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Abstract: The influence of process parameters in the three-stage purification of aluminate solution
from the Bayer process and aluminum hydroxide was considered in this paper. One of the ways of
purification is treating the aluminate solution in order to reduce the concentrations in the starting
raw material (solution) and then treating the aluminum hydroxide at a certain temperature and time
in order to obtain an alumina precursor of adequate quality. The purification process itself is divided
into three phases. The first phase involves the treatment of sodium aluminate with lime in order to
primarily remove Ca2+ and (SiO3)2− impurities. Phase II aims to remove impurities of Zn2+, Fe2+,
and Cu2+ by treatment with controlled precipitation using specially prepared crystallization centers.
In Phase III, Na+ is removed by the process of hydrothermal washing of Al2O3 · 3H2O. In this work,
parameters such as temperature (T), reaction time (t), and concentration of lime (c) were studied in
order to remove the mentioned impurities and obtain the purest possible product that would be an
adequate precursor for special types of alumina.

Keywords: Bayer process; sodium aluminate; alumina; hydrothermal process; aluminum hydroxide

1. Introduction

The Bayer process is the most important and widespread process for the production of
alumina from bauxite, which is most often used for the production of metallic aluminum.
By leaching the ore with sodium hydroxide at high temperatures and pressures, Bayer’s
solution of sodium aluminate is created. The solution has aluminum and sodium as the
main components, but it also contains various impurities. Impurities adversely affect the
stability of the aluminate solution and its properties and later affect the quality of the final
product obtained from it (alumina and aluminum hydroxide). These impurities are bound
into the crystal lattice of aluminum hydroxide, causing a change in its properties, which
makes it difficult to use or even limits its use in certain final applications. In order to avoid
the harmful effects of impurities, they must be removed by certain processes, i.e., their
concentration must be lowered below the permitted limit. Special types of alumina (also
identified as non-metallurgical alumina) are synthetic products obtained from bauxite ores
in controlled processes. Depending on the applied process, it is possible to obtain different
forms and types of alumina, namely, active (transitional), medium calcined, high calcined,
tabular, and fused alumina. Each obtained product has characteristic properties, such
as high mechanical strength and resistance to high temperatures and corrosion. Due to
the stated properties, special alumina are the main components in various applications.
They can be used as adsorbents, ceramic and refractory materials, abrasives, separation
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membranes, semiconductors, then in bionics, orthopedics, electronics, military industry,
etc. [1].

The most important and widespread process for the production of alumina is the Bayer
process, which uses bauxite as raw material. There are four main stages of this process [1],
namely, leaching, filtration, crystallization, and calcination, which lead to formation of
aluminates at elevated temperatures. Sodium aluminate is an inorganic compound that
is used as an efficient source of aluminum hydroxide in the Bayer process of producing
alumina. Pure sodium aluminate (anhydrous) is a white crystalline solid that has the
abbreviated formula NaAlO2. Commercial sodium aluminate is available as a solution or
as a solid [2]. The structure of the aluminate ion is shown in Figure 1.
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From the point of view of the production of alumina, the most important is sodium
aluminate, which can be formed through the bauxite leaching reaction with NaOH solution
and the bauxite sintering reaction with soda (Na2CO3) and subsequent dissolution of
alumina using water [3]. Aluminate solutions are unstable and constantly hydrolyze with
the formation of Al(OH)3 and NaOH. The production of alumina according to the Bayer
process is based on this important feature. The stability of aluminate solutions depends
on several parameters, the most important of which are [4] concentration, caustic ratio,
temperature, and content of impurities. Industrial aluminate solutions always contain
impurities, which affect its stability as well as the quality of the obtained alumina. However,
the impact of impurities is not sufficiently known, and their examination and removal is
the subject of this paper. The focus of this work is the removal of calcium, silicon, iron,
copper, and zinc from sodium aluminate solutions [5].

Impurities in aluminate solutions can be organic or inorganic. Organic impurities
are mostly oxalates, acetates, bitumen, etc. Inorganic impurities represent dissolved ele-
ments (Fe2+, Zn2+, Cu2+, Ca2+, Na+, (SiO3)2−, etc.). During leaching of bauxite at elevated
temperatures and pressures at which aluminum dissolves from the ore, there is also a
partial dissolution of impurities that pass into the solution [6–8]. In the used solution, the
silicon comes from the aluminum hydroxide that was dissolved during the preparation
of the synthetic solution. The effect of the presence of silicon on the hydroxide is due to
adsorption from the solution during the precipitation of Al(OH)3. It is dissolved in the
form of sodium silicate (Na2SiO3), which is formed when dissolved in NaOH solution.

Dissolved iron in aluminate solutions is most often found in the form of ferrate ions
(Fe(OH)4), and it can also be found in the form of colloidal particles. Iron in bauxite is
found in the mineral forms of goethite and hematite. Iron dissolution occurs during bauxite
leaching [9].

Due to the instability of Zn2+ ions in alkaline solutions, zinc is most often found in
aluminate in the form of zincate (ZnO2

2− or Zn(OH)4
2−). Colloidal zinc can also be formed,

which, like any colloidal solution, cannot be separated by classical industrial filtration [10].
Silicon dioxide is commercially the most undesirable impurity of bauxite. This is be-

cause during the ore refining process in the Bayer process, insoluble sodium aluminosilicate
is formed, which is separated from the process suspension as such, thus leading to the loss
of the most important components (sodium hydroxide and aluminum oxide). Most bauxite
ores contain silica in various forms. Forms of silicon dioxide that dissolve under given
conditions are particularly relevant for the Bayer process, and these are most often clays and
quartz. The silica that dissolves in the Bayer autoclave process is known as “reactive silica”.
Usually, the content of reactive silica is expressed as wt. % SiO2. During leaching at low
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temperatures (150 ◦C), the content of reactive silicon dioxide is proportional to the content
of silicon dioxide present in the form of kaolinite, considering that kaolinite is completely
soluble in Bayer suspension even at 150 ◦C. During leaching at high temperature (>240 ◦C),
a part of the quartz is also decomposed, so the content of reactive silica will be equal to the
sum of the silica present in the kaolinite and the decomposed quartz [6,11,12].

In order to know the behavior of calcium in Bayer’s solutions, it is necessary to know
the influence of the composition on the solubility of calcium. The presence of some organic
species, such as humic acid and sodium gluconate, significantly increase the solubility of
calcium because calcium forms soluble complexes with these organic species. In addition,
high concentrations of carbonate have the effect of increasing the concentration of calcium in
the solution, while phosphate reduces solubility at low concentrations of carbonate. Initially,
this behavior was attributed to the higher solubility of calcium carbonate compared to
tricalcium aluminate (3CaO·Al2O3; TCA). However, according to Le Chatelier’s principle,
calcium concentration should decrease with increasing carbonate concentration. The
previous observations can be explained by the fact that the most unstable species are also
the most soluble, that is, the main soluble species in Bayer suspensions is the monomer
calcium aluminate, in equilibrium with hemicarbonate species C4A (4CaO·Al2O3) [13].

Regarding purification of aluminate solutions, an experimental work was performed
using standard glassware, A.R. chemicals, instruments, and methods at the research lab-
oratory at “Alumina DOO. Zvornik, Bosnia and Herzegovina [14]. In this work, it was
possible to remove iron, zinc, and copper from Bayer liquor with an efficiency of more than
90% in such a way that the treated solution is still economically usable in the following
stages of processing while obtaining different types of aluminum trihydrate. Based on the
results presented, it can be firstly concluded that an increasing time of contact between
the liquor and seed crystals has a positive effect on the removal of iron, zinc, and copper
liquor impurities. Increasing the temperature indirectly reduces the impurity removal
efficiency from the sodium aluminate solution because higher process temperature results
in the rate of precipitation being lower and the solubility of all impurities being higher. At
a temperature of 40 ◦C, good impurity removal results are achieved.

A Bayer process solution is filtered through a bed of particles of a granular substance
containing Fe2O3 to remove copper and zinc species from the solution. The particles
preferably have a Fe2O3 content of about 40 to 100 wt. %. For more effective removal of
zinc, the particles are coated with a metal sulfide, preferably zinc sulfide [15]. A maximum
zinc content of 0.03 wt. % can be tolerated in certain alloys. Theoretically, a zinc content of
0.03 wt. % in the metal is derived from an aluminum oxide containing about 0.02 wt. %
ZnO. To produce satisfactory aluminum metal, the CuO and ZnO contents of aluminum
oxide should generally be held to less than about 0.015 and 0.023 wt. %, respectively.

Removal of some impurities from Bayer liquor, such as zinc compounds, allows
alumina with low content of impurities incorporated in crystalline structure to be ob-
tained [16,17]. Milovanovic et al. [18] studied the purification of Bayer liquor. Crystalliza-
tion of Bayer liquor was conducted at 52 ◦C for 24 h, whereas aluminum hydroxide with
specific structural properties was used as seed. The crystallization product (aluminum
hydroxide) was calcined at 950 ◦C for 2 h with a heating rate of 5 ◦C/min. The obtained
alumina (Alumina I) was compared with alumina obtained without Bayer liquor purifica-
tion (alumina from bauxite refinery “Alumina” d.o.o Zvornik, Bosnia and Herzegovina
(Alumina II). Zinc as zinc oxide in the initial and purified Bayer liquor was 0.0494 L and
0.0057 g/L, respectively. Alumina from the bauxite refinery contained 0.026 wt. % ZnO,
whereas the zinc content in alumina obtained after Bayer liquor purification was 0.016%.

Dissolution of iron occurs during digestion, which represents an equilibrium concen-
tration established between the iron-bearing minerals in the bauxite and the liquor. Ibrahim
et al. [19] mentioned that iron is present as colloidal or nanosized particles rather than as a
solution and passes through security filtration. The hematite surface area, lime addition,
free caustic concentration, temperature, holding time, and mineralogy all influence the
liquor iron concentration. Elevated SO4, CO3, and F concentrations in pregnant green liquor
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(PGL) would also appear to favor lower iron liquors. As is evident from plant data, lime
injection into the digesters at 270 ◦C can bring down the iron-in-liquor concentration by up
to 7 mg/L. Lime addition is an important process for iron control and helps to dramatically
overcome high iron concentrations. To target a lower iron-in-liquor concentration, an
incremental approach is required, and for this reason, a range of small improvements need
to be targeted simultaneously. Holding time and addition of reagents can help with the
growth of colloidal iron particles, while an increased colloid size will aid its removal when
using flocculants and during filtration [19].

This work was focused on the purification of aluminate solution using an improved
research strategy containing three phases. There are many ways to remove impurities
depending on the impurities involved. For example, organic dissolved substances are
removed by adding whitening additives, which coagulate dissolved organic compounds.

In this work, the focus was on the removal of impurities of iron, zinc, silicon, calcium,
and sodium. Some of the ways to achieve this include removal of Zn2+ and Cu2+ by
filtration through a layer of granules containing iron trioxide [10], removal of Zn2+ by
addition of ZnS germs in the presence of sulfide ion [13], removal of colloidal iron by
filtration through a suitable polymer [13], and removal of Fe2+ by filtration through a layer
of sand [9]. The main aim of this work was to remove the mentioned impurities from
synthetic sodium aluminate, which was prepared from a non-metallurgical hydrate that
dissolves in sodium hydroxide. The sodium hydroxide solution was prepared by dissolving
granulated solid NaOH in a certain amount of water.

2. Materials and Methods
2.1. Material

Non-metallurgical hydrate obtained at the factory “Alumina d.o.o”, Zvornik, Bosnia
and Herzegovina, was used as raw materials to obtain ultrapure aluminum hydroxide and
pure alkali (base), lime (CaOakt = 90.93%), and finely precipitated aluminum hydroxide.

2.2. Characterization of the Liquid Phase

Chemical analysis of elements dissolved in the solution was obtained by high-resolution
inductively coupled plasma optical emission spectroscopy (ICP-OES) which allows the
determination of elements with an atomic mass number range of 7 to 250 (Li to U). The
equipment used was a “Spectro Genesis” spectrometer.

2.3. Characterization of the Solid Phase

The chemical composition of the sample was determined by fluorescence X-ray struc-
tural spectroscopy (EDX) on a Shimadzu 8000 device. Bulk analysis, especially for impuri-
ties, was carried out by AAS or ICP, after the purification step and shown in Appendix A
of the text.

All samples were analyzed under the following conditions: beam voltage of 10 kV, an-
alyzed X-ray energy range of 0 to 10 keV, beam frequency of 20,000 pulses per second, time
acquisitions of 300 s. Composition identification was performed using DIFFRAC.SUITE
EVA FT software, Version 4.2. IR spectra were recorded using Shimadzu IRAffinity-1S
(single reflection) infrared spectrophotometry with Fourier transform. The analysis was
performed in the range of wavenumbers 4000–400 cm−1, with 20 scans and a resolution of
4 cm−1.

The SEM analysis was performed on the JSM 7000F by JEOL (construction year 2006,
JEOL Ltd., Tokyo, Japan) and EDX analysis was performed using the Octane Plus-A by
Ametek-EDAX (construction year, 2015, AMETEK Inc., Berwyn, PA, USA) with software
Genesis V 6.53 by Ametek-EDAX, revealing an irregular structure of solid residue.

XRD analysis of solid residue in the first purification phase was performed using a
Bruker D8 Advance with a LynxEye detector (Bruker AXS, Karlsruhe, Germany). X-ray
powder diffraction patterns were collected on a Bruker AXS D4 Endeavor diffractometer
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in Bragg–Brentano geometry, equipped with a copper tube and a primary nickel filter
providing Cu Kα1,2 radiation (λ = 1.54187 Å).

2.4. Procedure

In order to obtain the highest quality product (aluminum hydroxide), the aluminate
solution must be purified from the various impurities contained in it. Depending on the
temperature and type of bauxite, pressure, as well as other parameters, a smaller or larger
amount of various organic and inorganic impurities were dissolved in sodium aluminate.

Empirically, it was determined that 204 g of solid NaOH per liter of demineralized
water is needed to dissolve 260 g of non-metallurgical hydrate. In this way, an aluminate
solution with 170 and 155 g/L concentrations of Al2O3 and Na2O was obtained, which
then underwent purification.

Purification of the mentioned impurities was carried out in three stages, as shown in
Figure 2:

• Phase I: Addition of lime in order to remove calcium and silicon.
• Phase II: Rapid crystallization by adding aluminum hydroxide as a crystallization

initiator in order to remove iron, zinc, and copper impurities.
• Phase III: Washing in autoclaves to remove sodium impurities.
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Figure 2. Schematic representation of the process.

The influence of time, lime concentration (Phase I), amount of crystallization initiator
(Phase II), hydrothermal washing of aluminum hydroxide (Phase III), and treatment tem-
perature was monitored. Each of the parameters was monitored with constant values of the
other two parameters. Sodium aluminate was obtained by dissolving non-metallurgical
aluminum hydroxide. Non-metallurgical aluminum hydroxide was produced at the factory
and delivered to the laboratory. At an elevated temperature, aluminum hydroxide was
treated with sodium hydroxide solution, resulting in the so-called synthetic aluminate.
The concentration of the obtained solution and the caustic modulus were adjusted to be
at the level of the process Bayer liquor. Aluminate was also analyzed on the ICP, where
the impurity content was determined before treatment with the appropriate reagent. In
contrast to the first purification phase, removal of Fe2+, Zn2+, and Cu2+ in the second phase
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had a physical nature based on some adsorption mechanisms on very fine powder of added
aluminum hydroxide.

3. Results and Discussion
3.1. First Step of the Purification Process

As already mentioned, the first phase involved the purification of the aluminate
solution from calcium ions and silicon ions. The following chemical reaction are expected
in the first purification step.

Al2O3 + 2NaOH→ 2NaAlO2 (aq)+ 2H2O (1)

SiO2 + 2NaOH→ Na2SiO3 (aq) + H2O (2)

2NaAlO2 + Ca(OH)2 → Ca3Al2O6 (s) + 2NaOH (3)

Na2SiO3 + Ca(OH)2 → CaSiO3 (s) + 2NaOH (4)

3Al2Si2O5(OH)4 (s) + 18NaOH→ 6Na2SiO3 + 6NaAl(OH)4 + 3H2O (5)

6Na2SiO3 + 6NaAl(OH)4 + NaX→ Na6[Al6Si6O24]·2 NaX (s) + 12NaOH + 6H2O (6)

The process was carried out by adding lime to sodium aluminate and monitoring the
effects of the process parameters (time, temperature, and concentration of lime) Table 1.
After the experiments were completed, filtration was performed, where the phases were
separated into liquid and solid. The liquid phase (filtrate) that had been purified from
silicon and calcium ions was subjected to further purification (Phase II).

Table 1. Process parameters for the first stage of the process.

Synthesis No. Time of Synthesis (min) Temperature (◦C) Concentration of Lime (g/L)

1A 60 80 20

2A 120 80 20

3A 180 80 20

4A 240 80 20

5A 300 80 20

6A 120 50 20

7A 120 60 20

8A 120 70 20

9A 120 80 20

10A 120 80 5

11A 120 80 10

12A 120 8 20

13A 120 80 30

14A 120 80 40

To obtain a volume of 1 L of synthetic aluminate with caustic ratio αk = 1.50 (tolerance
1.45–1.55), 204 g of sodium hydroxide and 260 g of dry nonmetallurgical hydrate were
weighed on an analytical balance. The measured NaOH was transferred to a 2 L beaker, and
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water was then added up to 350 mL. This solution was first heated in order to completely
clarify it, and dry nonmetallurgical hydrate was then moderately added to it. The resulting
solution was still heated to boiling temperature and allowed to boil for 15 min. After that,
the resulting aluminate solution was cooled to room temperature and transferred to a 1 L
flask, with water added to the line. Then, 100 mL of the solution was taken to determine the
content of Al3+, Na+

, Ca2+, (SiO3)2−, Zn2+, Cu2+, and Fe2+ in the initial solution, while the
rest was transferred to a beaker and heated to the synthesis temperature. A given amount
of lime was added to the heated solution under the synthesis conditions.

3.1.1. The Influence of Time

The influence of time on the purification of silicon and calcium was measured at a
temperature of t = 80 ◦C by adding an additional 20 g/L of lime at different times ranging
from 60 to 300 min. Figure 3 shows the recorded results.
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The content of Si first decreases, then increases and decreases again over time, and
has the lowest value at 120 min, while the content of Ca is the lowest after 60 min and its
value is constant but lower compared to the initial one. The reason for this is the formation
of insoluble tricalcium—aluminate (Ca3Al2O6). It is clearly visible from Figure 3 that at a
temperature of 80 ◦C and an amount of lime of 20 g/L, the time after which the process
should be stopped is 60 min.

3.1.2. Effect of Temperature

Figure 4 shows the effect of temperature on the content of Si and Ca in the aluminate
solution after the addition of 20 g/L of lime and 120 min of reaction time.

At temperatures below 50 ◦C, calcium removal was very slow. It can be seen from
the previous diagram that the concentration of calcium was the lowest at 50 ◦C, where its
concentration was 4.16 mg/L. With a further increase in temperature, the concentration
of Ca increased, which can be explained by the fact that calcium compounds dissolve
in sodium aluminate solution at higher temperatures. However, all values were lower
compared to the initial value of 10.64 mg/L. Unlike calcium, the purification of silicon was
more intense at higher temperatures, while the minimum concentration was at 70 ◦C. All
values were well below the initial value of 43.88 mg/L. One of the mechanisms for extracting
silicon is the formation of DSP (desilication product), which is actually a compound of
sodium aluminosilicate (a type of zeolite sodalite). This process represents a loss of sodium
and aluminum in conventional processes. Our new innovative strategy in this work is
the multistep cleaning of the aluminate solution with special reference to the removal
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of impurities from the second stage. It is known from the literature that the kinetics of
sodium aluminosilicate (DSP) formation as well as crystallinity increase with increasing
temperature, as shown in [6]:

6Na2SiO3(aq) + 6NaAl(OH)4(aq) + Na2X(aq)→ Na6(Al6Si6O24) · Na2X ·3H2O(s) + 12NaOH (aq) + 3H2O (aq)

X = CO3
2−, SO4

2−, 2OH−, 2Cl
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Figure 4. Change in Ca and Si concentrations for different temperatures (120 min, T = 50–80 ◦C).

This process was most effective at temperatures of 90–100 ◦C; however, high tempera-
tures were not favorable due to the increase in calcium in the solution. Due to the presence
of calcium in excess, there was an exchange of calcium ions with sodium at the cation
position in the aluminosilicate structure, reducing the loss of NaOH due to the formation of
calcium aluminosilicate cancrinite. This is another mechanism for extracting calcium from
the solution. Also, considering the cage structure of DSP (sodalite), which is also shown by
the previous equation, carbonate and sulfate ions were present. Considering the addition
of lime and the resulting reaction, it is very likely that calcium carbonate was present.

3.1.3. Effect of Lime Concentration

The influence of the concentration of added lime was determined at the following
process parameters: T = 80 ◦C t = 120 min, and concentration of lime = 5–40 g/L. Even with
different concentrations of added lime, the amount of sodium present in the solution did
not change and remained the same as in the initial sample. As the amount of added lime
increased, the content of Al2O3 in the solution decreased. By increasing the concentration
of calcium present, there was a more intense reaction with aluminum from the aluminate,
which resulted in the formation of insoluble tricalcium aluminate. The assumption is that
this phenomenon occurs by two possible mechanisms.

One is that as a result of oversaturation of the solution with CaO oxide, a very fast
reaction of formation of highly soluble tetracalcium aluminate occurs, which eventually
transforms into hardly soluble tricalcium aluminate, which precipitates very quickly and is
also the center of crystallization. At the same time, the synthesis of TCA is additionally
accelerated, which ultimately leads to a decrease in the solubility of calcium in the given
conditions (the given conditions favor the precipitation of TCA below the solubility limit
of CaO). We suggest that the transition compound tetracalcium aluminate, which is highly
soluble, pulls all the calcium out of the solution in the synthesis, and there is then a
transformation and precipitation of TCA and CaCO3 from the solution.
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Another mechanism that we assume takes place is the adsorption process. According
to the methods used, soluble calcium means the entire amount of Ca that is detected via
ICP-OES in the solution after filtering suspended particles on a laboratory filter. However,
on these filters, it is not possible to separate colloidal particles of calcium compounds that
end up in the solution. Tetracalcium aluminate is an intermediate compound. During trans-
formation, TCA forms colloidal particles that are adsorbed on Ca(OH)2 particles, which
also has limited solubility in sodium aluminate solution. In this way, by the mechanism of
adsorption of nanosized particles on the formed crystals of TCA and insoluble Ca(OH)2, it
is possible to separate them from the solution.

Figure 5 shows the dependence of the content of Si and Ca in the solution on the
amount of added lime. The addition of relatively small amounts of lime is advantageous
because there is a distinct removal of silicon in the solution. Adding 20 g/L of lime removed
the most calcium. With the further addition of lime, the silicon value constantly decreased,
while the calcium content in the solution increased slightly. After 120 min reactions and
at a temperature of 80 ◦C, the optimal amount of added lime was adopted, i.e., 20 g/L.
With the addition of 50 g/L of lime, the most silicon was removed due to the formation of
insoluble hydrogarnet; however, the content of Al2O3 decreased. Therefore, the process
can be carried out with the addition of 20 g/L of lime, whereby larger amounts of calcium
are removed with significantly lower losses of aluminum.
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Figure 6 shows the infrared spectrum of the solid residue at a temperature of 80 ◦C,
time of 120 min, and lime concentration of 20 g/L.

At the wavelength of 805 cm−1, a medium-sized signal was observed, which originated
from the symmetric stretching of the Si-O-Si bond in hydrogarnet (Ca3Al2(SiO4)3−x(OH)4x).
This confirmed the presence of silicon compounds that were not present in the starting
lime. The calcium compound hydrogarnet (CaO·Al2O3·6H2O) was characterized by an
absorption band at the wavelength of 540 cm−1, which originated from the vibrations of the
Ca-O bond. The absorption band in the infrared spectrum that appeared at the wavelength
of 3660 cm−1 was due to the stretching of O-H bonds.

Additional morphological and structural analysis were performed using SEM, EDX,
and XRD analysis, as shown in Figures 7–9. The obtained particles agglomerated in
irregular and round forms, with particle size being above 1 µm.
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Figure 7. Typical SEM analysis of solid residue after the first purification step (14A: T = 80 ◦C, 120 min,
40 g/L).

EDX analysis revealed the presence of residual Ca and Si. Generally, the presence of
calcium and silicon was confirmed at different places of powders. The structural analysis
of powder was studied using XRD analysis, as shown in Figure 9.
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The sample analyzed contained predominantly a Ca-carrying hydrogarnet (Ca3Al2(OH)12).
The other main phases were calcite, aragonite, and gibbsite. Portlandite and vaterite were
minor constituents (<10%). The wide peak at 2Θ = 10–16◦ indicated the presence of an
amorphous phase, possibly amorphous Ca(OH)2. Other minor phases were nordstrandite,
dickite, quartz, perovskite, and possibly rhomboklas. There was little hematite and goethite.
Cristobalite might be another minor constituent in the analyzed sample.

3.2. Second Step of the Purification Process

In the second phase of this work, the purification of the aluminate solution continued
in order to obtain the purest possible product (aluminum hydroxide). Sodium aluminate
from Phase I was further treated with very fine aluminum hydroxide (seed crystals), during
which iron, zinc, and copper ions were adsorbed on the surface of the solid phase. This
is an innovative step of this work, which is missing in the literature on purification of
solutions [20–25]. Seed crystals were prepared after grinding of water suspension with very
fine aluminum hydroxide. During the cleaning process, the sodium aluminate solution
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broke down (crystallization), and the aluminum oxide content decreased over time. The
purified solution was decomposed (crystallized), and the obtained product was sent to the
third stage of the process. The solution was prepared in the same way as in the previous
phase, with the difference being that in this phase, instead of lime, specially prepared
aluminum hydroxide was added.

3.2.1. The Influence of Time

As shown in Table 2 (blue color), the cleaning of the aluminate solution was monitored
for different times, i.e., the change in the concentration of Fe2+, Zn2+, and Cu2+ with the
other parameters (temperature and seed crystal concentration) remaining constant, as
shown in Figure 10.

Table 2. Process parameters for the second stage of the process.

Synthesis No. Time of Synthesis (min) Temperature (◦C) Concentration of Seed Crystall (5 g/L)

1B 30 50 5

2B 45 50 5

3B 60 50 5

4B 120 50 5

5B 150 50 5

6B 120 45 5

7B 120 50 5

8B 120 60 5

9B 120 70 5

10B 120 50 5

11B 120 50 10

12B 120 50 20

13B 120 50 30

14B 120 50 40
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t = 30–150 min).

The results showed a significant decrease in the concentration of iron, zinc, and copper
over time compared to the initial value. The concentration of copper already dropped to
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zero after 40 min. The concentration of iron had the lowest value after 30 min, and the
concentration then started to increase, which can be explained by desorption or dissolution
from the surface of the seed crystals. The concentration of zinc was already equal to 0
after 30 min, but after 120 min, its concentration started to increase because of the same
redissolution process. Therefore, the time of 45 min can be considered as optimal for the
best purification effect.

3.2.2. Effect of Temperature

As in the previous phases, at a constant time of 120 min and a constant seed crystal
concentration of 5 g/L, the influence of temperature on the cleaning of the aluminate
solution was monitored and is shown in Figure 11.
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Figure 11. Changes in Fe2+, Zn2+, and Cu2+ concentrations depending on temperature (120 min,
5 g/L).

It can be concluded that the influence of temperature on the concentration of impurities
is specific, with the temperature of 50 ◦C giving the best results. As far as individual
concentrations are concerned, copper is completely removed at all temperatures, iron
increases, and zinc concentration first decreases and then increases with the increase
in temperature.

3.2.3. The Influence of Seed Crystal Concentration

Finally, the influence of the concentration of specially produced aluminum hydroxide
(seed crystal) on the process of cleaning sodium aluminate from the mentioned impurities
was monitored. In this case, the seed crystal ratio changed, while the time (120 min) and
temperature (50 ◦C) remained constant, as shown in Figure 12.

Based on the results from Figure 12, it can be clearly seen that the seed crystal concen-
tration of 10 g/L completely eliminated all the observed impurities, which represents an
ideal solution for this purification phase. As for the behavior of individual elements, the
concentrations of copper and zinc decreased and the concentration of iron increased with
the increase in the seed crystal concentration. It is important to note that an increase in the
seed crystal concentration also increased the degree of decomposition of the aluminate solu-
tion, which was unfavorable and led to the loss of aluminum. Generally, the results shown
on Figures 10–12 were obtained in repeated experiments, confirming that the proposed
mechanism was well chosen, which is of high importance for the purification process.

SEM analysis of solid residue from the second purification step is shown in Figure 13.
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Figure 13. SEM analysis of powders after Phase II (10B: 120 min, 50 ◦C, 5 g/L).

The obtained particles were agglomerated and irregular, with particle size above 1 µm.
EDX analysis of the solid residue after the second purification process is presented in
Figure 14.

The obtained results confirmed the presence of sodium and aluminum in the solid
residue. The removal of sodium was performed in the third step. Carbon was used as a
carrier in the analysis.

3.3. Third Step of the Purification Process

The last stage of this process involved the purification of solid aluminum hydroxide
by hydrothermal washing under different conditions, as shown in Table 3. The aim of
hydrothermal washing (HTW) is to remove the sodium oxide present in the aluminum
hydroxide. Taking into account all three stages of the process, a product with a reduced con-
tent of harmful impurities was obtained. It should be noted that during the hydrothermal
washing process, a phase transformation from trihydrate to monohydrate occurred.
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5 g/L).

Table 3. Process parameters for the third stage of the purification.

Hydrothermal Washing No. Time (min) Temperature (◦C) Concentration of Hydrate (g/mL)

1C 30 210 167 g/L

2C 45 210 167 g/L

3C 60 210 167 g/L

5C 150 210 167 g/L

6C 120 170 167 g/L

7C 120 190 167 g/L

8C 120 200 167 g/L

9C 120 210 167 g/L

10C 120 230 167 g/L

11C 120 250 167 g/L

12C 120 210 16,7 g/L

13C 120 210 83 g/L

14C 120 210 167 g/L

15C 120 210 334 g/L

16C 120 210 500 g/L

3.3.1. The Influence of Time

As in the previous phases, the washing time was first monitored with the other
parameters (temperature and hydrate concentration) remaining constant, as shown in
Figure 15.

Based on the data obtained in the experiment, it can be concluded that sodium concen-
tration decreases over time and that reaches a minimum value at 150 min. However, the
cleaning effect is very effective even for 60 min.

3.3.2. Effect of Temperature

In the second set of experiments, as in the previous phases, the influence of tempera-
ture on the purification of aluminum hydroxide from sodium oxide was monitored with
the other parameters remaining constant (time of 120 min and hydrate concentration of
167 g/L), as shown in Figure 16.
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Figure 16. Effect of temperature on the reduction of sodium oxide concentration (120 min, hydrate
concentration of 167 g/L, temperature between 170 and 210 ◦C).

It can be seen from the graph that as the temperature increased, the degree of purifica-
tion of the product also increased. The lowest purification effect was at the temperature
of 170 ◦C, and the purification was already complete at the temperature of 210 ◦C, i.e.,
the share of sodium oxide dropped to 0%. As expected, a further increase in temperature
achieved the same effect as the given temperature of 210 ◦C.

3.3.3. Effect of Hydrate Concentration

In the third set of experiments, the influence of hydrate concentration on purification
was monitored with constant values of temperature of 210 ◦C and time of 120 min, as
shown in Figure 17.
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Figure 17. Effect of hydrate concentration on the reduction of sodium oxide content (210 ◦C, 120 min).

Based on the graph in Figure 17, it can be seen that the concentration of sodium
oxide already dropped to a value of 0.01% at a hydrate concentration of 16.7 g/L. Further
increase in the hydrate concentration led to a value of 0% at a used ratio of 167 g/L. Further
increasing the concentration had no effect because all the sodium had been removed even
at lower values, which was our final aim.

The typical XRD analysis of the cleaned solid material is shown in Figure 18.
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The structure of boehmite (AlOOH) was detected in our solid residue from the third
purification step, which was formed from gibbsite at 210 ◦C.

4. Conclusions

A review of the literature in the last 30 years concluded that the current methods of
purifying sodium aluminate are not efficient enough or are too complex and expensive.
Generally, this purification process is very important for the production of alumina with
the required characteristics, morphology, and purity. As is known, sodium aluminate is
produced by leaching bauxite at high temperatures and pressures. Under such conditions
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and due to the heterogeneity of bauxite, decomposition occurs, not only of aluminum but
also of certain impurities. Impurities have a detrimental effect on the quality of the product
and reduce its price, leading to economic losses. In this paper, a three-stage purification
strategy for removing impurities was investigated in order to obtain the purest possible
product (alumina).

Several sets of experiments were performed, which were divided into three phases in
which the effects of time, temperature, and concentration of lime were observed. The most
important conclusion were as follows:

• The first stage of the process included the addition of lime in order to purify sodium
aluminate from impurities of silicon and calcium. A detailed analysis of the results
concluded that increasing the reaction time led to a decrease in the concentration of
silicon compounds and an increase in the concentration of calcium compounds. An
increase in temperature led to a decrease in silicon concentration and an increase in
calcium concentration. Finally, a higher concentration of lime had a favorable effect on
the reduction of Si, while the concentration of Ca remained constant (lower compared
to the initial one). The optimal parameters for the first stage of the process were time
of 60 min, temperature of 70 ◦C, and lime concentration of 20 g/L.

• In the second phase of the process, the focus was on removing impurities of iron, zinc,
and copper, that is, their compounds were dissolved in sodium aluminate by adding
specially produced aluminum hydroxide as a seed crystal. As for the influence of time
on the purification of the solution from the given impurities, after just 45 min, the
concentrations of copper and zinc dropped to 0, and the concentration of iron remained
fairly constant and much lower than the initial one. By increasing the temperature,
the concentrations of Fe and Zn impurities increased, so a lower temperature favored
better cleaning. At a seed crystal concentration of 5 g/L, the proportion of impurities
already dropped significantly; the optimal concentration value was 10 g/L.

• In the last stage, the crystallized solid phase purified from the mentioned impurities
was subjected to hydrothermal washing in order to remove sodium oxide. In this case,
by increasing all three parameters (time, temperature, and hydrate concentration), a
cleaner product was obtained. The optimal values were time of 120 min, temperature
of 210 ◦C, and concentration of 10 g/60 mL.

As already mentioned, it is very important to properly optimize the process conditions,
which leads to a better purification effect with the lowest possible costs. It is necessary to
sufficiently purify the solution with the lowest possible temperature of the solution as well
as concentration in the shortest possible time interval.
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Appendix A

The first purification phase (analysis of chemical solution before and after purification).
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Table A1. Influence of time.

Liquid Phase Solid Phase

t T c Al2O3 NaOk
αk

Ca Cr Cu Fe Mg Mn Si SiO2 Fe2O3 ZnO CaO Al2O3

min ◦C gdm−3 gdm−3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution 171.87 156.55 1.50 11.00 0.04 6.60 16.96 2.08 0.16 43.6

1A 60 80 20 167.28 156.55 1.54 3.80 - 2.52 2.88 1.88 - 8.40 1.694 0.346 0.011 65.134 31.721

2A 120 80 20 164.73 155.78 1.56 9.24 - 2.12 3.80 1.56 - 8.16 0.698 0.208 0.005 67.041 31.096

3A 180 80 20 162.69 155.78 1.58 6.40 - 2.40 3.52 0.60 - 17.40 0.690 0.200 0.010 66.580 31.730

4A 240 80 20 156.55 162.69 1.58 4.92 - 2.00 3.96 0.72 - 13.32 1.185 0.246 0.006 65.110 32.195

5A 300 80 20 156.55 164.22 1.57 4.80 - 2.20 4.12 0.60 - 9.48 1.096 0.214 0.006 65.120 32.276

Table A2. Influence of temperature.

Liquid Phase Solid Phase

t T c Al2O3 NaOk
αk

Ca Cr Cu Fe Mg Mn Si SiO2 Fe2O3 ZnO CaO Al2O3

min ◦C gdm−3 gdm−3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution 170.34 156.55 1.51 10.64 0.04 6.76 18.56 0.56 0.12 43.88

6A 120 50 20 164.22 156.55 1.57 4.16 - 1.72 5.52 0.72 - 24.24 0.349 0.234 0.007 66.894 31.797

7A 120 60 20 164.73 156.55 1.56 5.08 - 2.20 6.04 0.76 - 19.88 0.551 0.210 0.007 67.192 31.247

8A 120 70 20 160.14 151.90 1.56 4.92 - 2.12 6.28 0.20 - 8.48 0.651 0.196 0.006 67.129 31.110

9A 120 80 20 164.22 155.78 1.56 6.92 - 2.52 6.60 0.80 - 8.72 0.881 0.200 0.006 66.550 31.580

Table A3. Influence of lime concentration.

Liquid Phase Solid Phase

t T c Al2O3 NaOk
αk

Ca Cr Cu Fe Mg Mn Si SiO2 Fe2O3 ZnO CaO Al2O3

min ◦C gdm−3 gdm-3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution 168.30 155.00 1.51 11.76 0.04 6.80 17.28 0.44 0.08 51.52

10A 120 80 5 170.34 155.00 1.50 3.36 o.d.l. 3.00 9.16 0.16 o.d.l. 39.20 1.740 0.490 0.010 64.530 32.120

11A 120 80 10 171.36 155.00 1.49 3.68 o.d.l. 3.12 6.60 0.20 o.d.l. 23.40 0.370 0.240 0.010 66.930 31.760

12A 120 80 20 165.75 157.33 1.56 2.64 o.d.l. 1.08 2.24 0.08 o.d.l. 12.36 1.186 0.215 0.006 65.810 31.601

13A 120 80 30 164.73 156.55 1.56 3.44 o.d.l. 1.20 2.24 0.16 o.d.l. 10.68 0.710 0.145 0.005 67.310 31.027

14A 120 80 40 164.22 155.78 1.56 3.80 o.d.l. 0.96 4.20 0.20 o.d.l. 6.92 0.701 0.162 0.006 66.246 32.030

The second purification phase (analysis of chemical solution before and after purification).

Table A4. Influence of time.

Liquid Phase Solid Phase

t T c NaOk Al2O3
αk

Ca Cu Fe Mn Zn SiO2 Fe2O3 Na2O ZnO CaO

min ◦C gdm−3 gdm−3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution/hydrate 155.78 168.30 1.52 9.60 6.44 22.32 0.08 9.32

1B 30 50 5 153.45 147.90 1.71 2.12 0.00 7.52 0.00 0.00 0.006 0.05 0.43 0.0305 0.018

2B 45 50 5 153.45 142.80 1.77 2.44 0.00 7.96 0.00 0.00 0.005 0.04 0.48 0.0250 0.015

3B 60 50 5 154.23 130.05 1.95 2.16 0.00 7.44 0.00 0.00 0.004 0.03 0.45 0.0185 0.013

4B 120 50 5 150.00 113.22 2.25 2.28 0.00 8.04 0.00 0.16 0.004 0.02 0.41 0.0186 0.012

5B 150 50 5 154.23 110.16 2.30 2.56 0.00 8.56 0.00 0.84 0.001 0.02 0.41 0.0134 0.009

Table A5. Influence of temperature.

Liquid Phase Solid Phase

t T c NaOk Al2O3
αk

Ca Cu Fe Mn Zn SiO2 Fe2O3 Na2O ZnO CaO

min ◦C gdm−3 gdm−3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution/hydrate 155.00 166.26 1.53 9.60 6.72 20.00 0.08 9.44

6B 120 45 5 155.00 158.10 1.61 1.60 0.00 6.80 0.00 2.08 0.0050 0.12 0.57 0.0640 0.046

7B 120 50 5 154.23 150.96 1.68 1.48 0.00 6.80 0.00 0.32 0.0007 0.06 0.68 0.0445 0.026

8B 120 60 5 155.78 144.84 1.77 2.24 0.00 8.52 0.00 1.04 0.0020 0.05 0.35 0.0338 0.022

9B 120 70 5 155.78 142.80 1.79 2.76 0.00 8.68 0.00 4.04 0.0050 0.059 0.13 0.0250 0.026
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Table A6. Influence of concentration.

Liquid Phase Solid Phase

t T c NaOk Al2O3
αk

Ca Cu Fe Mn Zn SiO2 Fe2O3 Na2O ZnO CaO

min ◦C gdm−3 gdm−3 gdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 mgdm−3 % % % % %

Initial aluminate solution/hydrate 156.55 170.34 1.51 9.08 6.64 13.16 0.04 9.40

10B 120 50 5 156.55 156.57 1.64 1.48 0.00 0.00 0.00 1.76 0.005 0.082 0.58 0.0537 0.045

11B 120 50 10 155.00 114.75 2.22 0.96 0.00 0.00 0.00 0.00 0.003 0.020 0.40 0.0153 0.011

12B 120 50 20 150.35 99.45 2.19 1.40 0.00 0.52 0.00 0.00 0.005 0.020 0.34 0.0126 0.010

13B 120 50 30 147.25 89.25 2.71 1.48 0.00 0.64 0.00 0.00 0.004 0.020 0.30 0.0119 0.009

14B 120 50 40 137.95 82.88 2.74 1.08 0.00 0.60 0.00 0.00 0.004 0.020 0.28 0.0140 0.009

The third purification phase (analysis of solid residue after purification).

Table A7. Influence of time.

SiO2 Fe2O3 Ignition Loss Na2O ZnO CaO

% % % % % %

Initial hydrate 0.0033 0.0096 34.24 0.06 0.0076 0.005

1C 0.008 0.013 34.14 0.04 0.0058 0.006

2C 0.007 0.012 30.27 0.03 0.006 0.004

3C 0.008 0.013 21.42 0.004 0.0072 0.005

4C 0.007 0.013 19.36 0 0.0078 0.005

Table A8. Influence of temperature.

SiO2 Fe2O3 Ignition Loss Na2O ZnO CaO

% % % % % %

Initial hydrate 0.0033 0.0096 34.24 0.06 0.0076 0.005

5C 0.003 0.01 33.64 0.04 0.006 0.004

6C 0.003 0.011 32.71 0.03 0.0059 0.004

7C 0.005 0.014 21.68 0.01 0.0069 0.005

8C 0.004 0.015 19.99 0 0.0072 0.005

9C 0.006 0.015 18.48 0 0.0075 0.005

10C 0.006 0.014 18.8 0 0.007 0.005

Table A9. Influence of concentration of solid phase during washing.

SiO2 Fe2O3 Ignition loss Na2O ZnO CaO

% % % % % %

Initial hydrate 0.0033 0.0096 34.24 0.06 0.0076 0.005

11C 0.01 0.016 16.99 0.01 0.0075 0.007

12C 0.008 0.015 17.04 0.01 0.0072 0.005

13C 0.002 0.014 19.06 0 0.0071 0.005

14C 0.001 0.013 20.2 0 0.0068 0.006

15C 0.001 0.013 24.83 0 0.0075 0.005
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