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Abstract: It is essential to develop a leaching procedure that uses minimal acid consumption, is
economical, recovers large amounts of metal, and has a minimal negative impact on the environment.
In this paper, a viable hydrometallurgical method using acetic acid as a leachant is suggested for
recovering critical metals from waste LCO-type batteries. Several leaching parameters were examined
in order to optimize the leaching conditions. With 1.2 mol/L acetic acid, 7% H2O2, 90 ◦C, an S/L
ratio of 10 g/L, and a 60 min leaching period, the maximum leaching efficiencies of Li (99.6%) and Co
(95.6%) were attained. By investigating the different kinetic models, it was feasible to figure out the
reaction’s pace, as well as the mechanism involved in the leaching process. It was found, through the
comprehensive kinetic studies of the leaching process, that the surface chemical reaction controls the
leaching mechanism for waste LCO-type batteries. The economic viability of the current leaching
procedure in comparison to those of earlier approaches is also discussed.

Keywords: leaching; kinetic studies; spent LIBs; acetic acid

1. Introduction

Rechargeable batteries are being used as a renewable and sustainable energy source
in a wide range of modern electronic devices, including electric vehicles, laptops, mobile
phones, and other everyday items, in response to the increasing amount of environmental
pollution [1]. Due to their high energy density, wide operating voltage range, minimal
self-discharge, and wide operating temperature range, lithium-ion batteries (LIBs) are
outstanding electrochemical power sources that have been incorporated into daily life
and used in different electric devices [2]. These benefits have led to significant growth
in the production of LIBs, and the worldwide market for LIBs is projected to be worth
USD 221 billion by 2045 [3]. Among all lithium-ion batteries NCA (lithium nickel cobalt
aluminum oxides)-, LCO (lithium cobalt oxide)-, and NMC (lithium nickel manganese
cobalt oxides)-type batteries require a higher amount of specific energy than other types
of batteries do such as LMO (lithium manganese oxide), LFP (lithium iron phosphate),
and LTO (lithium titanate). The capacity of different lithium-ion batteries in terms of
specific energy is presented in Figure 1. LIBs are discarded after four to six years due to the
increased usage of electronic equipment and electric vehicles, which will result in a rise
in the number of waste batteries. The global number of spent LIBs reached 111,783 t in
2018, and the amount of scrap is estimated to reach roughly 641,595 t in 2025 [4]. According
to Figure 1, there are higher percentages of NCA-, LCO-, and NMC-type battery scrap
than those of others, such as LMO, LFP, and LTO. So, recycling these discarded batteries is
crucial for both environmental preservation and producing metals needed to make new
batteries [5]. Especially, LCO-type batteries contain precious metals such as cobalt, lithium,
copper, and other elements; therefore, neglecting to recycle them may soon lead to a crisis
in the metal market [6].
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Spent LIBs, on the contrary hand, have some economic potential. Especially, Co and
Li are important precious metals; they are often more abundant in waste LIBs than they
are in natural sources, and recycling them using efficient technology has considerable
economic repercussions.

Pyrometallurgy, bio metallurgy, and hydrometallurgy are currently the three basic
technologies used to remove valuable metals from waste LIBs [7]. The main objective
of hydrometallurgy is the transport of precious metals into leaching solutions in order
to extract metal ions via precipitation and solvent extraction processes [8]. Because of
their excellent efficiency and minimal energy usage, hydrometallurgical techniques are
frequently employed as the most viable methods at both laboratory and industrial scales [9].
In comparison to other approaches, they have benefits such as high rates of essential metal
recovery, minimal capital requirements, and the ease of industrialization during production.
Acid leaching is crucial to the hydrometallurgy process due to its high recovery percentages
and amazing capacity to adapt to complex systems [10]. The most frequently employed
inorganic acids with good leaching effectiveness are hydrochloric acid, nitric acid, sulfuric
acid, or phosphoric acid [11–14]. However, as inorganic acid is very corrosive and has
strict equipment needs, it may have a severe impact on human health and the environment
due to the production of hazardous gases, such as SO3, Cl2, NOx, and P2O5. Thus, it is
preferable to use organic acids instead of inorganic ones for the leaching process, such as
ascorbic acid, tartaric acid, lactic acid, malic acid, citric acid, succinic acid, and aspartic
acid [15–20]. It is possible to understand the mechanism behind the acid leaching of LiCoO2
by examining the governing mechanisms on the basis of Reactions (1) and (2) based on the
experimental findings [21].

LiCoO2(s) + 2H+ → Li+ +
1
2

Co2+ +
1
6

Co3O4(s) + H2O +
1
6

O2 (1)

Co3O4 + 6H+ → 3Co2+ + 3H2O +
1
2

O2 (2)

A reducing agent must also be added to acids to help with the leaching process by
converting metal ions with higher to lower oxidation states, which are leachable in the
acidic medium [22]. Co exists as Co3+, an oxidative species that is hard to dissolve in any
acidic medium, such as in LiNi0.33Mn0.33Co0.33O2 (NMC) and LiCoO2 (LCO). Reductants
are needed to convert Co(III) to Co(II) in order to improve the leaching efficiency. Hy-
drogen peroxide (H2O2) is, generally, the most widely employed reducing agent. Other
reducing agents also utilized in acid-leaching systems are glucose, cellulose, sucrose, and
NaHSO3 [23,24]. Despite hydrogen peroxide’s widespread use as an oxidizing agent, its
employment as a reductant in this situation is justified by the strong reduction potential
of Co(III) and the absence of any further ions being introduced to the system [25]. The
expanded formulations of Reactions (1) and (2) suggest that the following reactions occur
in the presence of H2O2.

LiCoO2 + 3H+ +
1
2

H2O2 → Li+ + Co2+ + 2H2O +
1
2

O2 (3)

Co3O4 + 6H+ + H2O2 → 3Co2+ + 4H2O + O2 (4)

Acetic acid, among all organic acids, is a weak monocarboxylic acid that has been
advantageously used in this leaching study because it yields a high level of leaching
efficiency without releasing any harmful gases. Furthermore, it is also less expensive and
readily and naturally degrades. The impact of acetic acid on the leaching efficiency of
critical metals in the presence and absence of a reductant was investigated in the present
study. With acetic acid as the leaching agent, different leaching factors were investigated.
To ascertain the mechanism involved in the leaching process, detailed leaching kinetics
were analyzed, and the economic feasibility of the current leaching process in comparison
to those of previous methods is also addressed in this present work.
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Figure 1. Capacity of different LIBs in terms of specific energy [26].

2. Materials and Methods
2.1. Reagents

The spent LIB sample was collected from the authorized seller. Acetic acid glacial
with a purity of 99–100% and hydrogen peroxide with a purity of 30% were used. All other
reagents were of analytical grade from Merck life science private limited Company.

2.2. Analytical Method

Cobalt and lithium concentrations in the leach liquor after leaching tests were quanti-
fied via inductivity-coupled plasma optical emission spectrometry (ICP-OES, iCAP PRO,
Thermo Fisher Scientific, Waltham, MA 02451, USA). All metals in the LIB sample were
digested using aqua regia (HCl: HNO3 adjusted to a 3:1 ratio). The characterization of the
LIB sample before and after leaching was examined via X-ray diffraction (XRD, Rigaku
Ultima IV, Tokyo, Japan), SEM (scanning electron microscopy), and EDS (energy-dispersive
X-ray spectroscopy, EVO-18, Carl Zeiss, Oberkochen, Germany).

2.3. Leaching Experiments

All tests were conducted in a 500 mL, three-necked, flat-bottomed flask, which was
thermostatically controlled and fitted with a condenser and a magnetic stirrer. Additionally,
the solution was heated and mixed using a magnetic stirrer. In all studies, the leaching
period lasted 60 min. Whatman filter paper was used to filter the solution at the conclusion
of each experiment.

3. Results and Discussions
3.1. Characterization of the Spent LIBs

The discarded LIB sample was subjected to elemental analysis using aqua regia di-
gestion, followed by ICP-OES analysis (Table 1). In this sample, Co and Li are the main
components, whereas Al and Cu are the minor ones. The primary elements employed
in the active components of LIBs cathodes were Co, Li, and Ni. Figure 2a displays XRD
patterns for the waste LIBs sample. Figure 2b,c shows an SEM image and results of the EDS
analysis of the waste LIBs sample. The finding patterns revealed that this LIB sample is an
LCO-type battery with mostly lithium cobalt oxide (LiCoO2) and graphitic carbon and trace
amounts of Al and Cu. The Laser Scattering Particle Size Distribution Analyzer LA-960,
HORIBA, was used in order to analyze the particle size distribution of the discarded LIB
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sample. It was found that before the leaching process was conducted, the average particle
size was 16.3 µm, with D10 = 11.4 µm and D60 = 25.9 µm.

Table 1. Total metal content in spent LIB sample.

Metals Co Li Cu Al

Wt.% 3.9 34.12 0.31 0.27
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3.2. Leaching of the Metal Ions from the Spent LIBs
3.2.1. Impact of Leaching Time

The impact of leaching time on the efficiency of Li and Co leaching was investigated
over a period from 10 to 120 min, and samples were taken for examination at various time
intervals. Figure 3 displays the results and shows that the leaching period clearly affects
the extraction of lithium. For a 60 min leaching period, the lithium extraction efficiency
improved. The leaching efficiency continued to increase after this point, but only with
insignificant contents. It reached 20.2% (Li) and 3.8% (Co) in 60 min, as well as 20.7% (Li)
and 3.9% (Co) in 90 min. Consequently, the best leaching time was 60 min.
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Figure 3. Impact of leaching time on leaching yield of Co and Li. ((acetic acid) = 0.5 mol/L,
temperature = 30 ◦C, and S/L = 10 g/L).

3.2.2. Impact of Acetic Acid Concentration

The leaching efficiency of metals is significantly assisted by the rise in acid content.
The relationship between acid concentration and leaching efficiency was investigated
(Figure 4). There was an increase in leaching efficiency when the acetic acid concentration
was increased from 0.1 mol/L to 1.2 mol/L. At 0.1 mol/L, 1.5% Co and 6.92% of Li leaching
were attained. A total of 11.7% of cobalt and 42.8% of lithium were leached out with the
1.2 mol/L acetic acid concentration. Because a higher concentration gradient enables the
dissolved acid reactant to diffuse more quickly to the surface during the reaction, the
leaching efficiency increases as the acid concentration increases [6]. A further increase in
acetic acid content from 1.2 mol/L did not significantly alter the yield during leaching.
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Figure 4. Impact of acetic acid concentration on leaching yield of Co and Li. (Temperature = 30 ◦C,
S/L = 10 g/L, and leaching time = 60 min.)

3.2.3. Impact of H2O2 Concentration

Numerous tests were conducted employing H2O2 volume fractions ranging from 2 to
9 vol%. Without the presence of H2O2, the yields after Li and Co leaching were 42.8% and
11.7%, respectively. When 2% H2O2 was added to the leaching agent as a reductant, Li and
Co were leached out, with yields of 45.4% and 17.5%, respectively. When the H2O2 content
was raised from 2% to 7%, the leaching efficiency of Li and Co increased from 45.4% to
67.2% and 17.5% to 58.1%, respectively (Figure 5). H2O2 was used to convert Co (III) into
Co (II) and transfer it into the leach liquor, improving the yield of Co leaching. As a result of
the LiCoO2 structure being destroyed, the leaching of lithium ions at the same time makes
it easier to form complexes with acetic acid. With a rise in H2O2 initial dosage, metals often
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leach more quickly. However, the leaching efficiency of Co and Li considerably changed
up to an H2O2 dosage of 7%. This could be explained by the presence of alkaline groups
(-CH3), in addition to acidic groups in acetic acid (-COOH). The Co and Li leaching yield
can be reduced by adding too much H2O2 to the leaching solution because this reaction
with -CH3 lowers the coordination of acid with Co (II). Consequently, it has been decided
that an H2O2 dosage of 7% is the best scenario.
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Figure 5. Impact of H2O2 concentration on leaching yield of Co and Li. ((Acetic acid) = 1.2 mol/L,
temperature = 30 ◦C, S/L = 10 g/L, and leaching time = 60 min.)

3.2.4. Impact of Temperature

When the reaction temperature was maintained at 30 ◦C, the Co and Li leaching
efficiencies remained low, 58.1% and 66.2%, respectively. When the leaching temperature
was raised to 90 ◦C, the leaching efficiencies of Co and Li increased to 95.6% and 99.6%, re-
spectively (Figure 6). In a chemical reaction, temperature always has a considerable impact
on the rate of the reaction. Actually, raising the reaction temperature would considerably
improve the collision rates, resulting in the faster dissolution of metal ions. A lengthier
extraction time is caused by acetic acid’s reduced acidity compared to those of these organic
acids, but it is less expensive and more environmentally friendly. In order to leach Co and
Li from spent LIBs, acetic acid is a suitable leachant.
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Figure 6. Impact of temperature on leaching yield of Co and Li. ((Acetic acid) = 1.2 mol/L,
H2O2 = 7 vol%, S/L = 10 g/L, and leaching time = 60 min.)
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3.2.5. Impact of Solid to Liquid (S/L) Ratio

Indeed, the leaching efficiencies of Co and Li were as high as 95.5% and 99.6%,
respectively, when the S/L ratio was 10 g/L, but they tended to decline as the S/L ratio
increased. However, when the S/L ratio was raised to 20 g/L, the leaching efficiencies
drastically dropped to 75.07% for Co and 84.48% for Li, demonstrating that high S/L ratios
do not promote optimal leaching (Figure 7). The S/L ratio obviously has a considerable
impact on the leaching yield, and the results indicated that the leaching efficiencies of Co
and Li declined as the S/L ratio increased. Additionally, Figure 7 reveals that the amount
of both metals’ dissolution increased when the S/L ratio increased up to 20 g/L, and the
concentration of Li and Co remained constant above S/L ratios of 20 g/L. As a result, it
could be caused by a deficiency of acetic acid or the achievement of a solubility limit, which
affects efficiency as the S/L ratio increases. Based on the experimental results and the fact
that a sizable amount of both metals remained in the residue, we, therefore, came to the
conclusion that an S/L ratio of 10 g/L is the optimal condition.
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temperature = 90 ◦C, and leaching time = 60 min).

3.3. Kinetics Study

Leaching kinetics studies on hydrometallurgical processes are typically needed in
order to pinpoint the process’s regulatory steps. Leaching kinetics was traditionally built
on the shrinking core model, with surface chemical reaction control (SCRC) and a diffusion
control model controlling various steps [27–29]. The Avrami equation model, a mixed
kinetic model that incorporates surface chemical reaction control and diffusion control, is
considered as another kinetic model used to understand the leaching of multi-metals for
several solid–liquid heterogeneous systems. The associated mathematical equations are
addressed in Table 2.

Table 2. Mathematical equations for various kinetics models.

Kinetic Model Integrated Form of the Equation Parameters

Surface chemical reaction control 1− (1− X)
1
3 = kct

X is the leaching rate of a metal; kc is the
chemical reaction rate constant

Diffusion control 1− 2
3 X− (1− X)

2
3 = kdt kd is the diffusion rate constant

Avrami kinetic model ln(− ln(1− X)) = ln kr + ln t kr is the reaction rate constant

The applicability of these models for the information received from the leaching tests
at various temperatures was, therefore, examined. Due to the diffusion control model’s
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lower R2 values (<9.0), which clearly rule it out for the further justification of the kinetic
study, it was determined from Table 3 that either the Avrami equation model or the SCRC
model are better fits for this leaching process. R2 values are tabulated in Table 3, and the
values indicate that the SCRC model is a better fit than the Avrami equation model is to
depict the leaching process of Li and Co with correlation coefficients (R2) greater than 0.98.

Table 3. Correlation coefficient and rate constant values for the fitting of the kinetic model at
various temperatures.

T (◦C)

Li Co

Surface Chemical
Reaction Diffusion Control Avrami Equation Surface Chemical

Reaction Diffusion Control Avrami Equation

kc × 103

(min−1) R2 kd × 103

(min−1) R2 lnkr R2 kc × 103

(min−1) R2 kd × 103

(min−1) R2 lnkr R2

30 4.8 0.990 1.0 0.857 −4.240 0.977 3.3 0.975 0.5 0.831 −5.607 0.983
40 5.5 0.987 1.2 0.845 −3.895 0.965 4.4 0.983 0.8 0.818 −4.629 0.978
50 6.4 0.987 1.6 0.875 −3.498 0.967 5.3 0.986 1.2 0.827 −4.464 0.979
60 7.4 0.986 2.0 0.889 −3.389 0.969 6.2 0.990 1.5 0.850 −4.099 0.978
70 8.8 0.988 2.6 0.896 −3.394 0.960 7.2 0.987 1.9 0.861 −3.711 0.965
80 10.4 0.989 3.3 0.928 −3.301 0.964 8.7 0.990 2.6 0.884 −3.658 0.967
90 13.9 0.988 4.9 0.983 −3.189 0.953 10.3 0.994 3.3 0.918 −3.600 0.974

From Table 3, the k values (specific rate constants) for Li and Co based on the SCRC
model were considered. Using the Arrhenius equation, k and T (leaching temperature) can
be related as (Equation (5)).

k = A e
−Ea
RT (5)

where Ea (kJ/mol) is the activation energy, and A is the pre-exponential factor. The
simplified form of Arrhenius equation (Equation (6)) can be used to determine the apparent
activation energies for different metals.

ln k = ln A− Ea

RT
(6)

An Arrhenius plot of ln k versus 1000/T is presented in Figure 8, and the activation
energies for the leaching of Li and Co are 15.5 and 16.6 kJ/mol, respectively, suggesting
that the rate-controlling step of this leaching process is the surface chemical reaction.
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The equation for the SCRC model was used to investigate the effects of acetic acid
concentration without the addition of H2O2 in order to determine whether or not the
leaching method is controlled by the model. Following the acquisition of the specific
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rate constants for Li and Co (Table 4), a plot between lnk and ln (acetic acid) was created
(Figure 9). The SCRC model was fitted to the leaching of both metals based on higher R2

values (>0.98). Because the Co3+ ion needs three moles of acetate ion to produce cobalt
acetate, (data from Figure 4) this shows that the synthesis of cobalt acetate is difficult
without the use of a reductant.

Table 4. Correlation coefficient and rate constant values for the fitting of the kinetic model with
different acetic acid concentrations.

Acetic Acid
Concentration

Surface Chemical Reaction

Li Co

kc × 103 (min−1) R2 kc × 103 (min−1) R2

0.1 0.4 0.995 0.05 0.996
0.3 0.7 0.980 0.18 0.978
0.5 1.2 0.982 0.21 0.980
0.8 1.8 0.981 0.31 0.985
1.0 2.3 0.984 0.5 0.987
1.2 2.9 0.983 0.7 0.983
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The impact of the H2O2 concentration was tested to further justify the kinetic model
(data from Figure 5). The k values for each metal were calculated (Table 5), and a plot of
ln k and ln (H2O2) was formed (Figure 10). The kinetics model was justified by having
higher values for the correlation coefficient (R2 > 0.98). The slope value for Co was two
times higher than that of Li, showing that the presence of H2O2 was efficient to enhance
the leaching yield of Co.

Table 5. Correlation coefficient and rate constant values for the fitting of the kinetic model with
LH2O2 concentration.

H2O2
Concentration

Surface Chemical Reaction

Li Co

kc × 103 (min−1) R2 kc × 103 (min−1) R2

2% 0.31 0.997 0.1 0.996
3% 0.34 0.992 0.15 0.984
4% 0.39 0.984 0.2 0.982
5% 0.43 0.980 0.29 0.988
6% 0.48 0.981 0.32 0.981
7% 0.53 0.981 0.36 0.980
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After formic acid, the second-simplest carboxylic acid is acetic acid (C2H4O2). It is a
weak acid, with one H+ replaceable ion (pKa = 4.76). The dissociation of acetic acid can be
expressed as follows:

C2H4O2 → H+ + C2H3O−2 (7)

It was found through the comprehensive kinetic studies of the leaching process that
the surface chemical reaction controls the leaching mechanism for waste LCO-type LIB
batteries. Because of the trivalent cobalt ions used in the leaching studies, it was found
that cobalt acetate formation is challenging. In order to improve the leaching efficiency of
Co, Co(III) ions must be converted into Co(II) ions using H2O2, and the complete reaction
during the leaching process is expressed by Equation (8). LiC2H3O2 and Co(C2H3O2)2 are
the two most probable and stable products (Figure 11) [30].

6C2H4O2(aq) + 2LiCoO2(s) + H2O2(aq)
→ 2LiC2H3O2(aq) + 2Co(C2H3O2)2(aq) + 4H2O(l) + O2(g)

(8)
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Figure 12b shows SEM images of the leached residue at various magnifications. It
was noticed that after leaching with acetic acid and H2O2, spherical particles with an
aggregated geometry vanished, which were compared to those in Figure 2b. The XRD
patterns of leached residue were examined after leaching. Additionally, EDS analysis of the
leached residue was studied to check the residual metal content in the residue (Figure 12c).
The analysis of the grain size distribution of the leached residue showed that the average
particle size was 12.5 µm, with D10 = 6.4 µm and D60 = 16.3 µm. According to the results, it
was concluded that the combination of acetic acid and H2O2 was favorable for the selective
leaching of Co and Li from the spent LCO-type batteries.
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3.4. Economic Viability of the Current Leaching Process

Based on the price of leaching agents, Table 6 describes how various leaching tech-
niques are economically valued. To examine the economic feasibility of various leaching
processes, the prices for various acids were considered to be estimates. Leaching agents,
such as acids and reductants, are the process’ major costs. The prices for succinic acid,
L-aspartic acid, L-tartaric acid, and citric acid are 4.15, 3.18, 29.33, and 8.56 USD/kg, re-
spectively, according to the Indian market. H2O2 and acetic acid were provided by Merck
Life Science Private Limited, India, for 0.73 and 1.27 USD/kg, respectively. The economic
profitability value for the current work, which is the most cost-effective method among all
other procedures and is commercially feasible, is shown in Table 6 to be at a minimum of
USD 0.279 at an S/L ratio of 10 g/L.

Table 6. Economic valuation of various leaching procedures based on the cost of leaching agents.

SL No. Leaching Agent
Acid

Strength
(mol/L)

Reductant
(H2O2)
(vol%)

Cost of
Acid/USD

Cost of Re-
ductant/USD

Total
Cost/USD References

1. Acetic Acid 1.2 7% 0.09 0.189 0.279 Present Work
2. Succinic acid 1.5 4% 0.73 0.108 0.838 [15]
3. L-Aspartic acid 1.5 4% 0.63 0.108 0.738 [31]
4. L-Tartaric acid 2.0 4% 8.80 0.108 8.908 [32]
5. Citric acid 1.0 8% 1.80 0.216 2.016 [33]

4. Conclusions

In the current study, the impact of acetic acid on the efficacy of the leaching of critical
metals in the presence and absence of a reductant was studied. Several leaching variables
with acetic acid as the leaching agent were investigated. The optimum leaching efficiencies
of Li (99.6%) and Co (95.6%) were observed at 1.2 mol/L acetic acid, 7% H2O2, 90 ◦C,
an S/L ratio of 10 g/L, and a 60 min leaching duration. The comprehensive leaching
kinetics were examined to determine the mechanisms involved in the leaching process,
and it was observed that with apparent activation energies of Li (15.5 kJ/mol) and Co
(16. 6 kJ/mol), the surface chemical reaction model fit the data better, based on them having
higher correlation coefficient values. This work also addresses the economic viability
of the current leaching procedure in contrast to those of earlier approaches, and this
process will be commercially feasible, with a minimum cost of USD 0.279 at an S/L ratio
of 10 g/L. The employment of some leaching techniques, such as microwave reduction
leaching [34], ultrasound-assisted leaching [35], and closed-vessel microwave leaching [36]
on an industrial scale, should be emphasized in the future to accomplish the complete
leaching of all metals.
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