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Abstract: Based on the damage evolution equation of bearing steel, a user subroutine was developed
to simulate the fatigue damage behavior of the TBM main bearing under the condition of low speed
and heavy load. In addition, the damage evolution law of the main bearing in the time domain and
the space domain was studied. Then, a nonlinear spring element was introduced to simulate the
interaction between the roller raceway, and the vibration response of the TBM after the main bearing
damage was studied using the transient dynamic method. The research shows that the damage risk
of the raceway is greater than that of the roller, and the damage risk of the main pushing raceway is
greater than that of the other two raceways. The damage of the main bearing will not only lead to the
increase in the peak vibration response of the TBM but also cause more frequency components of the
response. By monitoring the time domain index of vibration signal, the damage degree to the main
bearing can be mastered in real time, providing a reference for the maintenance of the main bearing.

Keywords: TBM main bearing; damage mechanics; contact fatigue; ABAQUS; vibration response

1. Introduction

A tunnel-boring machine (TBM) is playing an increasingly important role in rail transit,
railway tunnel and other fields by virtue of its environmental protection, high efficiency and
safety. As a key core component of TBM, the main bearing plays the role of carrying and
transferring loads [1–3]. Due to the difficulty of replacing the main bearing, the industry
usually equates the life of the main bearing with that of the TBM [4]. Therefore, it is of
great significance to study the fatigue damage of the main bearing and its effects on the
system response to timely detect the early faults and predict performance degradation for
ensuring the normal operation of the TBM.

In recent years, with the development of underground space, increasingly complex
working conditions have emerged, such as ultra-long tunnel, ultra-deep-buried tunnel,
high-altitude tunnel, etc. [2,5,6], which not only requires higher reliability of main bearings
but also put forward higher requirements for condition monitoring of main bearings. With
the development of machine learning and Internet of Things technology, intelligent shield
tunnelling has become a trend [5,7–9]. For example, Huang et al. [10] developed a real-time
monitoring system for the interaction between TBM and surrounding rock and found
that the cutterhead vibration was correlated with the geological conditions. Lan et al. [11]
monitored the cutters of a TBM through eddy current sensors. Hu et al. [12] proposed a
performance degradation model and real-time remaining life prediction method of wind
turbine bearings based on temperature characteristic parameters. Wu [13] analyzed the
performance state for the shield by monitoring on viscosity, moisture and laser granularity
of main bearing lubricating oil and hydraulic oil. At present, the condition monitoring of
main bearing mainly depends on temperature monitoring, endoscope monitoring and oil
monitoring. Therefore, the requirement for defect detection and performance prediction of
the main bearing is urgently needed. Current approaches depend too much on operator
experience and are not appropriate for complicated tunneling situations.
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Several studies have shown that fatigue damage is the main form of bearing failure.
The traditional research on bearing fatigue mainly focuses on the mechanism of fatigue and
the prediction of fatigue life. For example, Lundberg and Palmgren presented a classical
model, termed the L-P model [14], has been widely used for predicting the life of bearings.
Li et al. [15] selected octahedral shear stress as the driving force for bearing contact fatigue
and used an explicit dynamic method to simulate bearing damage evolution. Peter et al. [16]
conducted a finite element simulation of fatigue spalling behavior of bearings based on
the fracture mechanics method. Xu et al. [17] predicted the damage life of ball bearings
through an improved Paris law. He et al. [18] used Fe-safe to calculate the fatigue life of a
yaw bearing. Zeng et al. [19] investigated the location of wheel fatigue cracks sprouting
by finite element simulation and contact fatigue test. He et al. [20] simulated the contact
fatigue of gears considering the coupling effect of elastic damage and plastic damage.
Gabelli et al. [21] proposed a new method for calculating rolling contact fatigue life based
on raceway survival probability.

As fatigue damage continues to develop, the mechanical property of the material
will gradually decrease, resulting in a change in the vibration response of the bearing.
Therefore, monitoring the response changes caused by bearing damage can effectively
warn and diagnose its faults, and scholars have proposed many fault diagnoses and life
cycle performance prediction models accordingly. Jena et al. [22] proposed a method of
continuous wavelet transform to analyze the vibration signals of bearings and identify
the size of defects on the rings of bearings. Singh et al. [23] introduced a fault diagnosis
method based on an overcomplete rational wavelet transform (ORDWT). Zhang et al. [24]
proposed an adaptive discrete-state model to estimate system remaining lifetime based on
Bayesian Belief Network (BBN) theory. Huang et al. [25] proposed a fault feature extraction
method for rolling bearings based on a complex envelope spectrum. De Godói et al. [26]
verified an extreme machine-learning-based fault diagnosis method for mechanical rotating
components. Liu et al. [27] proposed a new adaptive stochastic resonance (SR) model to
improve the efficiency of bearing fault diagnosis. Ambrożkiewicz et al. [28] proposed a
recurrence-based method to analyze the vibration signals of self-aligning ball bearings
and found that the indicators have different sensitivities to the changes of the internal
clearance. With the continuous development of intelligent monitoring, sensor and big data
technology, fault diagnosis and performance prediction models based on machine learning
and data-driven have been widely used and made great progress.

However, the existing fault diagnosis models are completely data-driven and lack the
support of physical models; thus, the accuracy of diagnosis and the portability of algorithm
needs to be improved. In addition, the tunneling process will produce strong noise signals,
and predicting the performance of the main bearing will be more difficult. Considering the
current state of the art described above, first, we developed a user subroutine based on the
damage evolution equation of bearing steel, to simulate the fatigue damage behavior of the
TBM main bearing. Second, we studied the damage evolution law of the main bearing in the
time domain and the space domain. Finally, a nonlinear spring element was introduced to
simulate the interaction between the roller raceway, and the vibration response of the TBM
after the main bearing damage was studied using the transient dynamic method. This paper
studies the vibration response caused by bearing damage from a mechanistic perspective,
which can provide a reference for intelligent shield tunnelling based on machine learning
and data-driven.

2. Analysis of Main Bearing Fatigue Damage
2.1. Fatigue Damage Model of Main Bearing

The focus of this study is TBM main bearing with a diameter of 3.3 m, which is mainly
composed of an outer ring, an inner ring and three rows of cylindrical rollers, as shown in
Figure 1, and the 8 m diameter cutterhead is attached to its front [4].
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Figure 1. Structure diagram of TBM main bearing.

Compared with the conventional bearing structure, this structure can withstand
greater thrust and overturning moment, as well as a certain radial force. The radial force
G mainly comes from the cutterhead gravity, which hardly changes during the tunneling
process. However, the dynamic behavior of thrust F and overturning moment M is very
complicated and can easily lead to fatigue damage of rollers and rings. Figure 2 shows the
dynamic tunneling load and distribution characteristics of an 8m cutterhead under marble
geology [29].
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Many studies have shown that the main driving force leading to bearing fatigue
damage is cyclic shear stress, and the average value of shear stress has little influence on
fatigue damage. The roller of TBM main bearing is usually made of GCr15 steel, and its
torsional S-N equation is [30]:

τmax =
∆τ

2
= 2.636N−0.102 (1)

Generally, the damage evolution equation for high-cycle fatigue can be set as [31]:

dD
dN

=

[
∆σ

σr(1− D)

]m
(2)

where N donates the number of cycles; ∆σ represents the difference between maximum
and minimum stresses; σr donates the material parameter related to the average stress; m is
a material parameter related to temperature.
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For contact fatigue of the main bearing, as its main driving force is the shear stress, ∆σ
is replaced by ∆τ in the above formula, with the following transformation:

∫ N

0
dN =

∫ 1

0

[
σr(1− D)

∆τ

]m
dD →∆τ =

σr

[(m + 1)N]
1
m

(3)

By comparing Formula (3) with Formula (1), we can derive that: m = 9.7874, σr = 6722 MPa.
Therefore, the damage evolution equation for GCr15 steel is:

dD
dN

=

[
∆τ

6722(1− D)

]9.7874
(4)

The main bearing ring is usually made of 42CrMo steel, and the similar 18CrNiMo7-6
steel is used in this paper to replace it. The damage evolution equation for18CrNiMo7-6
steel can be written as follows [20]:

dD
dN

=

[
∆τ

3521.2(1− D)

]10.3
(5)

Cylindrical rollers were used for all three rows of rollers in the main bearing of the
TBM. In order to reduce the calculation scale, the contact problem between rollers and rings
was simplified into a plane strain problem. The finite element model is shown in Figure 3,
where the blue part represents the raceway of the ring, and the gray part represents the
roller. The material properties of raceway and roller are shown in Table 1 [4]. Since the
model was symmetric, only a quarter of it needed to be taken for the calculation. The mesh
was encrypted in the contact area between the roller and the raceway with a side length of
the elements of 0.05 mm. In Abaqus, CPE4R elements were assigned to the finite element
model with a total number of elements of 16,000. Normal contact behavior was defined as
“hard contact “ and tangential friction coefficient was defined as 0.05 [15].
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Figure 3. Finite element model of contact between roller and raceway.

Table 1. Material properties of bearing steel.

Density Yong’s
Modulus

Poisson’s
Ratio

Yield
Strength

Tensile
Strength

Raceway 7850 kg·m−3 210 GPa 0.3 1047 MPa 1134 MPa
Roller 7850 kg·m−3 209 GPa 0.28 1617 MPa 2310 MPa

Next, two steps were set up in Abaqus. In the first step, a small pressure was applied
to the upper part of the raceway, which enabled the model to establish a stable contact



Metals 2023, 13, 650 5 of 13

relationship. In the second step, cyclic load Q was applied to the upper part of the raceway,
and its changes over time are shown in Figure 4. We assumed that the speed of the main
bearing is 6 r/min, then the relationship between time and the number of cycles could be
deduced according to the geometric relationship, as shown in Table 2.
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Table 2. The relation between the number of load cycles of roller raceway and the working time.

t (h) Main
Roller

Main
Raceway

Reserve
Roller

Reserve
Raceway

Radial
Roller

Radial
Raceway

1000 2.68 × 107 3.38 × 107 5.46 × 107 2.56 × 107 5.6 × 107 5.76 × 107

Finally, a field was activated in the Property module of Abaqus, so that the elastic
modulus E was linearly correlated with this field, and this field was D. Taking a roller as
an example, we set the maximum value of E to 209,000 MPa and the minimum value to 0,
corresponding to D = 0 and D = 1, respectively. In this way, E would be linearly dependent
on D. Formulas (4) and (5) were then compiled into the USDFLD subroutine and interfaced
with Abaqus. Therefore, the damage and stiffness of roller and raceway could be updated
each time the shear stress reaches a peak. For plane problems, the maximum shear stress
can be expressed as:

∆τ =

√(
σx − σy

2

)2
+ τxy2 (6)

2.2. Fatigue Damage Simulation of Main Bearing

According to the operating conditions in the literature [4], the overturning moment
M of the cutterhead was 8000 kN·m, the gravity G of the cutterhead was 800 kN and the
thrust F of the cutterhead was 5000 kN. Under these working conditions, the maximum
load of main rollers was 195.3 kN, the maximum load of the reverse rollers was 30 kN, and
the maximum load of radial rollers was 20.2 kN. It should be noted that each roller is not
subject to the same load. Taking the reverse rollers as an example, the maximum load of
the reverse rollers was 30 kN, which was located at the upper end of the main bearing,
i.e., π rad position, as shown in Figure 5. Since the load on each roller was not uniform,
we assumed that the roller rolls around the ring for one circle and was only loaded in
the region with the largest load, i.e., the region of 3/4π–5/4π, and the load was always
30 kN. Similar assumptions also applied to main rollers and radial rollers. Fatigue damage
simulation of the main bearing was carried out according to the method in the previous
section. Under different working hours, the damage D of each part of the main bearing is
shown in Table 3.
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Table 3. The damage D of each part of the main bearing at different times.

t (h) Main
Raceway

Reverse
Raceway

Radial
Raceway

Main
Roller

Reverse
Roller

Radial
Roller

10,000 0.11 0.015 9.0 × 10−4 6.0 × 10−4 1.1 × 10−4 5.0 × 10−6

20,000 0.99 0.03 2.1 × 10−3 1.1 × 10−3 2.3 × 10−4 1.2 × 10−5

As can be seen from Table 3, the damage risk of raceway is greater than that of roller;
Among all rows of raceway, the damage risk of the main raceway of the outer ring is
the greatest. Specifically, for the main row, after 20,000 h of main bearing operation, the
raceway has reached the failure state, and at this time the damage of the roller is much
smaller than that of the raceway, the damage nephogram of the main roller and raceway
is shown in Figure 6. For the reverse and the radial rows, the damage to the rollers and
raceways is relatively small after 20,000 h of main bearing operation.
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Taking the simulation results of the main raceway as an example, the damage evolution
over time is shown in Figure 7. From the perspective of spatial domain, the damage of the
raceway starts from a subsurface position 0.6 mm from the raceway surface and extends to
the surface along a horizontal angle of 45◦, gradually forming fatigue spalling, which was
consistent with the results in the literature [15], as shown in Figure 8. From the perspective
of time domain, when the working time is less than 15,000 h, the damage evolution of
the main push raceway is slow. When the working time reaches 15,000 h, the damaged
area expands rapidly, and the maximum damage increases from 0.33 to 0.99 in only 1000 h.
Therefore, it is recommended to set the critical damage as 0.3.
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Damage will also lead to the decline of Young’s modulus of the material, and then
affect the contact stiffness between the roller and the raceway. Taking main roller and
raceway as an example, force-displacement curves of the reference points of the upper
raceway at different times were extracted, as shown in Figure 9.
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2.3. Variation of TBM Vibration Response

In the process of tunneling, the vibration response of the TBM will be greater as the
damage to the main bearing develops. If the vibration response is too large, it will not
only make the contact stress of the main bearing exceed the limit, but also have an adverse
effect on the cutterhead system. Therefore, it is of great significance to study the vibration
response of TBM after main bearing damage. Based on the previous research on the fatigue
damage of the main bearing, this section introduces a nonlinear spring element to simulate
the interaction between rollers and raceways, applies fluctuating cutterhead load to the
TBM, and adopts the transient dynamic method to study the vibration response changes of
the TBM before and after the main bearing damage.

First, a 3D model of TBM was established in Abaqus, as shown in Figure 10, where
the diameter of the cutterhead is 8m and the total length of the main beam is 13 m. Fixed
constraints were applied to the thrusting boots, and the stiffness of the push cylinders was
set to 706,000 N/mm. The nonlinear spring elements are used to simulate the interaction
between the cutters and the rocks, with the front end of the springs being fixed on the
tunnel face and the back end of the springs being coupled with the cutter saddles. The
stiffness of the springs under tension is set as 0, and the stiffness under compression is set
by E. F. Roxborough formula [32].
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Frequency is the natural characteristic of structure. The reliability of the modeling
method can be verified by comparing the values of the frequencies obtained from numerical
simulation and experimental tests. The vibration test device of the TBM main drive system
is shown in Figure 11. According to the frequency correlation theory [29], if the error
between the simulated frequency and the experimental frequency is less than 8%, they can
be considered to be correlated. As can be seen from Table 4, the maximum error between
the simulated values and the experimental values is only 7.1%, which proves that the
numerical model can reflect the inherent characteristics of the real model well and can be
used as a simulation model.
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Table 4. Comparison of experimental and simulated values of the frequencies of the TBM main drive
system.

Order
Frequency (Hz)

Error (%)
Experimental Value Simulated Value

1 121.2 112.7 7.1
2 414.8 392.2 5.5
3 843.4 808.1 4.2
4 1258.2 1350.3 7.3
5 1686.8 1736.0 2.9

After setting the boundary conditions, the reference point is coupled to the tool flange.
The cutterhead thrust load is applied to the reference point, and the vibration response of
the TBM was simulated by using the transient dynamic method. After the simulation is
completed, the vibration acceleration signal of the cutterhead support is output, as shown in
Figure 12. FFT transformation is used to convert the time-domain signal into the frequency
domain signal, as shown in Figure 13.
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From Figures 9 and 10, it can be seen that when the main bearing is in normal condition,
the peak value of the vibration signal is small, but when the main bearing is damaged,
the peak value of the vibration increases significantly, and the frequency distribution is
wide. It can be seen that when the main bearing is damaged, the peak value of its vibration
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response will increase on the one hand, and on the other hand, it will cause more frequency
components of the response. It can be seen that the damage reduced the local material
properties; thus, reducing the contact stiffness of the bearing, which on the one hand
increased the peak vibration response of TBM, and on the other hand caused the response
of more frequency components.

Kurtosis, impulse factor and margin factor are often used as fault diagnosis indicators
of bearings, as dimensionless parameters, they are sensitive to the health state of bearings
and are not dependent on the operating conditions. Kurtosis reflects the deviation degree of
vibration signal from normal distribution, which is more suitable for early fault diagnosis.
Figure 14 shows the kurtosis curve of the vibration signal with time under three geologies.

Metals 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

hand increased the peak vibration response of TBM, and on the other hand caused the 
response of more frequency components. 

Kurtosis, impulse factor and margin factor are often used as fault diagnosis indica-
tors of bearings, as dimensionless parameters, they are sensitive to the health state of bear-
ings and are not dependent on the operating conditions. Kurtosis reflects the deviation 
degree of vibration signal from normal distribution, which is more suitable for early fault 
diagnosis. Figure 14 shows the kurtosis curve of the vibration signal with time under three 
geologies. 

 
Figure 14. Curve of kurtosis with time. 

It can be seen from Figure 14 that under sandstone and slate geologies, the kurtosis 
of the vibration signal increases with time. Under marble geology, the kurtosis of vibra-
tion signal is stable and always at a high level. This is due to the high UCS value of marble. 
Under the same penetration degree, the fluctuation of cutterhead load is more intense and 
the strong background noise will cover the fault characteristics of the vibration signal. 

Impulse factor is the ratio of peak value to arithmetic mean value, which is used to 
detect the presence of shock components in the signal. Figure 15 shows the impulse factor 
curves of vibration signal with time under three geologies. 

 
Figure 15. Curve of impulse factor with time. 

As shown in Figure 15, the impulse factor of the vibration signal increases with time 
and then becomes stable. Because the peak value varies greatly at different times, the im-
pulse factor does not rise monotonically with time, but the general trend reflects that the 
vibration shock becomes more severe. 

Figure 14. Curve of kurtosis with time.

It can be seen from Figure 14 that under sandstone and slate geologies, the kurtosis of
the vibration signal increases with time. Under marble geology, the kurtosis of vibration
signal is stable and always at a high level. This is due to the high UCS value of marble.
Under the same penetration degree, the fluctuation of cutterhead load is more intense and
the strong background noise will cover the fault characteristics of the vibration signal.

Impulse factor is the ratio of peak value to arithmetic mean value, which is used to
detect the presence of shock components in the signal. Figure 15 shows the impulse factor
curves of vibration signal with time under three geologies.
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As shown in Figure 15, the impulse factor of the vibration signal increases with time
and then becomes stable. Because the peak value varies greatly at different times, the
impulse factor does not rise monotonically with time, but the general trend reflects that the
vibration shock becomes more severe.
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Margin factor is the ratio of peak value to root amplitude, which is used to detect the
wear condition of the bearing. Figure 16 shows the margin factor curve of vibration signal
with time under three geologies.
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As shown in Figure 16, the margin factor of the vibration signal increases with time
and then becomes stable. In conclusion, after the main bearing is damaged, the kurtosis,
pulse factor and margin of the vibration signal will be changed significantly, the impact
component in the vibration signal increases, and the main bearing deviates from the normal
operation state.

3. Discussion

The fatigue damage behavior of the TBM main bearing was simulated by the finite
element method. Then, we studied the damage evolution law of the main bearing in
the time domain and the space domain. In addition, a nonlinear spring element was
introduced to simulate the interaction between the roller raceway, and a fluctuating cutter
head load was applied to the TBM. The vibration response of the TBM after the main
bearing damage was studied using the transient dynamic method. The main results were
as follows. The damage risk of rings was greater than that of the rollers, and the damage
risk of the outer ring main raceway was the greatest and should be paid attention to during
the construction process. The damage of raceway starts from the subsurface of 0.6 mm from
the surface and extends to the surface along a horizontal angle of 45◦, gradually forming
fatigue spalling. Damage to the main bearing will not only lead to the increase in the peak
vibration response of the TBM, but also cause the response of more frequency components.
The kurtosis, impulse factor and margin factor of vibration signal can characterize the
damage degree of bearing. By monitoring the time-domain indexes of vibration signal, the
damage degree of the main bearing can be mastered in real time, providing a reference for
the maintenance of the main bearing.

In this study, the numerical simulation technology was used to study the fatigue
damage of the main bearing and its impact on the system response. In the future, we will
revise the model according to the measured engineering data to improve the accuracy of
the model. In addition, bearing faults are various, this paper only considers fatigue damage
as a typical fault. Subsequently, we will also study the impact of wear, plastic deformation
and other faults on the vibration response of the system.
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