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Abstract: This study explored the buckling performance of bi-segment pressure hulls under external
pressure. We fabricated bi-segment pressure hulls from bi-segment cylindrical preforms by using free
bulging. The cylindrical preforms had a nominal thickness of 0.95 mm, nominal radius of 51 mm,
and nominal height of 242 mm. Six bi-segment pressure hulls were hydrostatically and externally
pressurised into buckling. Experimental results revealed that the maximum buckling load of the
bi-segment pressure hulls was increased by 36.75% compared with that of the bi-segment cylinders.
In addition, we performed a nonlinear finite element analysis to determine the bulging and buckling
modes of the hulls. We noted that the nonlinear analysis results exhibited good agreement with the
experimental data.

Keywords: bi-segment pressure hull; cylindrical preform; free bulging; buckling; external pressure

1. Introduction

Deep-sea space stations and autonomous underwater vehicles are crucial deep-sea
exploration systems. The core components of these systems comprise multi-segment
pressure hulls. Geometrically, these systems typically contain components such as multi-
segment balls [1], multi-segment cones [2], and multi-segment barrels [3]. Multi-segment
pressure shells offer many advantages, such as easy space expansibility, excellent buoyancy,
and high buckling strength. However, in addition to their fabrication, the buckling of
multi-segment shells remains a challenge.

Researchers have extensively studied the buckling performance of single barrels.
For example, Błachut and colleagues have comprehensively analysed the elastic–plastic
buckling of uniformly thick-walled barrels and the influences of geometry, material, and
geometric imperfections on such buckling. Their results revealed that axisymmetric shells
were particularly effective in increasing the static critical buckling load of the shells [4–9].
Jam and Kiani have studied the linear buckling analysis of nanocomposite conical shells
reinforced with single-walled carbon nanotubes. The results showed that their volume
and distribution had significant effect on the buckling pressure and circumferential [10].
Similarly, different kinds of shells based on functionally graded graphene have been
analysed [11,12], and it is found that graphene could strengthen the buckling behaviour
and stress. Jasion and colleagues have intensively investigated the effect of geometry on the
strength and elastic stability of barrelled shells. They analytically described the problem
of barrelled shell buckling. Their analyses involved assumptions that the shells were
isotropic, homogeneous and of constant thickness. They thus applied the Bubnov–Galerkin
method to determine the buckling state. Furthermore, they presented numerical examples
of barrelled shells for linear eigenvalue buckling prediction and nonlinear post-buckling
analysis. Their analytical and numerical results exhibited good agreement. In addition, they
discussed the advantages of barrelled shells over cylindrical shells and argued that barrelled
shells with a positive Gaussian curvature have a higher critical buckling load [13–15]. Zhang
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and colleagues used 333 goose eggs to establish mathematical equations for describing the
geometrical distribution, surface area, volume, and aspect ratio of the eggs. On the basis of
their analysis results, they numerically and experimentally studied the buckling of bionic
egg-shaped shells with uniform and nonuniform thicknesses [16–21].

Furthermore, researchers have extensively studied the buckling performance of multi-
segment pressure shells. For example, Błachut and Smith investigated the buckling per-
formance of multi-segment cylindrical shells under uniform hydrostatic pressure. They
discussed the components of a multi-segment cylindrical shell structure with flanges and
the shell structure without flanges. Moreover, they fabricated five samples using com-
puterized numerical control (CNC) technology, tested them under external hydrostatic
pressure and adopted numerical simulations that were compared with experimental re-
sults. The results exhibited a good agreement [3]. Zhang and Tang studied the buckling
of bi-segment spherical shells with rib rings of different sizes. Specifically, they executed
numerical and experimental analyses on the buckling of these shells. Their results revealed
that shell instability is mainly governed by the stress distribution and geometry, and their
numerical and experimental results showed a good agreement [22]. Zhang and Di studied
the buckling behaviours of segmented toroids under external pressure. With the help of
tungsten inert gas welding (TIG), they fabricated two segmented toroids and two contin-
uous toroids. They performed buckling tests in a pressure chamber after all the toroids
were manufactured. Subsequently, they analysed the linear buckling, nonlinear buckling,
and imperfect sensitivity of the segmented toroids by performing finite element method
(FEM) using the commercial software ABAQUS. Their results revealed good agreement
between the numerical estimates and experimental observations [23]. Accordingly, they
also investigated the influences of joint angle and segmented ring on the buckling of the
segmented toroids under uniform external pressure. Their results indicated that joint angle
had practically no influence on the buckling load of 0◦ and 180◦ non-segmented toroids,
and the segmented ring significantly improved the buckling load of the 180◦ segmented
toroids [24]. These shells were fabricated through CNC machining, cold pressing, or rapid
prototyping techniques. However, these techniques have the following disadvantages,
such as high manufacturing costs, long lead times, and high complexity.

In contrast to CNC machining, free bulging is a robust, economic, and flexible manu-
facturing method. The basic principle of free bulging is to fill a closed single-curvature shell
with liquid medium and then pressurize until the target geometry is obtained. Free bulging
can be used to manufacture large pressure vessels without dies. Its typical land-based
applications include water containers, hydraulic tanks, and landmarks [25–28], and its
typical underwater applications include single barrel shells [29,30] and single egg-shaped
shells [31,32]. Nevertheless, studies on its land and underwater applications have been
limited to single shells. No studies have been conducted on the buckling of multi-segment
shells fabricated in the form of free bulging.

In this research, the buckling performances of bi-segment pressure hulls fabricated through
free bulging were investigated. In general, the structure of a bi-segment pressure hull was put
forward, providing geometrical and material definitions. In addition, on the one hand, the
geometric parameters of the hoop rib at the shell intersection were determined in the case of the
deformation consistency based on the provided data. On the other hand, the corresponding
experiment was carried out, including fabricated six bi-segment cylindrical preforms, internally
bulging, and externally collapsed. For verifying the experimental results, the effects of various
bulging magnitudes were numerically explored by using the linear and nonlinear finite element
method. The results indicated that nonlinear analysis results exhibited good agreements with
the experimental data. The maximum improvement of the buckling strength of bi-segment
hulls after free bulging was 36.75%.

2. Experimental Analysis

This section discusses the experimental flowchart, geometric measurement, and in-
ternal pressure tests of six bi-segment cylindrical preforms. Geometric measurements
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and external pressure tests of the bi-segment pressure hulls were performed at Jiangsu
Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment,
Jiangsu University of Science and Technology, China.

2.1. Material and Methods
2.1.1. Problem Statement

Six stainless steel bi-segment cylindrical preforms were fabricated, each internally
rib-reinforced in the middle. One of the preforms was kept as reference and five others
were bowed out by applying internal pressure to various degree of barrelling. All six were
eventually collapsed by quasi-static external pressure. For each bi-segment cylindrical
preform, L represents the total length, D represents the diameter, T represents the thickness,
and H represents a single tube length, as presented in Figure 1. Both the steel plates and
the hoop rib had the same diameter as the preform.
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Figure 1. Schematic of a bi-segment cylindrical preform (a), bulged hull (b), and collapsed hull (c).

For each bi-segment cylindrical preform, the optimal thickness of the hoop rib could
be found. In general, if the meridian of the bi-segment pressure hull has not exceeded a
spherical shape, then the shell and hoop are displaced uniformly under external pressure.
Namely, according to the deformation consistency of a spherical structure, it was assumed
that the radial displacement hoop rib (δr) and the radial displacement of the whole spherical
shell (δs) subjected to hydrostatic pressure were the same; they could be expressed as:

δr =
PRDr

2E

(
D2

r + d2
r

D2
r − d2

r
− µ

)
, (1)

δs =
PR2sin α

2Et
(1− µ), (2)

δs = δr, (3)

where PR is the uniformly distributed external pressure,Dr and dr are the outer diameter
and inner diameter of hoop rib, respectively, µ is the Poisson’s ratio of the material, t is the
thickness of the spherical shell, R is the radius of the spherical shell, and α is the intersection
angle [22,24,33,34].
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There are two parameters, PR and dr, in the above equation, and based on geometric
as well as mechanical relationships, they could be deduced as:

dr = Dr − 2Tr, (4)

PR = P +
2Fcos a

hr
, (5)

where P is operation pressure, F is linear stress along the edge of the hoop ring, hr is the
length of the hoop rib, Tr is the thickness of the hoop rib.

Next, the thickness of the hoop rib can be derived using Equation (6). Table 1 lists
the nominal dimensions of the cylinder, plates, and hoop rib. Table 2 lists the nominal
dimensions of the bulged hull.

Tr =
Dr

2

[
1−

√
R2sin α(1− µ)hr + (µ− 1)(Rcos α + hr)Drt
R2sin α(1− µ)hr + (µ + 1)(Rcos α + hr)Drt

]
. (6)

Table 1. Nominal dimensions of bi-segment cylindrical preform, plate, and hoop rib.

Parameters Values/mm

Tube Outer Diameter (D) 102
Tube Length (H) 100

Plate Diameter (D) 102
Plate Length (h) 16

Hoop Rib Inner Diameter (dr) 78
Hoop Rib Thickness (Tr) 12

Hoop Rib Length (hr) 10
Total Length (L) 242

Table 2. Nominal dimensions of bulged hull.

Parameters Values

Intersection angle (α) 45 (◦)
Radius of spherical shell (R) 72.5 (mm)

Thickness of spherical shell (t) 0.58 (mm)

In addition, a general water valve was integrated into the top plate to facilitate the
execution of free bulging. After each preform was subjected to free bulging, the water
inside was removed, the water valve was closed using a hex screw, and the bi-segment
pressure hull buckled under external pressure. The material properties were determined
by subjecting three stainless-steel coupons to a uniaxial tensile test. The test process was
previously reported by our team [29]. The test results revealed a bilinear stress versus strain
relationship, as displayed in Figure 2. Accordingly, the following bilinear elastic–plastic
mechanics equation was used to determine the material constitutive relationships. Table 3
lists the material properties determined from the uniaxial tensile test.{

σeq = E1εeq, σeq < σy

σeq = σy + E1εeq, σeq > σy
(7)

where Young’s modulus E can be determined from the slope of the first linear segment,
Poisson’s ratio µ can be determined from the ratio of transverse to longitudinal strains, the
yield point σy can be determined from the proof stress (defined as 0.2% herein), and the
strength coefficient E1 can be determined from the slope of the second linear segment.
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Figure 2. True stress–strain curves of parent material obtained from a uniaxial tensile test [29].

Table 3. Material properties determined from uniaxial tensile test [29].

Coupon σy/MPa E1/GPa E/GPa µ

C1 288.5 1310.6 214.4 0.27
C2 286.2 1307.2 208.1 0.28
C3 279.1 1298.1 195.5 0.29

AVE 284.6 1305.3 206.0 0.28

2.1.2. Measuring and Testing

As mentioned, six bi-segment cylindrical preforms were fabricated, subjected to free
bulging, and tested (Figure 1). The experimental methodology adopted in this study in-
volved eight steps (Figure 3): (a) fabrication of cylindrical preforms, (b) shape measurement
of cylindrical preforms, (c) thickness measurement of cylindrical preforms, (d) free bulging
of segment hulls, (e) thickness measurement of segment hulls, (f) shape measurement of
segment hulls, (g) hydrostatic testing of segment hulls, and (h) observation of buckling
modes of segment hulls.

The external geometry of each cylindrical preform was measured optically before
and after bulging by using an industrial-grade three-dimensional (3D) scanner (Cronos X,
Open Technologies Inc., Brescia, Italy). The corresponding software was Optical RevEng
(Optical RE v2.3, Open Technologies Inc., Brescia, Italy). Before the scanning process, the
outer surface of each sample was uniformly sprayed with a type FC-5 intensifying contrast
agent (Hyperd NDT-Material, Shanghai Yue Ci Electronic Technology Inc., Shanghai,
China), which significantly improved the scanning performance. The scanning process was
performed using Optical RevEng software with a scanning accuracy of <0.02 mm; smooth
meshes were used for the slices. After the scanning process, all slices were stitched together
to produce a digital sample.

The thickness of each cylindrical preform was measured before and after bulging by
using an ultrasonic micrometer (PX-7, Dakota Ultrasonics Inc., Scotts Valley, CA, USA)
with an accuracy of <0.002 mm. During the measurement process, a low-viscosity coupling
reagent (100 ML, Elecall Electric Inc., Yueqing, China) was used to smooth the surface of the
measurement sample and facilitate its reading. For each preform, thickness measurements
were performed at 352 evenly distributed points (16 axial points × 22 circumferential
points). To determine the variation in the thickness of the bulged preform, the same
measurement points were used for the bulged hulls.
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Notably, one of the six preforms (designated as preform 1) was considered a special
case and was used as a reference. The bulging magnitude for this preform was zero, and
the preform was directly tested to collapse under external pressure instead. The remaining
five preforms (preforms 2–6) were internally bulged under different magnitudes and then
externally collapsed to destruction. The test field and instruments were located at Jiangsu
Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment,
Jiangsu University of Science and Technology, China. Before the internal free bulging test,
each preform sample was subjected to a load of 1 MPa and then maintained for 60 s to
assess the sealing quality of the weld. This load is lower than the plastic bulging pressure
(6.12 MPa) of a cylinder, and the bulging pressure can be derived as follows [29]:

p =
2√
3

σyT
R

, (8)

where T is the thickness of the preform and k is the material volume coefficient, which can
be expressed as follows:

k = 2.79154E− 06∆B3 − 2.92802E− 04∆B2 − 1.39745E− 04∆B + 1 (9)
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In the free bulging test, each preform was filled with tap water by using a manual
water pump (SY-300X, Zhenhuan Hydraulic Equipment Factory, Taizhou, China), and
the bulging load was recorded by a digital pressure sensor. Next, the unloading spout
of the manual water pump was slowly opened to release the bulging pressure inside the
hull, and the remaining tap water inside the hull was poured through the filling spout.
Subsequently, the bulged hull was transferred into a pressure test chamber, where a manual
pump applied pressure and a digital pressure sensor recorded the pressure values. The
maximum pressure recorded for each bi-segment pressure hull corresponded to its critical
buckling load. As the pressure increased, the bi-segment pressure hull was buckled with
a loud noise. Finally, the chamber pressure was released, followed by the removal of the
buckled hulls so that the destruction mechanism of each free-bulged hull could be observed.
The pressure test chamber was developed by our team and placed at Jiangsu Provincial
Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu
University of Science and Technology. It has an internal diameter of 200 mm, a height
of 400 mm, and a maximum working pressure of 10 MPa. For the aforementioned free
bulging and external buckling tests, the same digital pressure sensor (SUP-P3000, range:
0–20 MPa, measurement accuracy: <0.01 MPa), pressure acquisition device (both from
Donghua Test Technology Inc., Shanghai, China), hydraulic medium, and manual water
pump were adopted.

2.2. Experimental Results and Discussion
2.2.1. Measuring Analysis

The geometry measurement results for the bi-segment cylindrical preforms indicated
reasonable repeatability and fabrication accuracy. As illustrated in Figure 4, the six bi-
segment cylindrical preforms fabricated in this study deviated slightly from the perfect
geometries. The deviations were mainly located near the welds of the hoop rib and the
two thick plates. This can be attributed to welding deformations and uneven welds. The
maximum shape deviation of the six preforms ranged from 0.53 to 1.31 mm. However, for
each preform, the remaining areas without the welds exhibited fairly high accuracy. The
corresponding shape deviations were mainly within ±0.4 mm.
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The bi-segment pressure hulls subjected to free bulging were symmetrical about the
axis of rotation, and their deformation symmetry increased with the bulging magnitude. As
presented in Figure 5, the geometries of the bi-segment pressure hulls deviated significantly
from perfect geometries due to the slightly nonuniform thickness of the hulls before bulging
and initial geometric imperfections. Figure 6 displays the shape deviations between the
bi-segment cylindrical preforms and the corresponding hulls subjected to free bulging. The
bulged hulls exhibited reasonable symmetry (Figures 5 and 6). The maximum deformation
occurred at the midpoint of the top or bottom shell of the bi-segment pressure hulls, and
this was attributed to the initial geometric imperfections and to the nonuniform thickness
distribution. Bulging magnitudes ∆B that were applied to the bi-segment cylindrical
preforms tested in this study are listed in Tables 3 and 4. The height growth rate of the bi-
segment pressure hulls essentially remained constant as the bulging magnitude increased.
These results are consistent with those of previous studies on the buckling properties of
bulged barrels under external pressure [30].
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The thickness of each preform was evenly distributed and exhibited favourable re-
peatability. The wall thicknesses of the top and bottom shells of each preform is presented
in Table 5 and Figure 7. The results indicated a uniform wall thickness distribution, with the
maximum variation in thickness being 0.002 mm. Preform 1 had the largest wall thickness,
and preform 3 had the smallest wall thickness. The difference between the thicknesses of
preforms 1 and 3 was large but was still within the allowable range. The average thickness
of the remaining preforms (i.e., preforms 2, 4, 5, and 6) was 0.948–0.963 mm, with the
corresponding standard deviation being only 0.0014–0.0030 mm. The geometry of preform
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1 barely differed from that of the corresponding bi-segment pressure hull (designated as
hull 1). Therefore, only the thickness of this bi-segment pressure hull was measured and
shown in Figure 5. The thicknesses of the remaining bi-segment pressure hulls (designated
as hulls 2–6) decreased along the axis of rotation from the ends of the top and bottom shells
toward the midpoint owing to the large amount of free bulging. Obviously, the midpoint
of these hulls exhibited the smallest thickness.
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Table 4. Bulging magnitudes and growth rate of height of six test bi-segment cylindrical preforms.

Sample ∆Bave [mm] ∆Bmax [mm] ∆H [%]

1# 0.000 0.00 0.01
2# 0.006 0.40 −0.01
3# 0.747 1.24 −0.06
4# 1.604 2.07 −0.25
5# 2.462 3.71 −0.34
6# 4.218 5.07 −0.47



Metals 2023, 13, 576 10 of 25

Table 5. Maximum, minimum, and average thicknesses of bi-segment cylindrical performs and their
corresponding standard deviations.

Sample 1# 2# 3# 4# 5# 6#

Tmax[mm]
Top 0.972 0.958 0.938 0.968 0.952 0.956

Bottom 0.970 0.958 0.936 0.966 0.954 0.958

Tmin [mm]
Top 0.962 0.952 0.928 0.956 0.942 0.948

Bottom 0.960 0.952 0.930 0.958 0.944 0.950

Tave [mm]
Top 0.968 0.955 0.933 0.962 0.948 0.954

Bottom 0.966 0.956 0.933 0.963 0.948 0.954

St.dev. [mm]
Top 0.0024 0.0014 0.0021 0.0021 0.0030 0.0015

Bottom 0.0028 0.0015 0.0021 0.0020 0.0029 0.0020
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2.2.2. Test Results

In the bulging test, we slowly injected tap water (used as the hydraulic medium)
into each preform by using a manual water pump. We ensured that the entire bulging
process was quasi static. It indicated that the bulging pressure increased with the bulging
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magnitude. Figure 8 illustrates the pressure histories, obtained from the internal free
bulging tests, of preforms 2–6. As mentioned above, hull 1 was not subjected to free
bulging and thus served as the reference (control). Because the pump was manually
operated, the loading times varied considerably between hulls 2–6, as indicated by the
pressure profiles. The maximum loading time was 180 s, and the minimum loading time
was more than 24 s. This indicated that the loading process in the internal free bulging test
was quasi static. The bulging loads for each hull are listed in Tables 5 and 6.
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Table 6. Test time and loading rate of experiment.

Sample p [MPa] tp [s] p/tp [MPa/s] P [MPa] tP [s] P/tP [MPa/s] p/P

1# 0.00 0 - 3.32 12 0.28 0.00
2# 7.03 22 0.32 3.55 6 0.59 1.98
3# 8.22 13 0.63 3.33 12 0.28 2.47
4# 9.13 61 0.15 3.68 51 0.07 2.48
5# 9.70 133 0.07 3.90 27 0.14 2.49
6# 11.01 42 0.26 4.54 24 0.19 2.43

Notably, preform 1 was considered a special case with an infinite radius in the merid-
ional direction. It was not subjected to bulging (i.e., 0 MPa was applied to it), and the
remaining preforms were subjected to bulging under loads of 7.03, 8.22, 9.13, 9.70, and
11.01 MPa, separately. The loading process was divided into three stages. During the
initial stage, the entire preform was completely filled with running water (the pressure
medium) by using the manual water pump. When the curve was in the middle stage,
internal pressure was uniformly applied to induce the initial bulging of the hull. Until the
final stage, an internal pressure was slowly applied to induce complete free bulging. The
bulging times of hulls 2–6 ranged from 13 to 133 s, and the bulging rates ranged from 0.07
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to 0.63 MPa/s. Thus, the entire free bulging process was quasi–static. The bulging loads,
times, and rates are listed in Table 6.

After the free bulging test, six bi-segment pressure hulls were obtained. These bi-
segment pressure hulls were also subjected to an external hydrostatic pressure test, which
was divided into three stages (Figure 9). The hydrostatic test entailed pressurising the hulls
under external hydrostatic pressure. The results revealed that the hulls collapsed due to
the applied pressure. Similar to the bulging pressure, the buckling pressure increased with
the bulging load. Specifically, the buckling pressure of the bi-segment cylindrical hulls
increased with the bulging load (Table 6). The buckling pressure of bi-segment pressure
hull 1 was 3.32 MPa, and those of bi-segment pressure hulls 2, 3, 4, 5, and 6 were 3.55, 3.33,
3.68, 3.90, and 4.54 MPa, respectively. The pressurisation times ranged from 6 to 51 s, and
the pressurisation rates ranged from 0.07 to 0.59 MPa/s. Compared with that of hull 1, the
buckling pressure of hull 6 was improved by 36.75%.
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The typical failure mode of bisegment pressure hulls is characterised by a local col-
lapse [17–21]. In this study, the failure modes of the six hulls were characterised by local
pits, as displayed in Figure 10. In this figure, the failure areas were indicated by the red
circles. Hulls 1–3 subjected to low bulging loads exhibited pits at their bottom sections.
This phenomenon was mainly because the relatively low bulging loads failed to remedy
the preform shape deviations of these samples. Hulls 4–6 exhibited depressions at their
top sections. The reason for these depressions is provided as follows: the shape of the
shells changed from cylindrical to bi-segment pressure hulls as the bulging load increased.
When the bulging pressure was large, the thicknesses of the shells decreased and the mate-
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rial hardened. Consequently, the uneven thickness distribution and material hardening
resulted in the one-sided destabilisation.
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3. Numerical Analysis

This section presents a numerical analysis of the free bulging performance of a bi-
segment cylindrical preform under internal pressure and the buckling properties of the
resulting hulls under external pressure. The section first presents the numerical modelling
process and then the numerical results, including bulging and buckling analysis results,
which were compared with the experimental results.

3.1. Numerical Modelling

Nonlinear FEM was applied using ABAQUS to further explore the bulging and buck-
ling capacities of the preform and the resulting hulls, respectively. The nominal dimensions
of the samples were used as the parameters of the established numerical model, and
the bisegment cylindrical preform was modelled as an axisymmetric shell. Specifically,
in the modelling process, this shell was considered to be axisymmetric along its merid-
ian for computational convenience. The numerical simulation was involved three steps
(Figure 11): (1) free bulging, (2) springback, and (3) external pressurisation. The thickness-
to-diameter ratio of the bi-segment cylindrical preform was only 0.0093, as evaluated by
the ABAQUS/Standard nonlinear static solver that was executed in the first and second
steps of the simulation.
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From the axisymmetric shell element library of ABAQUS/Standard, two-node shell
(SAX1) elements were used to establish the numerical model of the bi-segment cylindrical
preform. A one-dimensional linear numerical model was divided into 213 axisymmetric
nodes (Figure 11). To simulate the closed constraints of the two thick plates and the hoop
rib on the numerical model, the top and bottom points of the model were completely fixed,
and the hoop rib nodes were given full degrees of freedom, which was the same as a
previous study [31]. The maximum values for bulging magnitude ∆B for the numerical
model were set to 0, 1, 2, 3, 4, 5, and 6 mm. Figures 12–15 show the geometrical and
mechanical properties observed for the bulged and springback models.
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magnitudes as obtained from numerical analysis.
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The springback model (Figure 11b) was rotated to derive a 3D model (Figure 11c),
and the geometrical and material properties of the derived model were assessed through
nonlinear FEM. The finite element meshes in the 3D model were obtained by rotating
213 isometric deformed finite element meshes. Thus, the mesh and node numbers for the
seven bi-segment pressure hulls were 42,600 and 42,400, respectively. The converted meshes
were determined to be linear quadrilateral elements (S4R), and the number of meshes was
verified by convergence, as shown in Figure 16. The thickness of each bi-segment pressure
hull was defined as a function of the bulging magnitude obtained after the springback
step (Figure 13). Because of plastic deformation induced by the free bulging process, the
material of the bi-segment cylindrical hull was hardened.

For each hull, the yield stress was uniformly distributed in the circumferential direction
and nonuniformly distributed in the meridional direction (Figure 13). The Von Mises stress
and residual stress of the bi-segment pressure hulls under various bulging magnitudes
are shown in Figure 13. Similar to the observed thickness distribution, the maximum
stress was observed at the midpoints of the top and bottom hulls and then decreased
symmetrically along the axial direction toward the ends of the hulls (Figure 13a). We also
observed that during the free bulging process, the hardening of the bi-segment cylindrical
hull material increased with the bulging magnitude. Moreover, the equivalent stress on
the hulls decreased as the bulging pressure decreased gradually (Figure 13b), indicating
that the free bulging process was quasi static. Nevertheless, some residual stress was still
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observed. Regarding the residual stress distribution, we observed the minimum stress
values at the midpoint of the top and bottom shells of the bi-segment pressure hulls, and the
stress subsequently increased axially toward the ends of the hulls. This phenomenon could
be attributed to the complete constraints imposed on the hull ends (Figure 11) and to the
thickness reduction (Figure 12). A previous study reported that shell material hardening
and an increase in curvature could increase the buckling capacity of a shell [30].
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Figure 15. Typical example of division segments (m) used for the convergence analysis. (a) m = 193;
(b) m = 32; (c) m = 16.
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Accordingly, the average yield point was redefined in each circular region (Figure 14).
For example, for ∆B = 1 mm, three-line segments were used for nonlinear buckling analysis
(Figure 15), and the predicted buckling loads for these segments were 3.29495, 3.29452,
and 3.29327 MPa, demonstrating convergence. This result is consistent with that of a
previous study on the buckling properties of bulged hulls under external pressure [30]. To
simulate the external pressure exerted on bi-segment pressure hulls in practical scenarios,
the ends of the hulls were constrained as a boundary condition, which was similar to a
previous study [35]. In addition, a unit pressure of 1 MPa was uniformly applied to the
outer surfaces of the hulls. This pressure served as the reference load for the numerical
analysis of nonlinear buckling and did not influence the results. The first-order eigenmode
of the bi-segment pressure hulls was introduced as initial geometric imperfections, with
the selected imperfection sizes being 0.1T, 0.2T, and 0.3T. Furthermore, linear elastic
eigenvalues were evaluated through a structural analysis to determine the eigenmode and
linear buckling loads for each hull.

3.2. Numerical Results and Discussion
3.2.1. Bulging Analysis

The deformed geometries of the bi-segment pressure hulls for different bulging mag-
nitudes (∆B) are illustrated in Figure 17. For the preform without carrying out free bulging,
a relatively straight profile was observed. In contrast, curved profiles of the bi-segment
pressure hulls under uniform internal pressure were observed. The hoop rib was not
displaced, and the hull profiles appeared as bicircular arcs whose curvature increased
with the bulging magnitude. The correlation coefficient for the fitted radius of curvature
(r)—derived using Origin software—was between 99.50% and 99.79%, demonstrating the
validity of the fit and the practicality of the model design.

The radius of curvature r decreased with the bulging magnitude (Figures 17 and 18d).
Previous studies on the free bulging of thin-walled cylinders [29,30] have presented an
analytical equation for the meridional radius of curvature of such cylinders. We adapted
this equation to the present study, as presented in Equation (10).

R =
∆B2 +

(
H
2

)2

2∆B
(10)
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We observed that the analytical results were in good agreement with the numerical
and experimental results. We also used Equations (11) and (12) to calculate the growth
rate of the volume and external area of the bi-segment pressure hulls. We determined that
the growth rate of the volume and external surface area of the bi-segment pressure hulls
increased monotonically with the bulging magnitude (Figure 18a,b). It can be seen that the
maximum growth rate of the volume and surface area of the hulls were 16.21% and 8.60%,
respectively. Accordingly, the obtained analytical, numerical, and experimental results
were in good agreement [29].

V =
∫ H

2

− H
2

π

[√
R2 − x2 −

(
R− ∆B− D

2

)]2
dx (11)

S =
∫ H

2

− H
2

2π

∣∣∣∣√R2 − x2 −
(

R− ∆B− D
2

)∣∣∣∣
√√√√1 +

´[√
R2 − x2 −

(
R− ∆B− D

2

)]2
dx (12)

When the hull mass was kept constant, the minimum hull thickness decreased linearly
as the bulging magnitude increased (Figure 18c). The plots of thickness versus height are
display in Figures 13 and 18c. The simulated thicknesses of the top and bottom shells
of the bi-segment pressure hulls exhibited consistent trends, decreasing from the ends of
the shells toward the middle of the shells. The minimum thickness was observed at the
midpoint of each hull, and the maximum reduction rate was 11.53%. Accordingly, the
analytical results regarding minimum thickness were in agreement with the numerical and
experimental results, as indicated in Equation (13) [29].

t =
(

2.79154E− 06∆B3 − 2.92802E− 04∆B2 − 1.39745E− 04∆B + 1
) (D/2)T

R
(13)

3.2.2. Buckling Analysis

The buckling loads of the bi-segment pressure hulls exhibited a bilinear increase as
the bulging magnitude increased. Specifically, the linear buckling loads increased with the
bulging magnitude, as illustrated in Figure 19a. The buckling variation in the bi-segment
pressure hulls can be attributed to their increased bulging curvature, reduced thickness, and
elastic properties. Figure 19b presents the normalised buckling loads of the preform and
the six bi-segment pressure hulls, as derived from numerical and experimental analyses.
The normalised buckling loads increased linearly with the bulging magnitude. Notably, the
buckling loads predicted for the three aforementioned imperfections (0.1T, 0.2T, and 0.3T)
by using nonlinear FEM were in good agreement with the linear predictions. Accordingly,
the experimental data were in good agreement with the linear predictions.

The numerically simulated linear buckling modes of the bi-segment pressure hulls are
shown in Figure 20. These modes were obtained using multiple latitudinal waves and half
of a meridional wave. We observed that the value of the latitudinal wave (n) increased with
the bulging magnitude for each bisegment cylindrical hull and was located at the middle
of the thinnest sections of the top and bottom shells of the hull; this can be attributed to the
increase in the radius-to-thickness ratio along the latitudinal direction of the bi-segment
cylindrical hulls. Specifically, the value of the latitudinal wave (n) increased from 24 for the
preform to 32 for the bisegment cylindrical hull (∆B = 6 mm).

In our nonlinear numerical analysis, we used the first-order linear buckling mode
obtained from the evaluation of the linear elastic eigenvalues as the initial geometric
imperfection, in accordance with the EN 1993-1-6 (2007) [36] and CCS 2018 [37] guidelines.
Moreover, in the nonlinear numerical analysis, we considered the hulls to exhibit increased
bulging curvature, reduced thickness, and elastic material properties, similarly to the linear
numerical analysis. The equilibrium paths derived for the bi-segment pressure hulls from
our numerical analysis at an imperfection size of 0.2T are presented in Figure 21. These
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paths revealed an unstable post-buckling regime. For the bi-segment pressure hulls with
bulging magnitudes of 0–6 mm, the equivalent stress observed in the buckling region (i.e.,
pit generation region) was greater than the material yield stress, indicating a nonlinear
elastic–plastic buckling regime. This finding is consistent with the findings of previous
studies on the buckling properties of bulged barrels under external pressure [29,30]. The
displacement in Figure 21 represents the maximum displacement in the buckling (pit)
region. Before the critical buckling point, the pressurisation rates applied to the hulls
increased nonlinearly. After the critical buckling point, the applied rates decreased suddenly
owing to the instability of the hulls.
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Metals 2023, 13, 576 22 of 25

In summary, the nonlinear post-buckling modes observed for the bi-segment pressure
hulls at an imperfection size of 0.2T were characterised by one or two local pits. These
unstable postbuckling properties and local postbuckling modes are typical of rotating steel
shells under uniform external pressure [17–21]. In this study, when ∆B = 1 and 3 mm,
local pits were distributed in the top and bottom shells of the bi-segment pressure hulls,
respectively. This indicates that initial geometrical imperfections were the main factors
influencing the buckling modes of the hulls. For the remaining bi-segment pressure hulls,
the buckling modes were characterised by a pit on one side of each hull, which can be
attributed to the uneven thickness distribution for these hulls. When ∆B > 3 mm, local pits
occurred at the bottom end of each bi-segment pressure hull. Preform material hardening
occurred during the bulging process. Hence, we included this hardening effect along
with thickness reduction and curvature enhancement in our nonlinear numerical analysis.
As shown in Figure 19, the trend of the nonlinear buckling loads corresponding to the
critical buckling point was similar to that observed in the linear numerical analysis; the
loads increased linearly with the bulging magnitude. In addition, the numerical findings
displayed in Figure 22 are consistent with the experimental results displayed in Figure 10,
indicating that material hardening played a major role in enhancing the buckling capacity
of the bi-segment pressure hulls.
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4. Conclusions

This study experimentally and numerically investigated the buckling properties of
bi-segment pressure hulls under hydrostatic pressure. The main conclusions are outlined
as follows:

(1) Six bi-segment cylindrical preforms were fabricated through the TIG technique and
exhibited favourable symmetry and machinability. Owing to the thick steel plates at
the ends of the preforms, six bi-segment cylindrical hulls were produced through a
quasi–static free bulging process; the hulls exhibited favourable geometric symmetry
and a favourable thickness distribution around the axis of rotation. The hoop rib
was not displaced during the free bulging process, and this can be attributed to
the deformation consistency of the hulls. This thus verifies the reliability of the
design parameters.

(2) Free bulging increased the volume and surface area and decreased the thickness of a
bi-segment pressure hull. This study revealed that the maximum bulging magnitude
for the bi-segment pressure hulls was 4.218 mm. The hulls had a volume growth
rate of 10.81%, surface area growth rate of 5.43%, and maximum thickness reduction
of 11.58%.

(3) The buckling loads of the six bi-segment pressure hulls produced in this study in-
creased with the bulging magnitude under uniform hydrostatic pressure. Compared
with buckling load of the control preform (preform 1) that was not subjected to a
bulging load, the buckling loads of the other bulged hulls were increased by 6.93%,
0.31%, 10.84%, 17.47%, and 36.75%. The buckling modes of the bi-segment pressure
hulls were characterised by local pits, whose location was related to the initial geomet-
rical imperfections of the preform and the thickness distribution after free bulging.

(4) Our numerical analysis of free bulging revealed that the growth rates of the volume
and surface area of the bi-segment pressure hulls and the reduction rate of the thinnest
points of the bi-segment pressure hulls increased linearly with the bulging magnitude.
In contrast, the radius of the meridian decreased as the bulging magnitude increased.
The numerical simulation results were in good agreement with the experimental and
analytical results.

(5) Our numerical buckling analysis indicated that the external pressure buckling capacity
of the bi-segment pressure hulls fabricated through free bulging was relatively high.
Both the linear and nonlinear buckling loads of the bi-segment pressure hulls increased
linearly with the bulging magnitude. The linear buckling modes were observed using
24–32 latitudinal waves and half of a meridional wave. The nonlinear buckling modes
were characterised by two local pits under low bulging magnitudes and by a single
local pit under large bulging magnitudes.

In this study, we considered only the buckling of bi-segment pressure hulls that
were fabricated through free bulging and subjected to external hydrostatic pressure. To
extend the application of our findings to other structures of deep-sea space stations, future
studies should explore the buckling behaviour of multi-cone, multi-sphere, and other
positive Gaussian curvature shells that are fabricated through free bulging and subjected to
external pressure.
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