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Abstract: 316L stainless steel is often used as the metal bipolar plate, which is a key component of
fuel cells. For the thinner metal bipolar plates, the mechanical properties may be different for different
specimen sizes. In this paper, the mechanical properties, metallographic structure, and hardening
behavior of 316L stainless steel sheets with different grain sizes and specimen thickness were studied.
Several mathematical models were selected to describe the hardening behavior of 316L stainless steel
sheet. A correlated hardening model of 316L stainless steel was established, considering the specimen
and grain size effect. The results show that the specimen thickness has no effect on the microstructure
and grain size, but the austenite grain size increases gradually with an increase in holding time. With
a decrease in plate thickness and an increase in grain size, the strength decreases. Compared to the
0.1 mm sheet, the yield strength and tensile strength for the 0.9 mm sheet are increased by 48% and
24%, respectively. The yield strength and tensile strength are decreased by nearly half after 20 min
heat treatment due to the grain size growth. The thicker the sample and higher the grain size is, the
higher the hardening rate is. The predicted stress–strain by established correlated hardening model
has a good agreement with the experiment curves.

Keywords: fuel cell; sheet; 316L; hardening behavior; size effect; correlated model

1. Introduction

The fuel cell is an energy conversion device that converts chemical energy into elec-
trical energy [1]. Compared to traditional power technology based on combustion and
mechanical transmission, the fuel cell is a clean and wide prospect technology with high
heat conversion efficiency [2]. Proton exchange membrane fuel cell (PEMFC) has excellent
performance in terms of efficiency, power density, emission, and a low temperature start-up,
which is considered to be one of the development directions of the next generation of vehicle
power [3]. A bipolar plate is a key component of fuel cells. Its main function is to conduct
current and separate H2 and O2 [4]. It is not only the flow channel of reaction gas, but
also the channel of discharging heat and water. The performance of bipolar plates directly
determines the reliability and durability of fuel cells. To make the fuel cell work stably for
a long time, the bipolar plate must have good conductivity, gas resistance, strength, and
corrosion resistance.

The materials used to make the bipolar plates mainly include graphite, and composite
and metal materials [5]. Graphite material has excellent conductivity and good chemical
stability, which makes it the earliest material used in electrode plates. However, graphite
material has poor mechanical strength, high brittleness, and high processing cost [6]. The
thickness of graphite bipolar plate is generally 4~6 mm, which reduces the power density
of fuel cell stack. Composite materials are generally composed of conductive fillers and
polymers. This material has excellent mechanical properties, and its conductivity and
corrosion resistance can meet the performance requirements of electrode plates. However,
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the manufacturing process of composite materials is complex, the cost is high, and the
service life is short, which is not conducive to large-scale mass production [7]. Compared
to graphite and composite bipolar plates, metal bipolar plates have a higher strength. The
thickness of metal plates used is generally 0.1~0.3 mm, which is conducive to improving the
power density of fuel cell stacks [8]. In addition, metal materials also have the advantages
of simple runner forming and easy mass production, and have become a research hotspot
for plate materials. Both the thickness of the metal bipolar plate and the size of the flow
channel section are in the submillimeter scale, which is located between macroscopic and
microscopic scale, namely mesoscopic scale [9]. At mesoscopic scale, the size effect of
materials is obvious. Materials often present mechanical properties that are different from
those at the macro scale [10]. It is necessary to deeply discuss the influence of different
sizes on the mechanical properties and strengthening behavior of bipolar plates, which
is of great significance to accurately study the mechanical distribution of fuel cells under
service conditions.

Up to now, many researchers have investigated the influences of the specimen thick-
ness and grain size on the metal mechanical properties. Keller et al. [11] studied the effect
of grain size on the mechanical properties of high a purity nickel plate with a thickness of
0.5 mm, and the results showed that grain size had an impact on both the hardening stage
and flow stress of the material. With an increase in grain size, the back stress within the
grain decreased, resulting in the decrease in flow stress. Raulea et al. [12] studied the effect
of sample thickness on mechanical behavior through uniaxial tensile test on Al2S, and the
results showed that the yield strength of the material gradually decreased with the decrease
in sample thickness. Chan et al. [13] studied the effects of grain size and sample size on the
flow stress of sheet metal microforming through a pure copper tensile test by introducing
the ratio of grain size to sample thickness: η = g/t, called the sample size ratio. The results
showed that the flow stress gradually decreased with the decrease in the sample size ratio.
Liu et al. [14] studied the effects of grain size and geometry size on the mechanical proper-
ties of copper materials, and found that the flow stress of sample decreased gradually with
the decrease in sample thickness and the increase in grain size. A new constitutive model
considering grain boundary strengthening was established to explain the effect of size effect
on the flow stress of sample. For the ion-irradiated polycrystals with obvious grain size
effects, Liu et al. [15] proposed a new hardening model which separates the grain size effect
from the dislocation hardening contribution. The refinement of the grain size and high dis-
location densities can enhance the strain-hardening exponent [16]. Gau et al. [17] studied
the effect of size on the mechanical properties of aluminum alloy and brass, and found
that the yield strength and tensile strength of the sample were reduced with decreases in
thickness and increases in average grain diameter. Recently, Firouzjaei et al. [18] proposed
a new constitutive model based on the Swift equation to take into account the geometry
and grain size effect. The proposed constitutive model can provide a good description of
the flow stress by considering the interactive effect of specimen and grain sizes.

From the above research results, the flow stress of materials decreases gradually with
decreases in sample thickness at constant grain size. When the sample thickness is close
to the grain size, some materials will show greater size effects. The thinner the sample,
the greater the strength. Therefore, it is necessary to study the influence of plate thickness
and grain size on the mechanical properties and a constitutive model of a 316L stainless
steel sheet. The aim of this study is to clarify the effects of thickness and grain size on
the hardening behavior and model of the 316L sheet. The mechanical properties, metal-
lographic structure, and hardening behavior of 316L stainless steel sheets with different
grain sizes and specimen thicknesses will be discussed. A correlated hardening model
of 316L stainless steel will be proposed in this study, considering the specimen and grain
size effects.
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2. Experiment Details
2.1. Sample Preparation

The material used in this paper is a 316L stainless steel sheet, which is widely used in
petroleum, chemical, textile, and other industries. Three types, with thicknesses of 0.1 mm,
0.3 mm, and 0.9 mm were employed. For the three sheets, the material compositions
are listed in Table 1. The element contents of the three thicknesses are in line with the
composition requirements of 316L stainless steel in GB/T 20878-2007 [19].

Table 1. Chemical composition of 316L stainless steel (wt.%).

Thickness C Si Mn P S Ni Cr Mo

0.9 mm 0.024 0.423 1.215 0.036 0.010 10.34 16.28 2.06

0.3 mm 0.022 0.431 1.482 0.033 0.008 11.09 17.13 2.11

0.1 mm 0.019 0.532 1.212 0.022 0.005 12.43 16.34 2.23

GB/T
20878 [19] ≤0.030 ≤1.00 ≤2.00 ≤0.045 ≤0.030 10.00–14.00 16.00–18.00 2.00–3.00

Austenitic stainless steel generally goes through solid solution treatment. Due to
the low carbon content of 316L stainless steel, 1050 ◦C was selected as the solution heat
treatment temperature in this paper. The stainless steel is heated to 1050 ◦C first, and then
it is cooled rapidly (within 10 min) to room temperature after heat preservation. The solid
solution treatment purpose is to re-dissolve the alloy carbide produced in the process of
processing into austenite, so as to obtain the single-phase austenite structure.

In order to study the effect of grain size on uniaxial tensile mechanical properties,
different grain sizes were obtained by different heat treatment processes. The thickness of
316L stainless steel sheet is 0.1 mm. The sample was put into a box-type heat treatment
furnace (HF-kejing, KSL-1700X-G216, Kejing, Heifei, China), and then argon gas was
pumped into the furnace to discharge oxygen in the furnace, so as to prevent excessive
oxide formation on the metal surface during heating. The samples were kept at 1050 ◦C for
10 min and 20 min, respectively, and then taken out for water cooling.

2.2. Metallographic Analysis

All the sheet cutting samples before and after heat treatment were prepared in order to
measure the grain size of the sheet. The metallographic structure was observed with a Leica
metallographic grinding machine (Axio Scope.A1, Zeiss, Oberkochen, Germany). Before
the observation, the sample was ground by sandpaper until there were obvious scratches
on the surface of the sample. After polishing, the sample surface should be cleaned with
alcohol and keep dry with hot air. Aqua regia was used as corrosion solution to corrode
metallographic samples. After corrosion, the sample is washed quickly with water, and
then the surface of the sample is cleaned with alcohol and dried with hot air. The etched
samples were placed under Leica microscope to observe the metallographic structure.

2.3. Tensile Test

The tensile specimen is shown in Figure 1. The overall length of the tensile sample
is 78.5 mm, the length and width of the parallel segment are 25 mm and 5 mm, and the
radius of the transition circle of the sample is 7.5 mm. In order to facilitate holding, the
length and width of the holding section are 20 mm and 14 mm, respectively. Three tensile
tests were conducted to avoid test deviation. The test results for the specimen with middle
yield strength were used. The sample was processed by wire cutting. Because the materials
used in this paper are thinner, it is easy to distort them when cutting, so that the processing
error is large, so the cuttings of multiple plates are placed together when processing. In
order to prevent the effect of clamping on the plate, the plate material is placed on the
board. The processing marks on the edge of the sample are processed, which can cause
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stress concentration to affect the results of the test. The tensile sample edges were polished
by using 600 # and 800 # sandpaper. Then, the sample surface was rinsed with alcohol. The
width and thickness of the sample were measured by a micrometer before the tensile test
was performed. The tensile test speed was calculated according to the formula in standard
GBT 228.1-2010 [20]:

vc = Lc × eLc (1)

where vc is the load speed, Lc is the length in parallel length, and eLc is the strain rate of the
part of parallel length (here, it is 0.00025 s−1).
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Figure 1. Size diagram of tensile specimen (Unit: mm).

3. Results and Discussion
3.1. Microstructure

Figure 2 shows the metallographic structure of the etched sheet with different specimen
thicknesses. The intercept method [21] is used by counting the number of grain boundaries
intersected by a measured line segment of a given length. The measurement error is ±2 µm.
The grain sizes for the specimen thicknesses 0.1 mm, 0.3 mm, and 0.9 mm are 22 µm, 23 µm,
and 17 µm, respectively. Here, symbols t and g represent the specimen thickness and grain
size, respectively. The microstructure and grain size are similar for the different specimen
thicknesses. Figure 3 shows the metallographic structure of the 0.1 mm 316L stainless steel
sheet metal with different holding times. The grain sizes for the 0.1 mm 316L stainless steel
after heating treatment at 1050 ◦C with holding times of 10 min and 20 min are 31 µm and
39 µm, respectively. The grain size was increased after the solid solution heat treatment.
And, the austenite grain size increases gradually with the increase in holding time.
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3.2. Tensile Properties

Firstly, the tensile load–displacement curve is obtained by the force sensor and ex-
tensometer, and then the engineering stress–strain curve is obtained. The engineering
stress-engineering strain curve can be transformed into true stress–true strain curve by
Formulas (2) and (3).

εtrue = ln(1 + εeng) (2)

σtrue = σeng(1 + εeng) (3)

where σture and εtrue represent true stress and true strain, respectively, while σeng and εeng
represent engineering stress and engineering strain, respectively.

Figure 4 shows the true stress–strain curve of the 316L sheet metal for different
thicknesses and grain sizes. As seen from Figure 4a, the yield strength, tensile strength,
and elongation were increased with the increases in specimen thickness. It presents that
the thinner a specimen thickness is, the weaker its strength is. This may be because the
thicker the sheet is, the higher the number of grains in the thickness direction is. The
hardening stage is generated by the strengthening mechanism based on the dislocation
movement and blocking in the crystal structure. For thicker sheets, the grain number in
the thickness direction is larger than that for thinner sheet. There is more dislocation slip
and blocking in the active cross-section for the thicker sheet, resulting in a high tensile
strength and longer elongation. When the specimen thickness increases from 0.1 mm to
0.9 mm, the yield strength and tensile strength are increased from 201 MPa to 297 MPa and
from 832 MPa to 1096 MPa, respectively. The yield strength and tensile strength increase by
48% and 24%, respectively. Seen from Figure 4b, the yield strength, tensile strength, and
elongation are increased with decreases in grain size. The solid solution heat treatment
can reduce the mechanical properties of 316L stainless steel at room temperature. The
yield strength, tensile strength, and elongation are decreased with increases in holding
time. When the heat treatment holding time is increased from zero to 20 min, the yield
strength and tensile strength are decreased from 201 MPa to 96 MPa and from 832 MPa
to 465 MPa, respectively. The yield strength and tensile strength decreased by nearly half
after 20 min of heat treatment. The larger the grain size is, the fewer grains are distributed
along the thickness direction. Similarly, there is little dislocation slip and blocking in
the active cross-section for the large grain size, resulting in a low tensile strength and
small elongation.

Figure 5 shows the macroscopic fracture morphology of tensile specimens with differ-
ent thicknesses and grain sizes. The macroscopic fracture of tensile specimens with 0.9 mm
and 0.3 mm thickness shows an obvious necking phenomenon. However, the fracture
of specimens with 0.1 mm thickness is flat without any necking. This may be due to the
small number of grains in the thickness direction of the 0.1 mm plate, which leads to
the rapid expansion of microporous defects when the specimen is stretched, resulting in
a flush fracture.
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3.3. Hardening Behavior

The hardening rate is an important parameter to evaluate the work hardening ability
of materials, which is obtained by taking the derivative of true stress–strain curve. Figure 6
shows the hardening rates with the true strain for different specimen thicknesses and
grain sizes. For the same true strain, the hardening rate of 0.9 mm is the highest, while
the hardening rate of 0.1 mm is close to that of 0.3 mm. The hardening rate decreases
gradually with an increase in grain size. The trend of hardening rate with true strain can
be divided into three stages. In the first stage, the hardening rate decreases rapidly with
an increase in strain, because the material deformation is mainly dislocation slip at this
stage. In the second stage, the hardening rate is still gradually reduced with an increase in
strain, but the extent of reduction is far lower than that in the first stage. This is because the
twin density increases with an increase in strain, and the generation of twins inhibits the
dislocation movement. In the third stage, the hardening rate tends to be stable, because the
deformation twins in the material tend to be saturated. There are few new twins, which
makes the hardening rate gradually stable.
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Figure 6. Hardening rate with true strain for different specimen thicknesses (a) and grain sizes (b).

For metal materials, the Holloman model (full strain extrapolation model) [22,23] is
generally adopted to describe the stress–strain relationship in the whole process of material
deformation, and the formula is as follows:

σtrue = Kεn
true (4)

where K is hardening coefficient (MPa) and n is hardening exponent (dimensionless).
The true stress and true strain in the Holloman model have a linear relationship in

the log–log coordinate diagram. The natural logarithm of the plastic data in Figure 6 is
used to obtain the corresponding logarithmic stress and strain curves, as shown in Figure 7.
The logarithmic stress–strain curves show the feature of downward convex and a growth
trend of slow at first and then sharp. The true stress–strain data does not show a linear
relationship in the logarithmic coordinate system. It indicates that Holloman model is not
suitable for describing the true stress–strain curve of austenitic stainless steel. Zhu et al. [24]
also pointed out that the hardening behavior of the FCC structure could not be described
by a simple Holloman model due to its low stacking fault energy.
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To address this issue, Swift [25] introduced the parameter ε0 on the basis of the
Holloman model, and obtained the stress–strain equation describing the plastic stage:

σtrue = K(ε0 + εture)
n (5)
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Ludwigson et al. [26] also proposed a true stress–strain function for FCC metals:

σtrue = K1εn1
true + exp(K2 + n2εtrue) (6)

Tian et al. [27] found that the hardening exponent n of austenitic stainless steel had
a linear relationship with lnε, and obtained the equation:

σtrue = K3εn3+n4 ln εtrue
true (7)

Equations (5) and (6) are used to fit the plastic stage in Figure 7. Then, a suitable
mathematical model can be selected for describing the hardening behavior of 316L stainless
steel for different specimen thickness and grain size. The fitting formula and correlation
coefficient are shown in Table 2.

Table 2. Mathematical model parameters.

Model Thickness
(Grain Size) Fitting Formula Correlation

Coefficient

Swift

0.9 mm (17 µm) σtrue = 1541.34(0.062 + εtrue)
0.62 0.99986

0.3 mm (23 µm) σtrue = 1347.54(0.093 + εtrue)
0.70 0.99972

0.1 mm (22 µm) σtrue = 1291.45(0.050 + εtrue)
0.65 0.99996

0.1 mm (31 µm) σtrue = 1085.95(0.075 + εtrue)
0.74 0.99984

0.1 mm (39 µm) σtrue = 841.29(0.030 + εtrue)
0.66 0.99996

Ludwigson

0.9 mm (17 µm) σtrue = 1548.97ε0.5241
true + exp(5.26− 17.63εtrue) 0.99994

0.3 mm (23 µm) σtrue = 1392.91ε0.8099
true + exp(5.46− 1.02εtrue) 0.99982

0.1 mm (22 µm) σtrue = 1283.36ε0.5605
true + exp(4.87− 18.64εtrue) 0.99995

0.1 mm (31 µm) σtrue = 794.32ε0.7544
true + exp(4.951 + 1.192εtrue) 0.99998

0.1 mm (39 µm) σtrue = 824.07ε0.7387
true + exp(4.255− 0.213εtrue) 0.99996

Tian

0.9 mm (17 µm) σtrue = 1660.27ε0.6610+0.0624 ln εtrue
true 0.99957

0.3 mm (23 µm) σtrue = 1474.61ε0.7096+0.0741 ln εtrue
true 0.99972

0.1 mm (22 µm) σtrue = 1404.70ε0.7171+0.0641 ln εtrue
true 0.99973

0.1 mm (31 µm) σtrue = 1202.15ε0.7861+0.0787 ln εtrue
true 0.99993

0.1 mm (39 µm) σtrue = 923.44ε0.7544+0.0571 ln εtrue
true 0.99988

It can be seen from Table 2 that the correlation coefficients of the three models are
all above 0.999. This shows that the three models can well describe the plastic stage of
the 316L stainless steel. However, the fitting parameter n2 obtained by using Ludwigson
model is greatly different for different thicknesses and grain sizes. And the Tian model is
only applicable to the state of non-zero strain, which is not suitable for the establishment
of a flow stress model. Therefore, the Swift model is selected to establish the correlated
hardening model 316L stainless steel in the following.

4. Establishment of Correlated Hardening Model

According to the fitting results in Table 2, for different specimen thicknesses and grain
sizes, the hardening model is different. The obtained model in Table 2 is unsuitable for
specimens with other thicknesses and grain sizes. Therefore, it is an important task to
establish a correlated hardening model to describe the hardening behavior for different
specimen sizes to for convenient modeling purposes.

4.1. Plastic Deformation Mechanism of 316L Stainless Steel

For a single crystal, the main form of plastic deformation is slip. When the shear stress
acting on the slip plane along the slip direction reaches a certain limit, a slip will occur,
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which is called the critical shear stress [28]. Figure 8 shows the critical resolved shear stress.
The angle between the applied load F and the slip direction and the normal line of the slip
plane are represented by α and β, respectively. The shear stress τ and working face area A
can be obtained:

τ =
F cos α

A
(8)

A =
A0

cos β
(9)

where A0 is the cross-sectional area of the cylinder in the figure, A is the slip surface area,
and τ is the shear stress on the slip surface.
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Substituting Equation (9) into Equation (8), the following can be obtained:

τ =
F

A0
cos α cos β = σ cos α cos β (10)

where cos α cos β is the orientation factor. When τ reaches the critical shear stress τc, it is
considered that the applied load F makes the material reach the initial yield state:

τc = σs cos α cos β⇒ σs =
τc

cos α cos β
(11)

For polycrystalline materials, slippage in grains must overcome not only lattice re-
sistance and dislocations resistance of impurity atoms on the slip plane, but also grain
boundary resistance. When slippage occurs in grains, dislocation slippage cannot directly
pass through the grain boundary layer due to different orientations between grains, which
results in continuous accumulation of dislocation near the grain boundary. The grain size
is small, and the area of the grain boundary in the material is large, which makes the grain
boundary more obvious in hindering dislocation slip. The yield strength and grain size of
polycrystalline materials conform to the Hall–Petch formula:

σs = σi + kg−1/2 (12)

where σi (MPa) and k (MPa·µm1/2) are constants related to the material, and g represents
the grain size of the material (µm−1/2).

Figure 9 shows the dislocation movement model. Under the action of shear stress τ,
the dislocation movement of grain A is blocked to grain boundary Q. And the dislocation
continuously slips from dislocation source S to Q, to form dislocation plug group. The
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stress concentration caused by the dislocation plug group can transfer the deformation
from grain A to grain B. The stress at point Q at the top of the dislocation plug group is:

τg = m(τ − τi) (13)

where m is the number of dislocations and τi is the resistance to dislocation movement
in the crystal. According to the dislocation plug product group theory, the number of
dislocation m is:

m =
κπL(τ − τi)

Gb
(14)

where κ is the coefficient, L is the length of the plug product group, and G and b are the shear
modulus and the size of the dislocation Bergdahl vector, respectively. If the dislocation
source S is in the center of the grain (L = g/2), the following can be obtained:

τg = m(τ − τi) =
κπL
Gb

(τ − τi)
2 =

κπg
2Gb

(τ − τi)
2 (15)
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The stress on grain B at point Q is:

τg + τ = m(τ − τi) + τ ≈ m(τ − τi) = τg (16)

Assuming that the slip direction of dislocation in grain B is QR, then its critical shear
stress in the QR direction is:

τc = τg cos θ (17)

The external shear stress τ is equal to the yield shear stress τs when the deformation
propagates, due to dislocation motion in grain B:

τc =
κπg cos θ

2Gb
(τs − τi)

2 ⇒ τs = τi +

√
2Gbτc

κπ cos θ
g−1/2 (18)

If M is used to represent the average orientation factor of each grain in polycrystal, it
can be concluded that:

Mτs = Mτi +

√
2M2Gbτc

κπ cos θ
g−1/2 ⇒ σs = σi + kg−1/2 (19)

Armstrong et al. [29] introduced the work hardening effect into Equation (19), and
obtained the Armstrong model to describe stress–strain relationship:

σ(ε) = σi(ε) + k(ε)g−1/2 (20)
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4.2. Correlated Hardening Model Based on Size Effect

Based on above analysis, both the grain size and plate thickness have a certain degree
of influence on the mechanical properties of 316L stainless steel. The plastic deformation
of materials is mainly realized by the sliding of grains. Compared to the inner grains,
the surface grains of materials are less constrained, so it is easier to produce deformation.
When the thickness of the sheet is small, the grain size of the surface layer of the material
takes up a higher proportion. Because the grain size of the surface layer is less restricted,
plastic deformation can occur under the action of a small load, resulting in a reduction
in the flow stress of the material as a whole. In order to explain the mechanical behavior
of materials affected by the size effect, Lai et al. [30] proposed the surface layer model
as shown in Figure 10. Based on the surface layer model, the specimen is divided into
two portions: surface layer and inner portions. The grains in the inner portion of specimen
contains grain interior and grain boundary. The grains located at the free surfaces have less
hardening effects than the inner grains. It is thus assumed that there is no grain boundary
strengthening effect in the surface layer portion. The thickness of the surface layer is one
grain. The size factor of the sheet is related to two parameters: the sheet width and the
sheet thickness. Assume that the austenite grains are hexahedron in the thickness direction,
grain diameter is g, and sheet thickness is t, then the proportion of surface layer η can be
obtained as:

η = g/t (21)
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For the materials involved in this paper, the corresponding η values of 0.9 mm, 0.3 mm
and 0.1 mm plates without heat treatment are 0.0189, 0.0767 and 0.22, respectively. When
316L stainless steel with 0.1 mm was held for 10 min and 20 min, respectively, the corre-
sponding η of the plate was 0.31 and 0.39.

Since the material parameters used in the finite element simulation are the true stress–
plastic strain parameters of the plastic part, the plastic strain can be obtained by following
equation:

εpl = ln(1 + εeng)− εs (22)

where εs is the strain value at the yield point.
For the Armstrong model, the first term σi(ε) represents the resistance of dislocation

movement inside the grain, and the second term k(ε)g−1/2 represents the resistance of the
grain boundary. The finer the grain size, the higher the dislocation density in the grain, so
the grain size also affects the dislocation movement in the grain.

In order to comprehensively consider the influence of size effect on flow stress of 316L
stainless steel, the influence parameter η of size effect was introduced into Equation (20),
and the correlated hardening model of 316L stainless steel based on considering size effect
was obtained:

σtrue = f (η)σi(εpl) + g(η)k(εpl)g−1/2 (23)

It has been proven that the Swift model has a high degree of fitting to the hardening
curve. Therefore, the relationship between σi(εpl) and plastic strain εpl in Equation (23) is
described by the Swift model, and it is assumed that f(η) and g(η) are quadratic functions.
So, the correlated hardening model Equation (21) can be expressed as:
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σtrue = (a01η2 + b01η + c01)K01(ε01 + εpl)
n01 + (a02η2 + b02η + c02)K02(ε02 + εpl)

n02 g−1/2 (24)

where a01, b01, c01, ε01, n01, a02, b02, c02, ε02, and n02 are the dimensionless parameters, and
the units for K01 and K02 are the MPa and MPa·µm1/2, respectively.

By fitting the true stress–plastic strain data of sheet metal obtained from the test with
Equation (22) via 1stopt software (Beijing 7D-Soft High Technology Inc., Beijing, China),
which uses the universal global optimization algorithm, the parameters in the correlated
hardening model were obtained as shown in Table 3. The correlation coefficients are larger
than 0.99.

Table 3. Parameters in the correlated hardening model.

a01 b01 c01
K01

(MPa) ε01 n01 a02 b02 c02
K02

(MPa·µm1/2) ε02 n02

2.6 −16.8 2.6 547.75 0.08 0.632 71.3 39 1.1 653.38 0.074 0.664

By substituting the parameters in the table into Equation (23), a correlated hardening
model describing the mechanical properties of 316L stainless steel can be obtained:

σtrue = (2.6η2 − 16.8η + 2.6)(547.75(0.08 + εpl)
0.632) + (71.3η2 + 39η + 1.1)(653.38(0.074 + εpl)

0.664g−1/2) (25)

The predicted values of the true stress–plastic strain curves of different specimens
can be obtained by substituting the parameter g and η into Equation (23). The comparison
of true stress–plastic strain curves between the predicted results by correlated model and
experimental data is shown in Figure 11. It can be seen from the figure that the data
are relatively consistent, indicating that the proposed correlated hardening model is very
appropriate to describe the hardening behavior of the 316L stainless steel sheet.
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5. Conclusions

In this paper, 316L stainless steel sheets with different grain sizes were obtained by
solid solution heat treatment with different holding times. The uniaxial tensile tests of 316L
stainless steel sheets with different specimen thicknesses and grain sizes were conducted
to analyze the effect of size on the mechanical properties and hardening behavior of 316L
stainless steel, and the main conclusions are as follows:

(1) The specimen thickness has no effect on the microstructure and grain size, but the
grain size was increased after solid solution heat treatment. The austenite grain size
increases gradually with increases in holding time.

(2) The mechanical properties and hardening behavior of 316L stainless steel sheets are all
influenced by the specimen thickness and grain size. With decreases in plate thickness
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and increases in grain size, the yield strength and tensile strength of 316L stainless
steel sheets gradually decrease. The yield strength and tensile strength decreased by
nearly half after 20 min of heat treatment, due to the grain size growth.

(3) The hardening rate curve of 316L stainless steel sheets can be divided into three stages:
rapidly decreasing, slowly decreasing, and stabilizing. For the samples with the same
grain size, the thicker specimen has a higher hardening rate. For the same sample
thickness, the hardening rate decreases with an increase in grain size.

(4) Based on Armstrong model, the correlated hardening model of 316L stainless steel
was established considering the specimen and grain size effects. The predicted strain–
strain by the established correlated hardening model has good agreement with the
experiment curves.
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