrically positioned crack in a homogenous
specimen (i.e., ta = 0 in Figure 4a). In this study, the adhesive layer ta was considered
here by defining a composite spring representation of the elastic foundation with a spring
length (t + ta)/2. The resulting composite spring (two in series) constant can be expressed
as follows, as given in Appendix A in detail:

kc =
2EEa

Eta + Eat
(1)

Figure 4. The crack problem definition for Case 1. (a) Geometry and load conditions. (b) Elastic
foundation idealization.

By taking advantage of the double cantilever beam solution given by Kanninen [41],
the governing equation for the beam situated on the elastic foundation with spring constant
kc can be written as:

E I
d4w
dx4 =

{
−kcw(x), when x > 0

0, when x ≤ 0
(2)
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where E is the Young’s modulus; I is the moment of inertia; kc is the spring constant; and
w(x) is the deflection of the beam neutral axis. The resulting KI can be derived in two parts.
One is due to the contribution by the transverse force v0:

Kv0
I = 2

√
3

v0

βt3/2

[
βa
(

sinh2(βL) + sin2(βL)
sinh2(βL)− sin2(βL)

)
+

(
sinh(βL)cosh(βL)− sin(βL)cos(βL)

sinh2(βL)− sin2(βL)

)]
(3)

which corresponds to the imposition of the following boundary conditions in solving
Equation (2):

w′′ (−a) = 0, EIw′′′ (−a) = v0, and w′′ (L) = w′′′ (L) = 0 (4)

The other part is due to the contribution by moment m0, as:

Km0
I = 2

√
3

m0

t3/2

(
sinh2(βL) + sin2(βL)
sinh2(βL)− sin2(βL)

)
(5)

which corresponds to the imposition of the following boundary conditions in solving
Equation (2):

EIw′′ (−a) = m0, w′′′ (−a) = 0, and w′′ (L) = w′′′ (L) = 0 (6)

In Equations (3) and (5), β can be expressed as:

β =

(
kc

4EI

)1/4
=

(
6Eat

Eta + Eat

)1/4 1
t

(7)

The detailed derivations can be found in Appendix A.

2.2.2. Case 2

The fracture mechanics problem corresponding to Case 2 (see Figure 3b) is described in
Figure 5a. Its elastic foundation idealization is similar to the one in Figure 4b, but subjected
to m0 and the symmetry conditions as shown in Figure 5b. The corresponding governing
equation can be written in a similar manner to the one shown in Equation (2) as:

E I
d4w
dx4 =

{
−kcw(x), when 0 < x < L

0, when x ≤ 0
(8)

with the following boundary conditions:

EIw′′ (−a) = m0, w′′′ (−a) = 0 and w′(L) = w′′′ (L) = 0 (9)

Figure 5. The crack problem definition for Case 2. (a) Geometry and load conditions. (b) Elastic
foundation idealization.

By following the similar derivation process that leads to Equations (3) and (5), it can
be seen that the Mode I stress intensity factor corresponding to Case 2 can be expressed as:

KI = 2
√

3
m0

t3/2

(
sinh(βL)cosh(βL)− sin(βL)cos(βL)
sinh(βL)cosh(βL) + sin(βL)cos(βL)

)
(10)
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2.2.3. Case 3

Case 3, which is given in Figure 3b, represents the pure Mode II conditions, or an-
tisymmetric loading with respect to both the crack plane and one-half ligament (i.e., L),
as shown in Figure 6a. The corresponding elastic foundation idealization with respect to
the composite shear springs is given in Figure 6b. As such, the loads are anti-symmetric
along both coordinate axes. The composite shear spring constant can be shown to have the
following expression (see Appendix A):

ks =
2GGa(t + ta)

Gta + Gat
(11)

where G and Ga are the shear modulus of the adherend and adhesive, respectively. An
average shear strain in the x direction can be defined as:

εxy(x) =
1
2
(w′(x) +

2u(x)
t

) (12)

where w and u are the beam deflection and axial displacement in x, respectively. The
governing equations become:

EIw′′′(x) = tks
4

(
w′(x) + 2u(x)

t

)
u′′(x) = τ(x)

Et = ks
2Et

(
w′(x) + 2u(x)

t

) (13)

The corresponding boundary conditions are:

m(0) = m0, f (0) = f0, w′′ (L) = 0, w(L) = 0, f (L) = 0, and w′(L) =
2u(L)

t
(14)

By following a similar process used in Cases 1 and 2, the resulting Mode II stress
intensity factor KI I can be expressed as (see Appendix B for details):

KI I =
2 f0√

t
coth(λL) where λ =

√
4ks

Et2 =
2

t
√

1 + v

√
Ga(t + ta)

Gta + Gat
(15)

Figure 6. The crack problem definition for Case 3. (a) Geometry and load conditions. (b) Elastic
foundation idealization.

2.3. Analytical Results and Implications

To gain insights into the closed-form solutions developed in Section 2.2 above, the
non-dimensional plots of the stress intensity factors with selected geometry and loading
conditions of interest to later discussions are plotted in Figure 7. The x-axis is the bond
length divided by the substrate thickness L/t. The y-axis is the stress intensity factor
divided by the corresponding load and exponents of thickness K

m0
t
√

t

, K
v0√

t

, or K
f0√

t

. Note that

the symbols represent the finite element computation results for validation purposes, which
will be discussed in the next section (Section 2.4). The following observations can be made:
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1. In all cases, when L/t was large enough (e.g., L/t > 3), the SIF values approached a
constant value of low magnitude (see Figure 7a,c,d) or a constant slope (see Figure 7b).
These results suggest that there exists a threshold or critical L/t value beyond which
an additional bond length increase offers little in return in reducing the SIFs.

2. When the L/t was smaller than about 3, the SIFs in Cases 1 (Figure 7a,b) and 3
(Figure 7d) increased rapidly, indicating that in this regime, the bond length was
too small to ensure an adequate load-carrying capacity of the joint. The only ex-
ception to the above observations was that Case 2 exhibited a decrease in the SIF
as L/t approached 0. This trend makes sense, as shown in Figure 5, in that under
symmetric moment loading, the crack opening action rapidly diminished as L/t
approached zero.

3. When the adhesive layer (ta) was considered, the non-dimensional variable Eat/Eta,
t/ta, and G/Ga showed a noticeable influence on the non-dimensional SIFs. When
the adhesive layer was thin (i.e., ta/t small) or stiff (i.e., Ea/E large), the SIF results
approached those without considering an adhesive layer (i.e., ta = 0) and vice versa.
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2.4. FE Validations

Finite element models were used to validate the analytical solutions developed in the
above section. For this purpose, a well-established crack closure integral method [42,43]
was adopted here. As illustrated in Figure 8, the method followed a two-step procedure.
The first step was to perform finite element computation to obtain nodal forces with respect
to a crack body with an initial crack size a0 (indicated by dashed lines in Figure 8a). The
second is to advance the initial crack by ∆a corresponding to one element size on the crack
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plane and obtain the nodal displacements (see solid lines in Figure 8a). The crack advance
increment ∆a needs to be small enough to be accurate, as demonstrated for Mode I and
the mixed mode crack problems in [42]. The resulting energy release rate can be expressed
as the work required to close the crack. Under linear elastic deformation conditions, the
work equals one-half of the nodal force before the crack advances ∆a by the corresponding
displacement difference after the crack advances by ∆a, which can be expressed as:

GI = lim
∆a→0

1
2∆a Fy(w1 −w2)

GII = lim
∆a→0

1
2∆a Fx(u1 − u2)

(16)

where Fx and Fy are the nodal forces perpendicular or along the crack growth direction
in Step 1; and w and u are the displacements perpendicular or along the crack growth
direction of nodes 1 and 2 in Step 2. Then, the SIFs can be obtained as:

KI =
√

GI E
KI I =

√
GI I E

(17)
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An effective SIF for the mixed mode crack problem becomes:

Ke =
√

KI2 + KI I2 (18)

Two-dimensional (2D) plane stress (“CPS4” in ABAQUS) FE models with an element
size approximate to 0.5 mm (0.1t) along the x direction was used to provide a sufficient
resolution of SIF as a function crack size. As illustrated in Figure 8b, a crack size of a situated
within the mid-thickness of the adhesive layer was introduced. Half symmetry conditions
(i.e., y symmetry in ABAQUS) were considered, which corresponded to Case 1 in Figure 7a.
All FE models used had the same overall dimensions of L + a = 40 mm and t = 5 mm and
dimensionless sandwich properties t/ta = 5, E/Ea = 100, and v = va = 0.3. In addition,
the homogenous condition (i.e., ta = 0) was also considered for comparison purposes. It
should be noted that the case in Figure 7d corresponds to the anti-symmetry with respect to
the crack plane (i.e., x anti-symmetry in ABAQUS) and the transverse plane in the middle
of the bond line (i.e., y anti-symmetry in ABAQUS). As the crack size a increased, the
corresponding nodes were sequentially deactivated along the crack plane. The final SIF
results are shown in Figure 7 as symbols. The agreement between the analytical and FE
results were evident.

3. Applications in Fatigue Test Data Analysis
3.1. Fatigue Test Details

To demonstrate the applications of the stress intensity factor solutions developed for
the adhesive bonded sandwich specimens in Section 2, here, we considered the fatigue tests



Metals 2022, 12, 1298 9 of 19

conducted by Chen et al. [1]. The adhesive bonded fatigue test specimens used in [1] were
of two types: lap-shear and coach-peel. The adherend material was aluminum A5754-O,
with a Young’s modulus of 68,948 MPa and Poisson’s ratio of 0.33. The adhesive material
was BETAMATE4601, with a Young’s modulus of 2860 MPa and Poisson’s ratio of 0.35. The
specimen width was 25.4 mm. Other specimen geometry details are shown in Figure 9 [1].
The adhesive thickness was reported to be 0.275 mm, while the two adherend thicknesses
(t1 and t2) were considered, as summarized in Table 1, as taken from [1].
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Figure 9. The test specimen geometry and dimensions (unit: mm) [1]. (a) Coach-peel; (b) Lap-shear.

Table 1. The adherend thickness combinations of the specimens [1].

Joint Types Adherend Thickness Combinations

Lap-shear t1–t2

1 mm–1 mm
1 mm–2 mm
2 mm–2 mm

Coach-peel t1–t2

1 mm–1 mm
1 mm–2 mm
2 mm–2 mm

Fatigue tests were conducted with a load ratio R = 0.1 and a frequency of 40 Hz. The
failure criterion used was complete joint separation through cohesive failure within the
adhesive layer. The run-out criterion was set as 107 cycles, which was not considered in
this study.

3.2. SIFs for Coach-Peel Test Specimens

For the coach-peel test specimens with t1 = t2 = t, the SIF solution developed for
Case 1 with the transverse load Equation (3), was directly applicable here, by setting
L + a = 25.4 mm + t1/2, corresponding to the dimensions shown in Figure 9a. Note that in
these coach-peel specimens, the initial crack size a in Equation (2) represents the distance
between the position load projected to the crack plane and the position where the adhesive
layer starts (c in Figure 1a). The non-dimensional analytical results of 1 mm–1 mm are
shown in Figure 10 along with the FE results as a validation. The x- and y-axis definitions
are the same as Figure 7b. For t1 6= t2, the FE solutions based on the crack closure integral
described in Figure 8 were used here. See the FE model for simulating the coach-peel
loading conditions shown as the insert in Figure 9a.
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Figure 10. The SIF results: the analytical versus the FE results for the coach-peel test specimens.

3.3. SIFs for Lap-Shear Test Specimens

For analyzing the lap-shear test specimens, Case 2 and Case 3 contributed to KI
(through Equation (10)) and KI I (through Equation (15)), respectively. The combined
effective SIF can be obtained from Equation (18), leading to:

Ke =
f0√

t

√
3
4

(
t + ta

t

)2( sinh(βL) cosh(βL)− sin(βL) cos(βL)
sinh(βL) cosh(βL) + sin(βL) cos(βL)

)2
+ [coth (λL)]2 (19)

Both the analytical and FE non-dimensional results were compared in Figure 11,
corresponding to t1 = t2 = 1 mm. The x- and y-axis definitions are the same as Figure 7d.
Note that the total bond length was 2(L + a) = 12.7 mm, corresponding to the lap-shear
specimen shown in Figure 9b. Again, for t1 6= t2, the FE results based on the crack closure
integral method shown in Figure 8 were used to correlate the fatigue test data in this
study. See the FE model to simulate the lap-shear loading conditions shown as the insert in
Figure 9b.

Figure 11. The SIF results: the analytical versus FE solutions for the lap-shear test specimen.

3.4. Fatigue Test Data Correlation Using SIFs

It is important to note that the SIF value results shown in Figures 10 and 11 become
essentially stabilized as long as the initial bond length L/t is larger than 2. As such, the
combined stress intensity factor range ∆Ke, given in Equations (3) and (19), can be used
to describe the fatigue crack propagation behaviors of the test specimens described in
Section 3.1. For comparison purposes, the effective SIF corresponding to the applied line
force (N/mm) of unity, designated as Ku

e (MPa
√

m), for the two specimen types shown in
Figure 9 and different thickness combinations are shown in Figure 12.
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Figure 12. The comparison of SIF values over different specimen types and thickness combinations.
(a) Coach–peel. (b) Lap–shear.

The cohesive failure fatigue test data from [1] is presented in Figure 13a as a nominal
stress range (∆σn) versus the cycles to failure in the log–log scale. Here, the nominal stress
range is defined as the remote load range ∆F divided by the adhesive bond area (i.e.,
A = Lo ×W, in which Lo is the bond length). Not surprisingly, the test data exhibited
significant scatter, as shown in Figure 13a, particularly between the coach-peel and lap-
shear specimen types. With the SIF values given in Figure 12, corresponding to the unit
line force, the nominal stress range in Figure 13a can be converted to the equivalent stress
intensity factor range (∆Ke) through:

∆Ke = ∆σn × Lo × Ku
e (20)

where ∆σn is the nominal stress range and Ku
e is the effective SIF under unit line force.

Figure 13b shows the same fatigue test data in terms of ∆Ke versus the cycles to failure.
It is evident that ∆Ke is effective in correlating the same test data shown in Figure 13a in
which differences between the coach-peel and lap-shear specimens are no longer obvious.
To further delineate the data trend, all coach-peel test data were further evaluated by
comparing the nominal stress range with the equivalent stress intensity factor range, as
shown in Figure 14. The results in Figure 14 further illustrate the ability of ∆Ke in reconciling
the differences in the fatigue data that resulted from the different thickness combinations
in the test specimens.
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Figure 14. The test data correlation of the coach-peel test specimens. (a) Nominal stress range.
(b) Effective stress intensity factor range.

4. Discussions
4.1. Existence of Critical Bond Length

As discussed in Section 2.3, there exists a threshold or critical bond length (Lc/t)
in terms of L/t beyond which the SIF values tend to become stabilized. This can have
important engineering implications in the optimum joint design to ensure that the adhesive
bond length L is somewhat larger than Lc, but not too large to incur manufacturing costs
and adding weight. For illustration purposes, we can define the critical bond length Lc as
the length within which K ≥ 1.05K0. Here, K0 represents the stabilized value corresponding
to the infinitely long bond line. Figures 15 and 16 show the results corresponding to Case 1
(see Section 2.2.1) subjected to the pure moment m0 loading. In Figures 15a and 16a, the
x- and y-axis definitions were the same as in Figure 7a. Figures 15b and 16b demonstrate
how the non-dimensional critical bond length Lc/t is influenced by the non-dimensional
thickness ratio t/ta or non-dimensional Young’s modulus ratio E/Ea. The reference solution
corresponds to the sandwich geometry and property combinations associated with the
test specimens used in [1], as summarized in Section 3.1. As shown in Figure 15, as t/ta
increases, the non-dimensional critical length (Lc/t) decreases, approaching the value
corresponding to t/ta → ∞ (i.e., a homogenous specimen condition without the presence
of an adhesive layer). For the given reference thickness ratio of t/ta = 3.63, consistent
with the test data (see Section 3.1), the dependency of the critical bond length Lc/t on
the Young’s modulus ratio (E/Ea) is shown in Figure 16. As E/Ea reaches about 250, the
non-dimensional critical bond length approximately reaches a stabilized value of about 2.5.
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Figure 15. Normalized critical bond length Lc/t as a function of t/ta —Case 1 subjected to pure
moment m0 with E

Ea
= 24.1. (a) Normalized KI as a function of L/t. (b) Normalized critical bond

length (Lc/t ) as a function of t/ta.
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Figure 16. The normalized critical bond length Lc/t as a function of E/Ea—Case 1 subjected to the
pure moment m0 with t/ta = 3.63. (a) Normalized KI as a function of L/t. (b) Normalized critical
bond length (Lc/t) as a function of E/Ea.

4.2. ∆Ke as a Fatigue Parameter

For adhesive-bonded metal to metal joints, decohesion fatigue failure confined within
the adhesive layer seems common in the fatigue test data reported in the literature as
reviewed as a part of this study. This was definitely the case for the test data studied in this
paper, as documented in Section 3.1 for the coach-peel and lap-shear specimens. As long as
L/t > Lc/t, the resulting SIFs had an approximately constant value regardless of the crack
size (see Figures 14 and 15). As such, ∆Ke can be argued to serve as an appropriate fatigue
parameter, as demonstrated in Figures 13 and 14.

It is worth noting that for structural applications, the closed-form stress intensity
factor solutions needed for computing ∆Ke can be implemented by obtaining the line
forces f0, v0 and line moment m0, described in Figure 3 through nodal forces and nodal
moments available in the structural FE results by using the simultaneous equation method
presented in [44–46]. As such, complex 3D adhesive joint stress calculation problems can be
transformed into an equivalent 2D sandwich specimen problem. Such 3D implementations
for structural applications will be discussed in a future publication.

It should also be pointed out that the present analytical solutions are limited to
t1 = t2 = t. For sandwich specimens with unequal thickness combinations, further
developments on the approximate stress intensity factor solutions are needed to extend the
generality of the present approach, which will be reported in the near future.

5. Conclusions

In this paper, a set of closed-form stress intensity factor solutions for a general sand-
wich specimen containing an adhesive layer was presented by considering the traction
loading conditions involved in commonly used lap-shear and coach-peel test specimens.
The analytical solutions based on a novel elastic foundation idealization were validated
through direct finite element computations. The results show that the resulting equivalent
stress intensity factor ∆Ke is effective in correlating the fatigue test data from the adhesive
joints. In addition, the analytical solutions show that there exists a threshold bond layer
length (Lc/t) beyond which the stress intensity factor value become stabilized, which can
be used to determine the minimum bond area for achieving the optimum joint design in
practice. The stress intensity factor solutions are transferable to a general 3D structural
environment through the determination of the relevant line forces and moment shown in
Figure 3 by an existing traction-based structural stress method already in the literature.
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Appendix A. Derivation of Composite Spring Constant

Appendix A.1. Spring Constants Corresponding to Cases 1 and 2

First, we can consider the spring constant of the isotropic beam (i.e., ta = 0). Assume
that each segment of a beam (unit length and unit width) is a bar under tension force F, as
shown in Figure A1a, then the average strain is:

ε =
σ

E
=

F
A
E

=
F
E

(A1)

Then, the deflection at the neutral axis is:

w = ε× t
2
=

Ft
2E

(A2)

Then, the spring constant can be obtained:

kc =
F
w

=
2E
t

(A3)

The corresponding β is:

β =

(
kc

4EI

) 1
4
=

61/4

t
(A4)

Now, if the beam is a composite beam, we have bar 1 with t1, E1 and bar 2 with t2, E2.
Assuming that we know the displacement at the neutral axis of bar 1 is weq, as shown in
Figure A1b, we can find the strain of each beam:

ε1 =
σ

E1
=

F/A
E1

=
F
E1

; ε2 =
F
E2

(A5)

Then, the equivalent deflection can be:

weq = ε1 ×
t1

2
+ ε2 × t2 (A6)

And the equivalent spring constant is:

kceq =
F

weq
=

F
Ft1
2E1

+ Ft2
E2

=
2E1E2

2E1t2 + E2t1
(A7)

In a sandwich model with t1 = t, E1 = E, t2 = ta/2, and E2 = Ea, the constant is:

kceq =
2EEa

Eta + Eat
(A8)



Metals 2022, 12, 1298 15 of 19

The corresponding β is:

β =

(
kceq

4EI

)1/4

=

(
6Eat

Eta + Eat

)1/4 1
t

(A9)

Note that when dealing with composite beams, it is assumed that the area outside the
bond area is one beam with E and t. This is more like an adhesive failure (i.e., the crack
propagates at the interface between adhesive and adherend). However, when the adhesive
is thin and negligible, this can be used in cohesive failure, whose crack goes through the
adhesive layer.

Figure A1. A diagram of determining the spring constant. (a) Isotropic beam. (b) Composite beam.

Appendix A.2. Composite Shear Spring Constant Corresponding to Case 3

Similar to Appendix A1, we can consider the shear spring constant of the isotropic
beam, (i.e., ta = 0.) According to the stress–strain relationship,

τ = ksεxy = 2Gεxy (A10)

It is easy to find:

ks = 2G =
E

1 + v
(A11)

And the corresponding λ is:

λ =

√
4ks

Et2 =
2

t
√

1 + v
(A12)

In a composite beam with t1, E1 and t2, E2, as shown in Figure A2, the equivalent axial
displacement is ueq. Since the shear strain is related to the displacement of both directions,
it is hard to find the equivalent displacement unless we assume w = 0 and consider u only.
Therefore, we can define the strain–displacement relationship as:

εxy =
1
2

(
2u
t

)
=

u
t

, u = 2εxy ∗
t
2

(A13)

We can find the strain of each beam:

εxy1 =
T

2G1
, εxy2 =

T
2G2

(A14)

Then, the equivalent axial displacement can be:

ueq = 2(εxy1 ×
t1

2
+ εxy2 × t2) (A15)



Metals 2022, 12, 1298 16 of 19

And the equivalent strain is:

εxyeq =
1
2

ueq

teq
=

εxy1 × t1
2 + εxy2 × t2
t1
2 + t2

(A16)

The equivalent spring constant is:

kseq =
T

εxyeq
=

2G1G2(t1 + 2t2)

2G1t2 + G2t1
(A17)

In a sandwich model with t1 = t, G1 = G, t2 = ta/2, and G2 = Ga, the constant is:

kseq =
2GGa(t + ta)

Gta + Gat
(A18)

The corresponding λ is:

λ =

√
4kseq

Et2 =
2

t
√

1 + v

√
Ga(t + ta)

Gta + Gat
(A19)

Figure A2. A diagram of determining the shear spring constant. (a) Isotropic beam; (b) Composite beam.

Appendix B. Elastic Foundation Solution with Shear Spring

First, we can consider an isotropic beam (i.e., ta = 0). Assume that the shear stress is
proportional to the average strain:

τ(x) = ksεxy(x) =
ks

2

(
w′(x) +

2u(x)
t

)
(A20)

The small segment and loads are shown in Figure A3. The beam bending equation
can obtain:

EIw′′ (x) = m(x) (A21)

And the moment equilibrium of the small segment is:

m′(x) = τ(x)× t
2

(A22)

Therefore, using the derivative of Equation (A21) and combining Equations (A20) and
(A22), we can obtain the deflection governing equation:

EIw′′′ (x) =
tks

4

(
w′(x) +

2u(x)
t

)
(A23)



Metals 2022, 12, 1298 17 of 19

However, this equation has u(x) and cannot be solved directly. The stress–strain–
displacement relationship in the axial direction is:

du
dx

= εx =
f (x)
Et

(A24)

And the force equilibrium can be:

f ′ (x) = τ(x) (A25)

Similarly, using the derivative of Equation (A24) and combining Equations (A20) and (A25),
we can obtain the axial displacement governing equation:

u′′ (x) =
τ(x)

Et
=

ks

2Et

(
w′(x) +

2u(x)
t

)
(A26)

Figure A3. A free body diagram of a small segment of the upper substrate.

Equations (A23) and (A26) are the governing equations of this model. In Case 3, the
boundary conditions are:

m(0) = m0 =
f0t
2

, f (0) = f0, w′′ (L) = 0, w(L) = 0, f (L) = 0, and w′(L) =
2u(L)

t
(A27)

Solving the governing equations, we can obtain the deflection and axial displacement as:

u(x) = c0
λ2 eλx + c1

λ2 e−λx + c2x + c3

w(x) = 6c0
tλ3 eλx − 6c1

tλ3 e−λx + c4x2 + c5x + c6

Where c0 = − f0λ
Et

e−λL

eλL−e−λL , c1 = − f0λ
Et

eλL

eλL−e−λL , c2 = c4 = 0,

c3 = − 2 f0
Etλ(eλL−e−λL)

, c5 = 4 f0
Et2λ(eλL−e−λL)

, c6 = − 4 f0L
Et2λ(eλL−e−λL)

, λ =
√

4ks
Et2

(A28)

At the position that load was applied, the rotation angle and axial displacement are:

w′(−a) = w′(0)− 12m0
Et3 = − f0

Et2

[
6eλL+6e−λL−4
λ(eλL−e−λL)

+ 6a
]

u(−a) = u(0)− f0a
Et = − f0

Et

(
eλL+e−λL+2
λ(eλL−e−λL)

+ a
) (A29)

The strain energy of each crack is:

Ω = −m0 × w′(−a)− f0 × u(−a) =
4 f0

Et2

[
eλL + e−λL

λ
(
eλL − e−λL

) + a

]
(A30)
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Assume that the cracks grow simultaneously from both sides, then at each side, the
energy release rate is:

G =
∂Ω
∂a
− ∂Ω

∂L
=

4 f0

Et2

(
eλL + e−λL

eλL − e−λL

)2

(A31)

Finally, we can obtain the stress intensity factor:

KI I =
√

GE =
2 f0√

t
eλL − e−λL

eλL + e−λL =
2 f0√

t
cot h(λL) (A32)

When dealing with a composite beam, Equation (A32) can be used by replacing
the shear spring into an equivalent shear spring, in which the details can be found in
Appendix A.
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