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Abstract: The yield criterion, or so-called yield function, plays an important role in the study of
the plastic working of a sheet because it governs the plastic deformation properties of the sheet
during the plastic-forming process. In this paper, we propose a novel anisotropic yield function
useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function
includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The
proposed yield function can explain the anisotropic plastic behavior of various sheets by introducing
the parameters α and β and also exhibits both symmetrical and asymmetrical yield surfaces. The
parameters included in the proposed model were determined with an optimization algorithm from
uniaxial and biaxial experimental data under a proportional loading path. In this study, the validity
of the proposed anisotropic yield function was verified by comparing the yield surface shape,
normalized uniaxial yield stress value, and Lankford anisotropic coefficient R-value derived from
the experimental results. Applications of the proposed anisotropic yield functions to an aluminum
sheet showed symmetrical yielding behavior and, to pure titanium sheets, showed asymmetric
yielding behavior; thus, it was shown that the yield curve and yield behavior of various types of
sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

Keywords: invariant J2; invariant J3; stress deviator; anisotropic yield function; symmetric yield
function; asymmetric yield function

1. Introduction

Sheet metal forming is being applied to the manufacturing of various products such
as interior and exterior panels of automobiles, aircraft fuselages, and beverage cans. As a
mass production process, sheet material processing technology is one of the technologies
for manufacturing products with complex shapes from thin sheets by using the plastic
deformation properties of the sheet material.

In this process, it is necessary to optimize the manufacturing process to secure product
quality, increase productivity, shorten the product development period, and reduce the
manufacturing cost. To this end, some trial error methods based on the experience of skilled
technicians have been traditionally used in manufacturing sites, but virtual simulation
technology based on finite element analysis (FEA), which is a computational simulation
numerical analysis technology, has recently been widely adopted [1–3].

To increase the accuracy of the sheet metal forming process simulation using this
FEA, it is necessary to select a suitable finite element type, to discretize a sufficiently
small finite element mesh, and to introduce suitable boundary conditions and an accurate
plastic deformation model of the material. In particular, in order to understand the plastic
deformation behavior of a material well, an accurate understanding of work hardening,
the plastic yield criterion, and the flow rule is basically required. As part of this, in order to
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highly predict the plastic deformation behavior of sheet materials through FEA, various
types of work hardening laws [4–6], plastic flow laws [7,8], and yield functions have been
proposed by many researchers. In addition, combinations of various components have
been attempted to improve the accuracy of FEA [9–12].

Among the plastic deformation models of materials, the anisotropic yield criterion
serves to well describe the anisotropic yield behavior of cold-rolled anisotropic sheets, and
it is one of the important factors in FEA analyses because it determines the elastic and
plastic states of the sheets subjected to various stress ratios.

Various anisotropic yield conditions have been proposed by many scholars in previous
studies. For isotropic materials, since the yield function must be invariant for all orthogonal
transformations, it is possible to utilize the second invariant J2 and the third invariant J3
for the deviating stress as first proposed by Prager in the yield condition [13]:

g = J′2

(
1− 0.73

J′23

J′32

)
(1)

These J2 and J3 are expressed in terms of the deviation stress tensor as follows:

J2 = 1
2 |s|; J3 = det(s)

si = σi − σmδij, σm = σ1+σ2+σ3
3

(2)

where σk and sk (k = 1, . . . 3) represent the main values of the Cauchy stress tensor and the
deviation stress tensor, respectively. Tresca [14] first proposed an isotropic yield function
by considering that the yielding occurs when the maximum shear stress reaches a constant
value. Von Mises [15] proposed the following yield function, which is widely used for
isotropic materials:

f = J2 = k2 (3)

where k is the yield stress in pure shear, calculated as k = σT/√3 , and σT is the yield stress
in uniaxial tension.

Drucker [16] proposed a yield function that includes J3 as well as the stress invariant
J2 as bellow:

f = (J3
2 )− c(J2

3 ) (4)

A notable property of Drucker’s yield criterion is that the yield surface lies between
the Tresca and Von Mises yield surfaces. Drucker’s yield function is known to predict the
plastic behavior of aluminum sheets particularly well.

Various types of anisotropic yield functions have been proposed to explain the in-
trinsic plastic anisotropy properties of cold-rolled steel sheet materials (Hill-48 (1948) [17],
Hill-79 (1979) [18], Hosford (1979) [19], Yld2000-2d (2001) [20], Cazacu–Barlat (2001) [21],
Yld2004-18p (2005) [22], and Banabic (2010 and 2020) [23,24]). These yield functions can
be classified into two groups: one is the second-order yield functions and the other is the
non-second-order yield functions. Von Mises and Hill-48 (1948) are examples of quadratic
yield functions, and the other examples mentioned above are nonquadratic yield functions.
The Cazacu–Barlat (2001) yield function, one of the nonquadratic yield functions, was
developed by extending the isotropic Drucker yield criterion. They replaced the isotropic
versions of J2 and J3 with anisotropic versions of J0

2 and J0
3 , respectively:

f = (J0
2 )

3 − c(J0
3 )

2
= k6 (5)

where c is a constant. The Cazacu–Barlat yield function showed reasonable predictions
for both the yield stress and Lankford anisotropic coefficient R-value in each direction for
the aluminum sheet. However, since this yield function uses only one function for the
two terms J2 and J3, it is not suitable for explaining the anisotropy of the sheet material
well. [25] On the other hand, the Yld2004-18p yield function can accurately predict the
anisotropic plastic deformation behavior, but it requires many experiments to identify the
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anisotropy coefficients. In a form similar to the Cazacu–Barlat yield function (2001), Lou
and Yoon (2017) [26] modified the isotropic Drucker yield function by expressing s′ = L′σ
and the second and third invariants as linearly transformed stress tensors:

f = [(J ′2 )
3 − (J ′3 )

2]
1/6

J ′2 = 1
2 s′s′, J ′3 = det(s′)

(6)

In addition, the validity of the nonassociated flow rule (non-AFR), which introduced
the yield function and other plastic potential functions, was also discussed. Meanwhile,
Karafillis and Boyce [27] first introduced the concept of anisotropic linear transformation
to construct anisotropic yield functions.

Cazacu (2018) [28] proposed the following yield function and equivalent stress for
textured metallic materials with isotropic invariants of J0

2 and J0
3 :

f = (J 0
2 )

4 − α
(

J 0
2
)
× (J 0

3 )
2
= k8

σ = B[(J 0
2 )

4 − α
(

J 0
2
)
× (J 0

3 )
2
]
1/8 (7)

In the case of HCP (hexagonal close-packed) metals such as titanium and magnesium
alloys, the plastic deformation caused by the twin mechanism ultimately showed a distinct
difference in yield strength under tensile and compressive loading conditions. This phe-
nomenon is called the strength difference effect (SD effect) [29–36]. The asymmetric plastic
behavior of the yield stress in tension and compression can be easily confirmed from the
shape of the yield surface. In order to confirm the deformation behavior of these materials,
experiments must be performed under several deformation modes such as uniaxial and
biaxial tension as well as uniaxial compression. [37] Cazacu and Barlat (2004) [38] proposed
the following anisotropic yield function based on the stress invariants J2 and J3. In this
yield function, the SD effect exhibited in HCP materials was explained by expressing the
second and third invariants of the stress deviation as odd functions of the stress:

f = J3/2
2 − cJ3 (8)

In order to express both anisotropy and tension/compression asymmetry for pressure-
insensitive metals, Cazacu et al. (2006) [39] proposed another yield function (CPB’06)
using a quadratic linear transformation for stress deviation. Additionally, Gao (2011) [40]
proposed a yield function combining the effects of all three of the first invariant I1, the
second invariant J2, and the third invariant J3 as follows:

f = a (bI6
1 + 27J3

2 + cJ2
3

)1/6
(9)

Meanwhile, Khan et al., (2012) [41] proposed an anisotropic yield condition including
a normalized third invariant to explain the SD effect based on the experimental investiga-
tion of Ti-6Al-4V alloys in tension and compression tests. Yoon (2014) [42] proposed the
following pressure-dependent yield function based on three invariants:

f = a
[

bI1 + (J3/2
2 − cJ3

)1/3
]

(10)

In this study, we propose a new isotropic yield function combining the second and
third anisotropic invariants (i.e., J0

2 and J0
3 ) with two parameters α and β and explain the

effects of these parameters in this new yield function. In addition, in order to confirm
the validity of the proposed yield condition, the yield curve shape was predicted for
AA6016-T4, AA2090-T3, and pure titanium sheets. In addition, after taking a specimen
every 15◦ from the rolling direction (RD) to the transverse direction (TD), uniaxial tension
was performed to compare the anisotropy (normalized yield stress and R-value of Lankford
coefficient of anisotropy) with experimental data.
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2. Proposed Model
2.1. Proposed Anisotropic Yield Function

In this study, we propose the following yield function for isotropic sheet material
(named the Kim–Van yield function, simply KV’12), which includes J2 and J3 as follows
and does not depend on the hydrostatic pressure magnitude:

f ≡ J6
2 + αJ4

3 +
2

∑
j=1

β j

(
J(6−(

3
2 )j)

2 × J j
3

)
= k12 (11)

where J2 and J3 are the invariants, k is the yield stress at pure shear, and α and β j are the
material parameters to define the shape of the yield function. Here, when β1 6= 0 at j = 1
and β2 = 0, the yield function of the Equation (11) reduces to

f ≡ J6
2 + αJ4

3 + β1

(
J

9
2
2 × J3

)
= k12 (12)

This proposed yield function represents an asymmetric yield function (named KV’12A)
because the third term of the above equation is an odd function of the stress and thus
captures the SD effect. This asymmetric yield function is suitable for HCP materials such
as titanium and magnesium.

Meanwhile, when j = 2 and when β1 = 0 and β2 6= 0, the yield function of the
Equation (11) reduces to

f ≡ J6
2 + αJ4

3 +
2

∑
j=1

β j

(
J(6−(

3
2 )j)

2 × J j
3

)
= k12 (13)

The proposed yield function represents a symmetric yield function (named KV’12S)
because all terms of the above equation are an even function of the stress and thus cannot
represent the SD effect. This symmetrical yield function is suitable for BCC (Body-Centered
Cubic) and FCC (Face-Centered Cubic) materials such as steel and aluminum.

This equation can be simplified with the following equation

f ≡
(

J3
2 + α1 J2

3

)2
=
(

J6
2 + 2α1 J3

2 J2
3 + α2

1 J4
3

)
= k12 (14)

Mathematically, α and β2 in Equation (13) have a mutually dependent relationship so
that α and β2 may be expressed as α = α2

1 and β2 = 2α1, respectively. However, the α and
β2 in Equation (13) and the α and β1 in Equation (12) are assigned independently of each
other in this study so that the shape of various yield surfaces could be described.

Here, the J0
2 and J0

3 invariants are generalized to consider anisotropy for orthogonal
anisotropic sheet materials and are expressed as follows [14,19]:

J0
2 = a1

6
(
σxx − σyy

)2
+ a2

6
(
σyy − σzz

)2
+ a3

6 (σxx − σzz)
2 + a4σ2

xy + a5σ2
xz + a6σ2

yz

J0
3 =

1
27

(b1 + b2)σ
3
xx +

1
27

(b3 + b4)σ
3
yy +

1
27

[2(b1 + b4)− b2 − b3]σ
3
zz −

1
9
(
b1σyy + b2σzz

)
σ2

xx

−1
9
(b3σzz + b4σxx)σ

2
yy −

1
9
[
(b1 − b2 + b4)σxx + (b1 − b3 + b4)σyy

]
σ2

zz

+
2
9
(b1 + b4)σxxσyyσzz −

σ2
xz
3
[
2b9σyy − b8σzz − (2b9 − b8)σxx

]
−

σ2
xy

3
[
2b10σzz − b5σyy − (2b10 − b5)σxx

]
−

σ2
yz

3
[
2b7σxx − b6σyy − (2b7 − b6)σzz

]
+2b11σxyσxzσyz

)

(15)

In the above equation, ai (i = 1–6) and bj (j = 1–11) are anisotropic coefficients.
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Using these anisotropic invariants, the anisotropic yield functions for asymmetry and
symmetry (i.e., Equations (16) and (17), respectively) can be expressed as follows:

f
(

J0
2 , J0

3

)
≡ (J0

2 )
6
+ α(J0

3 )
4
+ β(J0

2 )
9
2 × J0

3 = k12 (16)

f
(

J0
2 , J0

3

)
≡ (J0

2 )
6
+ α(J0

3 )
4
+ β(J0

2 )
3 ×

(
J0
3

)2
= k12 (17)

If αi=β j = 1, Equations (16) and (17) become isotropic yield functions.
In Equation (17), the effective stress (σ) is expressed as

σ = V
[
(J0

2 )
6
+ α(J0

3 )
4
+ β(J0

2 )
3 ×

(
J0
3

)2
] 1

12
(18)

here, V is a constant for correcting the deviation of effective stress from uniaxial tension
along the rolling direction and can be expressed as follows:

V =
1[(

a1+a3
6

)6
+ α
(

b1+b2
27

)4
+ β

(
a1+a3

6

)3( b1+b2
27

)2
]1/12 (19)

From the associated flow rule, which regards the yield function f in Equation (17) as
the plastic potential g, the plastic strain increment is the partial derivative of the plastic
potential stress and is expressed as follows:

dε
p
ij =

∂ f
∂σij

dλ

dε
p
ij =

{[
6
(

J0
2
)5

+ 3β
(

J0
2
)2 ×

(
J0
3
)2
]

∂J0
2

∂σij
+
[
4α
(

J0
3
)3

+ 2β
(

J0
2
)3 × J0

3

]
∂J0

3
∂σij

}
dλ

(20)

The advantage of the proposed yield function compared with other types of anisotropic
yield functions previously proposed using the principal deviation stress values (s1, s2, s3) is
that ∂f/∂σij for determining the strain increment can be calculated directly.

The normalized yield stress at σxx = σyy = σb, under equi-biaxial tension in the plane
stress state (σ3 = 0) is expressed as follows:

σb
σ0

=
1√
3

{(
a2 + a3

6

)6
+ α

(
2b1 − b2 − b3 + 2b4

27

)4
+ β

(
a2 + a3

6

)3
×
(

2b1 − b2 − b3 + 2b4

27

)2
}−1/12

(21)

On the other hand, the Lankford coefficient value according to the material orientation,
Rθ , indicating the anisotropy characteristics of the anisotropic sheet material is expressed
as follows:

Rθ = −
∂ f

∂σxx

(
sin2 θ

)
− sin 2θ

2
∂ f

∂σxy
+ ∂ f

∂σyy

(
cos2 θ

)
∂ f

∂σxx
+ ∂ f

∂σyy

(22)

The Lankford modulus value in equi-biaxial tension, Rb, is calculated in the follow-
ing form:

Rb =

∂ f
∂σyy

∂ f
∂σxx

(23)
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Additionally, the normalized uniaxial yield stress σθ/σ0 (see Equation (17)) according
to the angle θ between the rolling direction and the loading direction is σxx = σθ · cos2 θ,
σyy = σθ · sin2 θ. It can be expressed using the relationship θ and σxy = σθ · sin θ cos θ:

σθ/σ0 =
1√
3

{[( a1

6
+

a3

6

)
cos4 θ +

(
a4 −

a1

3

)
cos2 θ sin2 θ +

( a1

6
+

a2

6

)
sin4 θ

]6

+α

[
cos6 θ

b1 + b2

27
+ sin6 θ

b3 + b4

27
− cos4 θ sin2 θ

b1 + 3b5 − 6b10

9

− cos2 θ sin4 θ
b4 − 3b5

9

]4

+β
[( a1

6
+

a3

6

)
cos4 θ +

(
a4 −

a1

3

)
cos2 θ sin2 θ +

( a1

6
+

a2

6

)
sin4 θ

]3

×
[

cos6 θ
b1 + b2

27
+ sin6 θ

b3 + b4

27
− cos4 θ sin2 θ

b1 + 3b5 − 6b10

9

− cos2 θ sin4 θ
b4 − 3b5

9

]2
}−1/12

(24)

2.2. The Convexity Condition of the Yield Function

It is assumed that the yield surface is always convex because the internal plastic
work must be dissipated during the plastic deformation of the material. This is called the
convexity condition of the yield surface. In order to confirm the convexity of the yield
condition for the proposed yield criterion in this study, the stress range in which the yield
surface is convex was checked. For the isotropic yield function to be convex, the range of
variation of α and β is α = 0 and β = [–4, 12]; β = 0 and α = [–12, 20]; α = (0, 3] and β = (0,
12]; α = [−6, 0) and β = [−4, 0); α = (0, 20] and β = [−4, 0); and α = [−12, 0) and β = (0, 12].
These results are for the case of a symmetric yield function with shear stress plane σxy = 0.

The convexity of the proposed yield function is satisfied by confirming the convexities
of f

(
σxx, σyy

)
, f
(
σxx, σxy

)
, and f

(
σyy, σxy

)
. Mathematically, to ensure the convexity of

each f
(
σi, σj

)
function, it is necessary to check whether the corresponding Hessian H is

positive semidefinite [20,43,44]:

H1
(
σxx, σyy

)
= ∂2 f

∂σi∂σj
=

 ∂2 f
∂σ2

xx

∂2 f
∂σyy∂σxx

∂2 f
∂σxx∂σyy

∂2 f
∂σ2

yy


H2
(
σxx, σxy

)
= ∂2 f

∂σi∂σj
=

 ∂2 f
∂σ2

xx

∂2 f
∂σxy∂σxx

∂2g
∂σxx∂σxy

∂2g
∂σ2

xy


H3
(
σyy, σxy

)
= ∂2 f

∂σi∂σj
=

 ∂2 f
∂σ2

yy

∂2 f
∂σxy∂σyy

∂2 f
∂σyy∂σxy

∂2 f
∂σ2

xy


(25)

The positive semidefinite property of a Hessian matrix H can be proved by showing
that the matrix eigenvalues are positive. Based on this analysis, it was confirmed that the
yield function proposed in this study satisfies the convexity condition.

2.3. Effect of α and β on Yield Surface under Plane Stress

In order to confirm the role of the material parameters α and β of the proposed yield
function in the isotropic form, ai = bj = 1, various combinations of these parameters were
adopted and the shape of the yield surface in the space of principal stresses under plane
stress condition was observed. Figure 1 shows the predicted yield locus of Equation (17) for
various combinations of α and β parameters to confirm the effect of each parameter. If both
parameters α and β are 0, the proposed yield function returns to the Mises yield function.
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If α and β are both negative, the yield surface is inside the Mises yield surface, whereas if α
and β are both positive, the yield surface is outside the Mises yield surface. Nevertheless,
in both cases, the yield trajectory always passes through three points: (1, 0), (0, 1), and the
equi-biaxial load (1, 1). When α is changed to α = −12 and α = 12, the shape of the yield
surface does not change significantly (Figure 1a). In contrast, when β is changed to β = −3
and β = 3, the shape of the yield surface changes significantly (Figure 1b). That is, it can be
seen that the parameter β affects the curvature of the yield surface more than α in the yield
surface proposed in this study.
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In addition, various combinations of the two parameters were reviewed to understand
the flexibility of the proposed yield function. Figure 2 shows yield surfaces of different
shapes according to parameters α and β. It can be seen that when α and β are negative
numbers (α = −2 and β = −2), the curvature of the yield surface becomes smaller in the
biaxial tensile region.

For the case of Equation (16), the asymmetric type of yield function, Figure 3 shows the
effect of material parameter β with α = 0. The shape of the yield surface captures well the
SD effect similar to Cazacu and Barlat (2004) and Khan et al. (2012) in that the yield stress
in compression is larger than that in tension. Additionally note the asymmetric yield shape
in that the proposed yield function reproduces the higher strength in equi-biaxial tension
than in equi-biaxial compression observed in a titanium sheet of HCP crystal structure.

Therefore, it can be accepted that the yield function proposed in this study can express
various types of yield surfaces by properly combining the two parameters α and β.



Metals 2023, 13, 142 8 of 18Metals 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

  

  

Figure 2. General yield loci shapes obtained using the isotropic yield: (a) α = 3, β = 12; (b) α = −6, β = 
−4; (c) α = −2, β = −2; (d) α = 20, β = −4. 

For the case of Equation (16), the asymmetric type of yield function, Figure 3 shows 
the effect of material parameter β with α = 0. The shape of the yield surface captures well 
the SD effect similar to Cazacu and Barlat (2004) and Khan et al. (2012) in that the yield 
stress in compression is larger than that in tension. Additionally note the asymmetric yield 
shape in that the proposed yield function reproduces the higher strength in equi-biaxial 
tension than in equi-biaxial compression observed in a titanium sheet of HCP crystal 
structure. 

Figure 2. General yield loci shapes obtained using the isotropic yield: (a) α = 3, β = 12; (b) α = −6,
β = −4; (c) α = −2, β = −2; (d) α = 20, β = −4.

Metals 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 3. General yield loci predicted by the proposed isotropic yield function for α = 0; β =−2.0~2.0. 

Therefore, it can be accepted that the yield function proposed in this study can express 
various types of yield surfaces by properly combining the two parameters α and β. 

3. Application of the Proposed Yield Function Model 
3.1. AA6016-T4 Sheet 

In conventional methods used to determine parameters of the yield function, the 
uniaxial tension, pure shear, and hydraulic bulge test and biaxial tensile experiment with 
cruciform have been widely used [45]. In order to identify the parameters of the yield 
function developed by Cazacu-Barlat et al. (2001) for the AA6016-T4 sheet, the uniaxial 
tensile and hydraulic bulge test data were used [21,46,47]. 

In order to identify the parameters of the proposed yield function, the following error 
function was used to minimize the error value: 𝐹 = ∑ 𝜂௜ ൬1 − (ఙഇ)೔೟೓(ఙഇ)೔೏ೌ೟ೌ൰ଶ௡௜ + ∑ 𝛾௝ ൬1 − (ோഇ)೔೟೓(ோഇ)೔೏ೌ೟ೌ൰ଶ

+ 𝛿 ൬1 − (ఙ್)೔೟೓(ఙ್)೔೏ೌ೟ೌ൰ଶ
+ 𝜐 ൬1 − (ோ್)೔೟೓(ோ್)೔೏ೌ೟ೌ൰ଶ௠௝ + ∑ 𝜒௞ ൬1 − (௟ᇱ)ೖ೟೓(௟)ೖ೏ೌ೟ೌ൰ଶ௧௞  (9)

Here, n and m represent the number of yield stress 𝜎ఏ and Lankford coefficient value 𝑅ఏ in the direction obtained in the uniaxial tensile test, respectively. 𝜎௕ and 𝑅௕ are the 
yield stress and Lankford coefficient of equi-biaxial tension, respectively. t denotes the 
amount of biaxial tension and compression tested at various load ratios, and the 
superscripts denotes whether each value is an experimental value (data) or a calculated 
value (th). 

Additionally, 𝜂௜, 𝛾௜, 𝛿, 𝜈, and 𝜒௞ are weight factors for each term on the right side 
contributing to the error function. These weights are values arbitrarily determined by the 
user according to which factors are given priority to identify 𝑎௜  and 𝑏௝  because the 
experimental results in this study are greater than the number of equations [48–50]. 
Habraken et al. [49] set all of these weight factors to 1.0, and Nomura and Kuwabara [50] 
used the values that best fit the yield stress and anisotropy coefficient in the range of 
1000~0.1. In this study, an appropriate value was used according to the problem so as not 
to fall into the local minimum value. (𝑙)௞ௗ௔௧௔  and (𝑙′)௞௧௛  are the distances between the 
origin and the experimental and predicted values in the principal stress space, 
respectively. That is, l =  ඥ𝜎ଵଶ + 𝜎ଶଶ. 

Figure 3. General yield loci predicted by the proposed isotropic yield function for α = 0; β =−2.0~2.0.



Metals 2023, 13, 142 9 of 18

3. Application of the Proposed Yield Function Model
3.1. AA6016-T4 Sheet

In conventional methods used to determine parameters of the yield function, the
uniaxial tension, pure shear, and hydraulic bulge test and biaxial tensile experiment with
cruciform have been widely used [45]. In order to identify the parameters of the yield
function developed by Cazacu-Barlat et al. (2001) for the AA6016-T4 sheet, the uniaxial
tensile and hydraulic bulge test data were used [21,46,47].

In order to identify the parameters of the proposed yield function, the following error
function was used to minimize the error value:
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Here, n and m represent the number of yield stress σθ and Lankford coefficient value
Rθ in the direction obtained in the uniaxial tensile test, respectively. σb and Rb are the yield
stress and Lankford coefficient of equi-biaxial tension, respectively. t denotes the amount of
biaxial tension and compression tested at various load ratios, and the superscripts denotes
whether each value is an experimental value (data) or a calculated value (th).

Additionally, ηi, γi, δ, ν, and χk are weight factors for each term on the right side con-
tributing to the error function. These weights are values arbitrarily determined by the user
according to which factors are given priority to identify ai and bj because the experimental
results in this study are greater than the number of equations [48–50]. Habraken et al. [49]
set all of these weight factors to 1.0, and Nomura and Kuwabara [50] used the values that
best fit the yield stress and anisotropy coefficient in the range of 1000~0.1. In this study,
an appropriate value was used according to the problem so as not to fall into the local
minimum value. (l)data

k and (l′)th
k are the distances between the origin and the experimental

and predicted values in the principal stress space, respectively. That is, l =
√

σ2
1 + σ2

2 .
Using KV’12S and the Cazacu–Barlat yield function (2001), the yield surface, nor-

malized yield stress, and Lankford anisotropy coefficients for the AA6016-T4 sheet were
predicted. Figure 4a,c,d are shown together with the experimental data. The coefficients
used in the KV’12S yield function for in-plane stress σ3 = 0 were identified using 16 ex-
perimental data of uniaxial tensions, i.e., the yield stresses and the Lankford coefficients
at θ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦, and the equiyield tension stress, i.e., equi-biaxial
yield stress (σb/σ0 = 1.0 [21]) and the Lankford coefficient (Rb = 1.05 [46]). These data were
also used to minimize the error function, Equation (26). These coefficients are shown in
Table 1.

Table 1. Anisotropic coefficients of the Kim–Van and the Cazacu–Barlat yield functions (2001) for
AA6016-T4 sheet (16 equations for fitting).

Parameters a1 a2 a3 a4 b1 b2 b3 b4 b5 b10 α β2 c Error

Kim–Van 1.039 1.018 0.729 0.720 0.722 2.006 2.825 0.251 1.574 1.633 1.546 2.004 × 0.0006
Cazacu–
Barlat 0.334 0.815 0.815 0.420 0.040 −1.205 −0.958 0.306 0.153 −0.020 × × 1.4 0.0007
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Similarly, in the Cazacu–Barlat yield function, uniaxial tensile yield stress and Lank-
ford modulus values tested in the directions θ = 0◦, 30◦, 45◦, 75◦, and 90◦ and biaxial
tensile yield stress σb/σ0 = 1.0 were used to identify the coefficients of the Cazacu–Barlat
yield function. Figure 4a,c,d show the predicted yield surface, normalized yield stress, and
Lankford coefficient values in the KV’12S model using the Cazacu–Barlat yield function,
respectively. Figure 4b shows the shape of the yield surface considering the effect of shear
stress on the KV’12S yield function.

From the results in Figure 4, the value of the Lankford coefficient according to the yield
surface, normalized yield stress, and angle predicted by the KV’12S model had a low error
value (i.e., F = 0.0006 for KV’12S and F = 0.0007 for the Cazacu–Barlat model), and it can be
seen that the experimental results are well represented. However, the predicted uniaxial
yield stress σθ/σ0 according to the angle was partially inconsistent with the corresponding
experimental data at θ = 0◦, 45◦, and 90◦. This is thought to be because overfitting occurred
when 16 equations were used to fit the experimental data.

In order to prevent such overfitting at θ = 0◦, 45◦, and 90◦, the anisotropy coefficients
in the Kim–Van yield function were identified using a total of 12 experimental data, i.e.,
uniaxial tensile yield stress and Lankford values at θ = 0◦, 15◦, 45◦, 75◦, and 90◦, and
equi-biaxial tension, which were σb/σ0 = 1.0 and Rb=1.05. The anisotropic coefficients
identified are summarized in Table 2 and the predictions are depicted in Figure 5.



Metals 2023, 13, 142 11 of 18

Table 2. Anisotropic coefficients in the Kim–Van and the Cazacu–Barlat yield functions (2001) for
AA6016-T4 sheet (12 equations for fitting).

Parameters a1 a2 a3 a4 b1 b2 b3 b4 b5 b10 α β2 c Error

Kim–Van 1.020 1.035 0.787 0.685 0.747 1.871 2.744 0.296 1.720 1.656 1.590 1.894 × 0.0013
Cazacu–
Barlat 0.334 0.815 0.815 0.420 0.040 −1.205 −0.958 0.306 0.153 −0.020 × × 1.4 0.0007
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In Figure 5, it can be seen that the predicted yield locus, surface, normalized yield
stress, and Lankford coefficient values from the KV’12S yield function agreed well with the
experiment at the angles taken to identify the parameters. However, the error value in this
case (F = 0.0013) was larger than that of the Cazacu–Barlat model (F = 0.0007). The reason
is incorrect predictions in the other data θ = 30◦ and 60◦. Therefore, it can be concluded
that it is necessary to take appropriate experimental data for each material to improve the
prediction of material behavior.

3.2. AA2090-Ts3 Sheet

In previous studies, in the case of the AA2090-T3 [51,52] sheet, the Yld2004-18p
function was used to successfully describe the plastic anisotropy properties of strongly
anisotropic materials. However, the Yld2004-18p yield function requires many experiments
to identify parameters.
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Here, to confirm the applicability of the KV’12S yield function to strongly anisotropic
material, the predicted yield surface, normalized uniaxial yield stress, and Lankford coeffi-
cient for the AA2090-T3 sheet were compared with experimental results.

To identify the parameters of the KV’12S yield function, uniaxial tensile yield stress
and Lankford modulus values according to θ = 0◦, 15◦, 45◦, and 90◦; biaxial tensile yield
stress σb/σ0 = 1.035; and biaxial yield stress values at three different load ratios of biaxial
tension (i.e., σx : σy = 1 : 2, 4 : 3, 2 : 1) were used. On the other hand, the coefficient of
the Cazacu 2018 yield function (refer to Equation (7)) was identified by minimizing the
error function (22) using the uniaxial tensile yield stress and Lankford coefficient value
for θ = 0◦, 30◦, 45◦, 75◦, and 90◦ and biaxial yield stress σb/σ0 = 1.035. Table 3 shows the
coefficients of the two yield functions.

Table 3. Anisotropic coefficients of the Kim–Van and the Cazacu 2018 yield functions for AA2090-
T3 sheet.

Parameters a1 a2 a3 a4 b1 b2 b3 b4 b5 b10 α β2 c Error

Kim–Van 0.989 1.430 0.252 1.663 −0.544 −3.571 0.065 0.337 −2.049 −2.148 2.368 0.090 0.0837 0.0013
Cazacu–
Barlat 0.779 1.596 1.427 1.813 2.009 0.255 −0.990 0.646 1.589 2.735 −2.18 × × 0.0007

Figure 6a,c,d show the predicted yield surface, normalized yield stress, and Lank-
ford coefficient values from the KV’12S and Cazacu 2018 yield functions together with
experimental data. Figure 6a represents the yield locus with different shear stress σxy/σ0
and shows clearly that the yield surfaces predicted by Equation (12) did not exhibit the
same shape for different shear stresses; additionally, it shows couplings between shear and
normal components of stress, as pointed in many crystal plasticity studies [53].
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Moreover, the shape of the yield surface was quite sharp in equi-biaxial tension, and
strong anisotropic behavior is shown in the Lankford coefficient value (Figure 6d). The
prediction of the KV’12S yield function agreed well with the experiment. Error values were
calculated to evaluate the predictability of material behavior for two yield functions. The
error value of 0.0837 was calculated from the KV’12S yield function, while the Cazacu
2018 yield function could not be calculated. The reason is that the convexity of this yield
function was not satisfied in the case of the Cazacu 2018 yield function as shown in the
yield surface (Figure 6a).

To compare the difference in convexity between the two yield functions, a Hessian
matrix (H) was observed. The first eigenvalue of a matrix H is always greater than or equal
to the second eigenvalue. Therefore, only the second eigenvalue (λ2) was considered in
this study.

In the case of the KV’12S yield function, it can be seen that the second eigenvalue of
matrix H was always greater than or equal to 0 in the range of σ1 = [−200, 200] MPa and
σ2 = [−200, 200] MPa (Figure 6a). On the other hand, the Cazacu 2018 yield function did
not satisfy the convexity under some conditions (Figure 7b). In particular, in the range
(σ1, σ2) = [200, 125] MPa and (σ1, σ2) = [125, 200] MPa, the second-order eigenvalues
were less than zero.

Figure 7c,d show the shape of the second invariant in the principal stress plane.
The KV’12S yield function is a smooth shape without vertices as shown in Figure 7c.
However, the Cazacu 2018 yield function as shown in Figure 7d has many protrusions.
This phenomenon indicates that the yield curve predicted using the Cazacu 2018 model did
not satisfy the convexity condition for the strongly anisotropic material. From this result, it
can be concluded that the combination of the two parameters α and β in the KV’12S yield
function proposed in this study can control the shape of the yield surface that satisfies the
convexity of the strongly anisotropic material. In other words, the KV’12S yield function
can control the various shapes of the yield surface in a wider range.
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3.3. Pure Titanium Sheet

A commercially available pure titanium (CP-Ti) sheet having an HCP crystal structure
exhibited an asymmetric shape in the yield curve. To explain the asymmetric plastic
yield behavior of CP-Ti materials, Yoon et al. [42] proposed a new yield function having
a coupling effect of all three stress invariants as shown in Equation (10). To describe the
SD effect of the yield stress difference appearing in tension and compression tests, we
adopted the KV’12A yield function, and the anisotropic parameters were determined from
the experimental results of uniaxial tension and compression tests and equi-biaxial tension
and compression tests.

Figure 8 shows experimental data from [42] and the Yoon 2014 yield function together
to confirm the applicability of the KV’12A asymmetric yield function of Equation (12) for
HCP material.
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To identify the parameters of the KV’12A yield function, biaxial tension and compres-
sion data for three stress ratios (1:0, 1:1, 0:1) and the predicted data from the yield function
of Yoon 2014 for three stress ratios (2:1, 3:4, 1:2) were used to minimize the error function,
Equation (26). The derived parameters are shown in Table 4.

Table 4. Anisotropic coefficients of the Kim–Van yield function for high-purity α-titanium sheet.

Parameters a1 a2 a3 a4 b1 b2 b3 b4 b5 b10 α β2 c Error

Kim–Van 1.014 0.673 0.660 x 1.159 1.765 1.063 1.089 x x 1.124 1.654 × 0.0007

The yield locus predicted by the KV’12A and Yoon 2014 yield function showed a
slight difference under the equi-biaxial tension and the compression modes, but the result
predicted from KV’12A was in good agreement with the experimental results overall.

Therefore, it can be concluded that the anisotropic yield function of Kim–Van proposed
in this study predicted not only the symmetrical yield behavior in BCC and FCC crystal
structures well, but also the asymmetric yield behavior in HCP crystal structures.

4. Conclusions

In this study, a new anisotropic yield function expressed as J2 and J3 invariants
including two parameters α and β and are proposed so that the plastic anisotropy behavior
of the sheet can be well described. This yield function has been proposed to express two
types of yield surfaces well: the symmetrical yield surface in BCC and FCC crystalline
materials and the asymmetrical yield surface in HCP crystalline materials.

To confirm the validity of the proposed yield function, the plastic properties of the
AA2090-T4 sheet with strong anisotropic material behavior as the symmetric yield function
(KV’12S) and commercial pure titanium sheet as the asymmetric yield function (KV’12A)
were predicted and compared with the existing anisotropic yield functions. The following
main conclusions were drawn from this study:

(1) The KV’12S yield function results in the Von Mises yield function when the two
parameters α and β are zero.
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(2) KV’12S can also well represent various types of yield curves including strongly
anisotropic materials. It was shown that the proposed yield function can implement
various types of yield surface shapes by combining the two parameters α and β.

(3) To verify the flexibility of the proposed model, the convexity of the yield surface was
checked and compared with the Cazacu 2018 yield function. The convexity of KV’12S
was satisfied in most stress ranges, but the Cazacu 2018 yield function for the material
covered in this study did not satisfy the convexity in some stress ranges.

(4) As a result of applying the KV’12S yield function proposed in this study to the AA2090-
T4 material, which exhibited very strong anisotropy, the results deviated from some
experimental data. Attention should be paid to the selection of experimental data used
for the parameter optimization of the yield function proposed in this study. In this
case, twelve experimental data (e.g., ten experimental data from the uniaxial tensile
test and two experimental data from the equi-biaxial tension test) are recommended.

(5) The KV’21A yield function was used to predict the yield surface of a commercial
pure titanium sheet that exhibited an asymmetrical yield surface shape, and it was
compared with the Yoon 2014 yield function and experimental data. Both yield
functions were in good agreement with the experiment overall.

In a future study, the anisotropic yield function proposed in this study will be applied
to the forming limit curve prediction. In addition, the effectiveness of the proposed yield
function is evaluated by applying it to the finite element analysis of the sheet material
processing process such as the cup drawing process and the incremental sheet forming pro-
cess.
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