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Abstract: Considering the increasing demand for Li-ion batteries, there is a need for sophisticated
recycling strategies with both high recovery rates and low costs. Applying optical sensors for
automating component detection is a very promising approach because of the non-contact, real-time
process monitoring and the potential for complete digitization of mechanical sorting processes. In this
work, mm-scale particles from shredded end-of-life Li-ion batteries are investigated by five different
reflectance sensors, and a range from the visible to long-wave infrared is covered to determine
the ideal detection window for major component identification as relevant input signals to sorting
technologies. Based on the characterization, a spectral library including Al, Cu, separator foil, inlay
foil, and plastic splinters was created, and the visible to near-infrared range (400–1000 nm) was
identified as the most suitable spectral range to reliably discriminate between Al, Cu, and other
battery components in the recycling material stream of interest. The evaluation of the different sensor
types outlines that only imaging sensors meet the requirements of recycling stream monitoring and
can deliver sufficient signal quality for subsequent mechanical sorting controls. Requirements for the
setup parameters were discussed leading to the setup recommendation of a fast snapshot camera
with a sufficiently high spectral resolution and signal-to-noise ratio.

Keywords: battery recycling; reflectance spectroscopy; Li-ion battery; optical characterization; copper
recovery; aluminum recovery; hyperspectral imaging; digitalization

1. Introduction

In light of the energy transition and the rise of electric mobility, the demand for power-
ful battery systems has increased as well. As the life spans of common Li-ion batteries are
estimated at eight to ten years, causing an increasing waste stream, efficient and compre-
hensive recycling strategies have gained importance [1]. According to the recent regulation
2023/1542 [2] of the European Parliament, a recycling efficiency of 65 wt% is required for
Li-based batteries before 2026 and 70 wt% before 2031, respectively. Furthermore, 90% of
Cu, which is commonly applied as an electrode material, has to be recovered starting in
2028 and at least 95% in 2032.

Current recycling processes of lithium-ion batteries include combinations of mechani-
cal and hydrometallurgical methods as well as dismantling and pyrometallurgical meth-
ods [1,3,4]. Mechanical sorting is especially key to ensuring sufficient enrichment of
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target components, which largely controls the quality of subsequent processing steps [5–7].
An important challenge in mechanical methods that still needs further research is the
air-classification of Al, Cu, and residuals, e.g., organic components originating from the
separator and particles from the casing and from the inlay foil. This sorting process is based
on different settling velocities even though these components possess similar properties in
this regard [8]. At this step, an optical sensor in combination with advanced data processing
can not only assess the performance of the separation process but can also deliver in situ
information needed for adjusting or optimizing the air velocity of the sifting apparatus
employed. Such contact-free, non-destructive optical sensing has great potential to provide
in-line, real-time process information when the relevant component classes can be detected
in an efficient and robust way. However, the resulting large data volumes per time unit call
for fast and efficient data processing using machine learning technology.

In order to evaluate the potential of possible optical sensors, an in-depth analysis of
spectral characteristics of selected battery components, which become the feed material
in the air-classification process, is required. The focus lies on the spectroscopy-based
differentiation between the main relevant lithium-ion battery components Al, Cu, and
residuals according to the requirements of this processing step. An in-depth analysis of all
constituents, which vary between individual battery types, is beyond the scope of our study,
as this is not required for technical implementations in industrial sorting lines using air
classifiers. This study investigates suitable spectroscopic techniques under consideration
of material characteristics and available sensor technology. Firstly, a point spectroscopic
analysis sets a detection baseline for battery components at different stages of mechanical
treatment in the recycling process, creating a spectral library and identifying characteristic
spectral features. Secondly, the analysis is upscaled to hyperspectral imaging (HSI), as a
combination of spatial and spectral information is essential to the application in the optical
sorting of battery components. Therefore, this work includes results from two distinct push
broom scanners that measure dispersively with a linear array of detectors while the second
spatial axis arises from a forward motion of the sample plane or the sensor [9,10]. On the
other hand, a snapshot camera was used providing the possibility to capture hyperspectral
videos of moving objects [11]. The HSI results are then compared to the compiled spectral
library and subsequently required parameters, e.g., resolution in space (i.e., number of
pixels) and time (i.e., frame rate), as well as effects of illumination, background, and
overlapping, are discussed. Finally, this work gives setup recommendations for different
application scenarios.

While different types of optical sorting are already under scientific investigation [12–16]
and in industrial use [17,18] for metal scrap, this study focuses exemplarily on the sepa-
ration of Al, Cu, and residual battery components. However, optical sorting is adaptable
to the recycling of different and continuously improved designs and materials used for
Li-ion battery systems if further spectral characterization similar to this work is performed
in advance.

2. Materials and Methods

The feeding material for optical sorting (cf. Figure 1) originates from an end-of-life
automotive primary battery cell (Samsung SDI, Yongin-si, Republic of Korea; capacity:
94 Ah). This means that the cell had been subjected to several charge and discharge
cycles. Prior to mechanical recycling, the cell was discharged using a resistor. The applied
mechanical recycling can be split into two processes each consisting of a comminution, a
classification, and a sorting step.

For the first comminution, a low-speed axial gab rotary shear (developed and built by
TU Freiberg (Freiberg, Germany) 1994) was used as pre-comminution to open up the battery.
To finalize the first comminution, a granulator (MeWa Andritz Universal Granulator UG
300; Hechingen, Germany) with a 20 mm grid was used. More detailed information can be
found in Bischoff et al. [19]. Afterward, the processed cell was dried for 14 days at 24 ◦C in
a fume cupboard to remove the volatile electrolyte components. After the drying, the first
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black mass was separated using a 1 mm screen. The further processed electrode fraction
was gained by separating the separator foil and the cell housing in a Zig-zag air classifier.
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Figure 1. Structure of a Li-ion battery and an overview of the sample material.

In the second step of the process, a high-speed impact mill (Turborotor Görgens G-35S,
Dormagen, Germany) was used for the second comminution in order to further delaminate
the electrode foils. After the comminution, the remaining second black mass was removed
by screening at 0.5 mm. The fraction larger than 0.5 mm forms the examined mechanical
decoated material.

In order to analyze the effect of residual coating on the spectral signature of the Al and
Cu particles, the pristine reference material “model Al particles” and “model Cu particles”
(cf. Figure 1) was used. The model particles were made of uncoated Al and Cu foils of the
same thickness as the current collector foils and subjected to the same mechanical recycling
process as the material for the optical sorting. To collect information about the original
coating, the battery cell was cut open. The jelly rolls were unrolled and the anode and
cathode foil were dried for 14 days at ambient temperatures. Afterward, the foils were
cut to pieces. As a result, “Cu particles with anode coating” or “Al particles with cathode
coating” (cf. Figure 1) were created. The anode coating consists of anode active material,
i.e., graphite, and the anode binder, which is a mixture of carboxymethyl cellulose and
styrene butadiene rubber. The components of the cathode coating are the cathode active
material, i.e., lithium nickel manganese cobalt oxide (NMC), cathode binder, which consists
of polyvinylidene fluoride and solvent, and cathode conductive agent, i.e., carbon black.
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The sample set was characterized by a selection of optical sensors. Firstly, the point
spectrometric sensors Spectral Evolution PSR-3500 (Spectral Evolution, Lawrence, MA,
USA) and Agilent 4300 Handheld FTIR (Agilent Technologies, Santa Clara, CA, USA) were
chosen to set a detection baseline over a wide wavelength range. These two sensors are
mobile, handheld devices that reach a high spectral resolution. Based on the spectral library
curated from the point spectroscopic measurements, the line scanners, i.e., push broom
scanners, Specim Fenix (Specim, Spectral Imaging Ltd., Oulu, Finland) and Specim FX10
(Specim, Spectral Imaging Ltd., Oulu, Finland), as well as the image sensor Cubert Ultris
X20 (Cubert GmbH, Ulm, Germany) were chosen as the optical sorting also requires spatial
information on the particles. Properties and measurement setup parameters of all applied
sensors are listed in Table 1. All reflectance data are given relative to an approximately
constant reflectance of a reference panel. Due to the use of the Zenith Polymer (SphereOptics
GmbH, Herrsching, Germany) reference with 60% diffuse reflectance, each data point
obtained from the Spectral Evolution PSR-3500 had to be multiplied by 0.6.

Table 1. Sensors and measurement setup parameters (* time for single measurement, results in this
study represent averages over 10 measurements).

Sensor Spectral Evolution
PSR-3500

Agilent 4300
Handheld FTIR Specim Fenix Specim FX10 Cubert Ultris X20

spectral range
(spectral

resolution) [nm]

350–1000 (3.5)
1000–2500 (7–10)

~2220–15380
(1–47)

380–970 (3.5)
970–2500 (12) 400–1000 (5.5) 350–1000 (10)

image size
[px line] 384 1024 410 × 410

field of view [◦] 32.3 54 35

detector Si, InGaAs DTGS CMOS, MCT CMOS CMOS

px size sample
plane [mm] 5 2 1.5 0.5 0.8

sensor-target-
distance [cm] 93 48.6 50 (tbc)

frame rate [Hz] 25.5 70.0 4

exposure time
[ms] 10–30 * 20 * 18.0

4.5 14.0 9.5

illumination halogen
light bulb

wire-wound
element

halogen
light bulbs

halogen
light bulbs

halogen
light bulbs

reference
(Diffuse

reflectance)

SphereOptics
(Herrsching, Germany)

Zenith Polymer®

(60%)

coarse gold
reference cap

SphereOptics
Zenith Polymer®

(>99%)

SphereOptics
Zenith Polymer®

(>99%)

SphereOptics
Zenith Polymer®

(>99%)

The point measurement data originating from the Spectral Evolution PSR-3500 and
Agilent 4300 Handheld FTIR were read and plotted with the help of the Python toolbox
hylite (version 1.2, https://github.com/hifexplo/hylite, Freiberg, Germany) [20]. Upon the
different measurement locations on the sample material, the most representative spectral
information of each sample was identified by minimizing the mean Euclidean distances to
all other spectra.

The setups presented in Figure 2 were used to acquire the HSI data from the push
broom scanners Specim Fenix and Specim FX10 as well as the snapshot camera Cubert
Ultris X20. The Specim FX10 and Specim Fenix sensors detect a line of pixels and are
therefore mounted above a conveyor belt moving the samples to add a second dimension,
whereas the Cubert Ultris X20 detects a square area of the sample plane. The sample planes
of both setups are illuminated uniformly by halogen light bulbs.

https://github.com/hifexplo/hylite
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Figure 2. Setups of the Cubert Ultris X20 as well as the Specim FX10 and Specim Fenix.

The HSI data acquisition was performed using the software Lumo Scanner 2019 [21]
(Specim FX10), Lumo Recorder 2019 [22] (Specim Fenix), and Cubert Utilities 2.9.1 CORE/
TOUCH [23] (Cubert Ultris X20). The required radiometric and geometric corrections and
basic visualizations were carried out with the help of the Python toolbox hylite [20]. For
further analysis of the hyperspectral data, ENVI™ 5.1 [24] was used. In order to perform
statistical analysis, pixels of the HSI were grouped into regions of interest in accordance
with the shape of the sample particles. The arithmetic mean gained from this procedure
was compared to the most representative point measurement.

3. Results

The point measurements performed with the Spectral Evolution PSR-3500 are pre-
sented in Figure 3 and reveal the effects of different spatial points of analysis on the sample
material and different stages of treatment for Cu. The model Cu particles in Figure 3a and
the decoated Cu particles in Figure 3b share similar spectra in the visible to short-wave
infrared (V-SWIR) spectral range and are quite homogeneous at different points. In accor-
dance with the work published by Svito et al. [25], a significant step to higher reflectance
between 560 and 640 nm, which is assigned to electron transitions from the d to s band and
a moderate monotonic rise of reflectance at larger wavelengths are observed in Figure 3a,b.

In contrast to the relatively low quantile distances for reflectance signals in Figure 3a,b,
the spectra of Cu particles with anode coating in Figure 3c show higher spectral variation
according to the surface condition with different thicknesses and a fragmented state of
anode coating, see Figure 1. Some spectra corresponding to completely coated sample
locations do not resample the reflection edge visible in Figure 3a,b at all, as the main
component of the anode coating, i.e., graphite, has a constant low reflectance within the
V-SWIR range. The higher the coating coverage, the less comparable the spectral signature
of the Cu particles with anode coating becomes since the signature of the coating dominates
and prevents the detection of the Cu below.

An analogue analysis was performed for model Al particles, decoated Al particles,
and Al particles with cathode coating. From the results, which are included in Appendix A
Figure A1, one can similarly conclude that the constant low reflectance of the cathode
coating, mainly containing NMC, affects the spectra significantly, while residuals of the
cathode coating on the decoated Al particles do not cover the characteristic spectral features
of Al. Therefore, only the feed material for the optical sorting (cf. Figure 1) including the
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decoated Al and Cu particles are considered in further results. On a side note, the small
features in Figure 3 and Appendix A Figure A1 at 1000 nm and 1900 nm are artifacts caused
by the detector shift of the Spectral Evolution PSR-3500.
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Figure 3. Reflectance spectra of Cu from the Spectral Evolution PSR-3500 differ in different stages
of the recycling process: model Cu particles (a), decoated Cu particles (b), and Cu particles with
anode coating (c). Variations depending on the exact spot on the sample material are represented by
quantiles in shades of gray: the second to the nineteenth 20-quantile in light gray and the second as
well as the third 4-quantile in dark gray. The most representative measurement depicted by the red
curve was determined by minimizing the mean Euclidean distance to all other spectra.

A spectral library of the visible up to the long-wave infrared spectral range is presented
in Figure 4 in order to highlight the main material-specific spectral differences available
for optical discrimination of the feed material. In the V-SWIR range, the decoated Al
particles are characterized by a reflectance minimum at 830 nm followed by a steeper slope,
attributed to interband transitions [26]. This spectral characteristic is clearly distinguishable
from the step between 560 and 640 nm observed for the reflectance of the decoated Cu
particles, whereas the Al and Cu spectra are found to be very similar in the short- to
long-wave infrared (S-LWIR) range.

The recurring sharp features at around 3500 nm and 4300 nm are associated with
humidity and carbon dioxide, respectively, and caused by ambient air between the sample
and the Agilent 4300 Handheld FTIR sensor. The contact between the sample and the
sensor is not as close as between the reference coarse gold cap and the sensor. Thus, these
features are not detected in the reference measurements and are not subtracted from the
sample measurements.
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Figure 4. Representative reflectance spectra of all sorting components in the V-SWIR from the Spectral
Evolution PSR-3500 (left) and in the S-LWIR range from the Agilent 4300 Handheld FTIR (right) are
compared to each other. A minimum at around 830 nm followed by a steeper slope and a step at
around 580 nm are the discriminative features for Al and Cu, respectively.

The characteristic spectral features of Al and Cu differ also significantly from the
non-metallic sample material in the feed material stream. The V-SWIR and S-LWIR spectra
of these non-metallic components were compared to the work published by Vázquez-
Guardado et al. [27]. The authors of that study investigated 12 common plastics by FTIR
reflectance spectroscopy to discover their spectral fingerprints. Based on spectral features
at 5832 nm, 8033 nm, 9125 nm, and 9864 nm (peaks), as well as at 5745 nm, 7687 nm,
8768 nm, and 9721 nm (valleys), the inlay foil was identified as polyethylene terephthalate
(PET). The plastic splinters are made of polypropylene (PP) according to the peaks at
1342 nm, 7023 nm, 7310 nm, and 9316 nm as well as the valleys at 1193 nm, 1395 nm,
1706 nm, 1726 nm, 3370 nm, 6827 nm, 7251 nm, and 8572 nm. Finally, the separator foil is
composed of different plastics including polyethylene terephthalate, polypropylene, and
polyvinyl chloride (PVC). This is also quite evident considering that the V-SWIR reflectance
spectrum of the separator foil shares similar features with the V-SWIR spectrum of the
plastic splinters, whereas the S-LWIR spectrum of the separator foil shows some similar
spectral features compared to the inlay foil.

To evaluate and investigate the potential for industrial implementation, the analysis
of the feed material was upscaled to his, which provides a continuous mapping of material
streams including spatial information. In Figure 5, reflectance spectra in the wavelength
range of 400 to 1000 nm from the Specim Aisa Fenix, Specim FX10, and Cubert Ultris
X20 sensors averaged over the respective sample area are compared to the representative
spectra from point measurements using the Spectral Evolution PSR-3500.

For the plastic samples (separator foil, plastic splinters, and inlay foil), no spectral
features were observed in the wavelength range of 400 to 1000 nm, as the fingerprints are
all in the S-LWIR range. This clarifies that the small features detected by the HSI sensors
can be likely attributed to noise. In particular, the reflectance spectra from the Cubert Ultris
X20 sensor show a high signal scatter. This might be caused by a lower signal-to-noise
ratio (S/N), spectral resolution, and uneven illumination because of different geometric
positions of the sample material.
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Figure 5. Representative reflectance spectra of decoated Al and Cu particles as well as of plastic
components (i.e., separator foil, plastic splinters, and inlay foil) obtained from the Spectral Evolution
PSR-3500 are compared to averaged HSI results recorded by the Specim Aisa Fenix, Specim FX10,
and Cubert Ultris X20 in the range of 400–1000 nm. The discriminative features, a step at around
580 nm for Cu and a minimum at around 830 nm followed by a steeper slope for Al are reproduced
by all HSI measurements.

However, the discriminative features, a minimum at around 830 nm followed by a
steeper slope for the decoated Al particles and a step at around 580 nm for the decoated
Cu particles, are reproduced by all HSI measurements. Furthermore, the HSI reflectance
spectra of separator foil, plastic splinters, and inlay foil obtained from the Specim Fenix as
well as from the Specim FX10 do not resemble the spectral characteristics of the Al and Cu
particles. On the contrary, the HSI reflectance spectra of the inlay foil and the decoated Al
particles recorded by the Cubert Ultris X20 are similar.

4. Discussion

In this work, a multitude of different reflectance sensors was applied to the same
sample set (cf. Figure 1), which is required to identify an adequate selection of sensor
technology for a sensor-based optical sorting of shredded Li-ion battery components being
present in a corresponding recycling material stream.

The point measurements performed by the Spectral Evolution PSR-3500 revealed
characteristics for the Al and Cu samples, i.e., the reflectance minimum at 830 nm followed
by a steeper slope in the case of Al and the reflection edge between 560 and 640 nm for
Cu, in the 400–1000 nm spectral range, that were reliably detected for the decoated Al
and Cu particles. Thus, the removal of the respective coatings from the Al and Cu current
collectors by mechanical processing was realized from a spectroscopist’s perspective. In
particular, this allows for the monitoring of mechanical sorting processes. Meanwhile, the
varying observability of the spectral characteristics of both Al and Cu particles with coating
proves the negative impact of the coating. Therefore, it can be beneficial to apply the
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Adhesion Neutralization via Incineration and Impact Liberation (ANVIIL) process to the
cathode material. In this very efficient process, which, however, is for now only available
on the laboratory scale, the adhesion between cathode coating and Al current collector is
reduced due to the thermal decomposition of the polyvinylidene fluoride binder and an
air-jet-separator is able to detach the cathode coating powder [28].

Additionally, the point measurements carried out using the Agilent 4300 Handheld
FTIR offer the possibility to differentiate between the plastic components separator foil,
inlay foil, and plastic splinters. Since the corresponding wavelength range contains spec-
tral fingerprints of the plastic components, it was possible to identify the polymer types.
Although the Agilent 4300 Handheld FTIR cannot distinguish between decoated Al and
Cu particles, there is still a reliable difference between the plastic and metal components in
the reflectance spectra. Transferring this sensor in an application scenario, the influences
of ambient air humidity and CO2 causing noise and the sharp features at around 3500 nm
and 4300 nm associated with humidity and carbon dioxide would be unavoidable. Conse-
quently, it is necessary to select a sensor that is more robust under application conditions.

Furthermore, the requirement of spatial information on the components under investi-
gation made an upscaling to HSI inevitable. In this work, three different HSI sensors in
the relevant spectral range of 400–1000 nm were applied to the sample set. All of them are
based on CMOS detectors, the reflectance was given relative to the SphereOptics Zenith
Polymer® (>99%) reference, and the sample plane was illuminated uniformly by halogen
light bulbs, see Table 1 and Figure 2. However, as the sample material consists of three-
dimensional particles shaped by mechanical processing, the measurement points are not
exactly situated in the sample plane and overlap and shade each other. Despite this minor
inhomogeneity of illumination, the characteristic spectral features of both decoated Al and
Cu particles were reliably registered.

The applied HSI sensors differ in their spatial and spectral resolution with the Specim
Fenix having the highest px size in the sample plane (1.5 mm) and the Cubert Ultris X20
having the most unfavorable spectral resolution (10 nm) in the range of 400–1000 nm. The
required spatial resolution is determined by the minimum particle size and was sufficient
in all HSI measurements. We highlight that within a real recycling scenario, particle sizes
below the spatial resolution of the camera might occur, resulting in mixed pixel spectra,
either between particle and background or between overlapping particles. A neutral
background and the application of advanced spectral unmixing techniques, such as those
developed and presented by Chouhan et al. [29] within the same project, help to mitigate
this issue. The low spectral resolution and S/N of the Cubert Ultris X20 were not adequate
to discriminate between the decoated Al particles and the inlay foil. An appropriate error
correction, a longer exposure time, or an accumulation of measurements might improve
this discrimination. For application, Cu recovery is of great importance because of the EU
regulation 2023/1542 [2], and this was correctly detected by all three HSI sensors.

Apart from that, the Cubert Ultris X20 offers an advantage that is particularly based
on the short exposure time, i.e., crucial for application to a continuous particle flow, its
speed. Considering its frame rate of 4 Hz, its px size in the sample plane of 0.8 mm, and its
scanning area of 410 px × 410 px, the Cubert Ultris X20 covers 430,336 mm2 of the sample
plane per second, which is almost 20 times as much as the Specim Fenix does and more
than 24 times as much as the Specim FX10 does. There is still potential to develop small,
simple, and fast sensors, which still reach a sufficient spectral resolution and S/N.

Two different application scenarios shall be introduced, (i) a conveyor belt and (ii) an
air-classification setup. The former operates similarly to the setup of the Specim Fenix and
Specim FX10 sensors in Figure 2. A line scanner is mounted above a moving conveyor belt.
The belt material has a known, preferably constant, low reflectance. The focus is always
on one plane with a constant distance between the sensor and the sorting material. The
conveyor speed has to be fixed based on the frame rate of the sensor in order to have only
small overlapping areas in the investigated space. Overlapping of particles in the plane can
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be minimized by a vibrating plane that arranges the sorting material in the first place and
rearranges rejected, not sortable, or unregistered particles.

In the air-classification setup, the sensor is used for process monitoring to check the
ascending particles in line in order to adjust the air velocity accordingly. The fast and
unpredictably moving particles are only accessible with the speed of a snapshot camera,
e.g., Cubert Ultris X20. The overlapping of particles in the sight of the sensor has to be
tackled by detecting the movement of the particles and recognizing them again after the
overlapping. Background signals can be removed more easily using the spatial information
of the particle tracking. The frame rate of the sensor has to fit the speed of the particles in
the zig-zag-sifting. A further issue will potentially occur because of the varying distances
of the particles to the sensor. It will be a challenge to keep all particles in focus and under
constant illumination. Therefore, it would also be possible to only measure in an area with
sufficient focus and illumination and to just wait for the particles to cross this defined area
to register them.

Reviewing the discrimination of separator foil, inlay foil, and plastic splinters by the
Agilent 4300 Handheld FTIR, it would be possible to additionally sort according to different
types of plastics in order to offer an alternative to the common thermal recycling. It would
also be possible to add a point sensor that selectively monitors the optical sorting with
better accuracy based on spectral resolution and S/N.

In order to manage the high data volume, suitable machine-learning algorithms have
to be implemented. The work of Chouhan et al. [29] used a novel approach of performing
hyperspectral unmixing via autoencoder for sorting shredded Li-ion battery components.
Their approach was applied to HSI data and detected Cu and Al particles and distinguished
both from separator foils present.

5. Conclusions

In this work, the wavelength range relevant for the discrimination between decoated
Al particles, decoated Cu particles, and other components (separator foil, inlay foil, plastic
splinters) was identified as 400–1000 nm. The decoated Al particles are characterized by
a reflectance minimum at 830 nm followed by a steeper slope, whereas the decoated Cu
particles are recognized by a reflectance edge between 560 and 640 nm. The different
reflectance characteristics, especially the different reflectance edge positions, provide robust
means for optical sensor-based discrimination between both battery components relevant
for the mechanical sorting. Adding a sensor in the infrared range, it was also possible to
differentiate between separator foil, inlay foil, and plastic splinters. For an application in
the sensor-based sorting of battery components, a fast snapshot camera with a spectral
resolution better than 10 nm, a reasonable S/N, and a spatial resolution of about 1.5 mm is
suggested. Integrating the information from both sensor types allows the monitoring of the
air-classifier-based sorting performance of the main, relevant components in situ and the
effects of process parameter adjustment.
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