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Abstract: The Bayan Obo ore deposit is a world-renowned polymetallic coexistence mine that
integrates important elements, such as rare earths, iron, niobium, and titanium. The chemical
properties of niobium and titanium are similar, and the two often coexist in the Bayan Obo deposit as
isomorphs, making them difficult to separate. Therefore, the separation of niobium and titanium is
crucial for the efficient utilization of niobium resources in the Bayan Obo ore deposit of China. To
discuss the feasibility of separating niobium and titanium by selective electrolysis, cyclic voltammetry
and square wave voltammetry were used to study the reduction mechanism of niobium oxide
and titanium oxide in NaF–Na3AlF6 molten salt. The results revealed significant differences in
the diffusion coefficients and reduction steps of Nb5+ and Ti4+ during reduction at a molybdenum
cathode. At 950 ◦C, the diffusion coefficient of Nb5+ during reduction at a molybdenum cathode
was 3.57 × 10–6 cm2/s. Also, in the NaF–Na3AlF6 system, Nb5+ underwent a three-step reduction
as follows: Nb(V)→Nb(IV)→Nb(I)→Nb. The diffusion coefficient of Ti4+ during reduction at the
molybdenum cathode was 9.92 × 10–7 cm2/s, and Ti4+ underwent a two-step reduction in the NaF–
Na3AlF6 system: Ti(IV)→Ti(I)→Ti. When Nb2O5 and TiO2 were both present in the NaF–Na3AlF6

system, the deposition potential of niobium metal (−0.64 V) differed from that of titanium metal
(−0.77 V). These differences in diffusion coefficient, reduction step, and deposition potential enabled
selective electrolytic separation of niobium and titanium.

Keywords: niobium; titanium; selective electrolysis; NaF–Na3AlF6

1. Introduction

The Bayan Obo mine in China is a globally significant polymetallic symbiotic ore
deposit. It encompasses rare earths, iron, niobium, titanium, and other essential elements.
Notably, niobium, which has an important role in material properties, has a resource
amount of 6.6 million tons [1]. However, exploitation of the Bayan Obo mineral resource
has primarily focused on the extraction of iron and rare earths, and the utilization rate of
niobium resources has been almost zero. The low utilization rate of niobium is mainly
because the niobium is low-grade, there are diverse niobium-containing minerals, and
there is a fine embedded grain size in the Bayan Obo mine [2]. These characteristics have
made the beneficiation and metallurgy of niobium resources extremely difficult; thus, most
of the niobium resources have ended up in tailings.

The grade of niobium coexistence ore in the Bayan Obo mine is about 0.10%, and there
are as many as 20 types of niobium-bearing mineral phases, including niobite (FeNb2O6),
aeschynite ((Ce,Nd)(Ti,Nb)2O6), pyrochlore ((Ca,Na,Ce)2 (Nb,Ti)2O6(F,OH)), ilmenorutile
((Fe,Ti,Nb)O2), fersmitem (CaNb2O6), etc. These niobium-bearing phases contain multiple
metal elements in coexistence with one another, and they typically have particle sizes that
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do not exceed 20 µm. Often, they are symbiotic or encapsulated with other minerals, and
this makes their separation and extraction exceedingly difficult. Furthermore, niobium and
titanium have similar chemical properties and ionic radii (Ti4+ = 0.64 Å and Nb5+ = 0.69 Å),
and they coexist extensively in various niobium-bearing phases; thus, they are inherited
into the beneficiation and metallurgy processes of niobium resources. This significantly
affects the concentrate grade and product quality. In niobium-containing alloys that are
produced via pyrometallurgical processes [3,4] and in niobium oxide that is produced
via hydrometallurgical processes [5–9] using Bayan Obo mine materials, the difficulty in
separating niobium and titanium leads to low product quality. This severely limits the
range of product applications. Therefore, the deep separation of niobium and titanium
becomes key to overcoming the challenges of achieving comprehensive utilization of Bayan
Obo niobium resources.

Molten salt electrolysis has the advantages of a short process flow, low cost, continuous
production, and high product purity; thus, it has been widely applied in industrial produc-
tion. It is especially effective in the production of high-purity metals, such as high-purity
niobium and titanium. Many researchers have studied the electrochemical behavior of
niobium ions or titanium ions in fluoride and chloride molten salts. However, niobium and
titanium ions in molten salts have multiple valence states, and hence, their electrochemical
reduction processes are quite complex.

He et al. [10] proposed that the electrolytic reduction of K2NbF7 proceeds via the
following steps: Nb(V)→Nb(IV)→Nb. The second step is quasi-reversible and controlled
by a diffusion process. Li et al. [11] found that the electrode reduction process of niobium
ions at 750 ◦C in KCl–NaCl molten salt is the following quasi-reversible three-step reaction:
Nb(V)→Nb(III)→Nb(I)→Nb. Wang et al. [12] found that the electrode reduction reac-
tion of Nb(V) in LiF–NaF–KF–Na2O melts is a two-step electrochemical reaction process
that involves one and four electrons, respectively, and is as follows: Nb(V)→Nb(IV)→Nb.
Matthiesen et al. [13] used cyclic voltammetry to study the electrochemical behavior of F–Nb
complexes at 700 ◦C in LiF–NaF–KF melts. When K2NbF7 was added, the fluorine complex
NbF7

2– was introduced into the melt, and its electrochemical reduction process was as
follows: Nb(V)→Nb(IV)→Nb. Bailey et al. [14] used cyclic voltammetry and chronopoten-
tiometry to study the electrochemical behavior of Nb(V) in molten LiF–NaF–KF melts; they
showed that Nb(V) is reduced in two steps, which are as follows: Nb(V)→Nb(III)→Nb.
S. A. Kuznetsov [15] investigated the electroreduction of niobium in chloride fluoride
electrolytes used for preparing zirconium powder, and determined the limit density of
the cathode diffusion current of niobium discharge and the diffusion coefficient of Nb (V)
and Nb (IV) fluoride complexes as a function of temperature. The optimal electrolysis
parameters were determined by studying the effects of cathode current density, niobium
concentration, and temperature on the current efficiency of cathode electrodeposition.

According to Lantelem’s research [16], the cathodic process of tetravalent titanium ions in
the NaCl–KCl molten salt system undergoes three reduction stages: Ti(IV)→Ti(III)→Ti(II)→Ti.
Chen et al. [17] investigated the cathodic process of Ti4+ in the NaCl–KCl eutectic salt
system, and they concluded that Ti4+ undergoes the following processes on a platinum
electrode: Ti(IV)→Ti(III)→Ti(II)→Ti. This is essentially consistent with Lantelem’s find-
ings. Robin et al. [18] concluded that during the cathodic reduction process of TiF6

2– it
is first reduced to TiF6

3− regardless of the type of metal cathode and that the cathodic
reduction process of TiF6

3− varies greatly depending on the type of cathode metal. Li
et al. [19] determined the cathodic process of tetravalent titanium ions at 700 ◦C in the
molten LiF–NaF–KF–K2TiF6 system on platinum metal, and this could be represented as
Ti(IV)→Ti(III)→Ti. They concluded that the nucleation process of titanium on the platinum
electrode is instantaneous nucleation. Jiao et al. [20] studied the electrochemical behavior
of titanium ions in chloride melts, such as NaCl–KCl–TiClx and NaCl–KCl–LiCl–TiClx.
From the results of electrochemical research on low-valent titanium ions on metal cathodes,
Zhou et al. [21] prepared high-purity titanium that had different morphologies. Zhao
et al. [22] comprehensively evaluated the electrochemical process of Ti deposition using
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cyclic voltammetry and square wave voltammetry. The electrode reaction mechanisms and
particle evolution principles in molten salt during this electrolysis process were discussed.
It indicated that titanium chloride in lower valence (TiCl3) with a more productive advan-
tage could exist as an intermediate, and Ti3+ ions were reduced to Ti metal by a two-step
mechanism corresponding to the following pathway: Ti3+ →Ti2+ →Ti.

The abovementioned literature focused only on electrochemical research of niobium
ions or titanium ions and proved that molten salt electrolysis is an effective method for
preparing high-purity niobium and titanium metals. However, systematic studies on the
electrochemical behavior of niobium and titanium oxides in molten salts, especially in cases
where niobium and titanium are both present, have not yet been reported. Developing
technology for molten salt electrolytic separation of niobium and titanium has yet to be
explored. In this work, niobium oxide and titanium oxide in the NaF–Na3AlF6 molten
salt system were systematically studied using electrochemical testing, and the evolution of
niobium and titanium states during molten salt electrolysis, and the potential conditions
for selective electrolytic separation between niobium and titanium were explored. This
research provides a theoretical basis for developing technology for molten salt electrolytic
separation of niobium and titanium in the Bayan Obo coexistence mine.

2. Experimental Methods

Reagents used for electrochemical testing included niobium pentoxide (Nb2O5), tita-
nium dioxide (TiO2), sodium fluoride (NaF), and cryolite (Na3AlF6), which were analytical
grade and were produced by Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).
The experimental setup (Figure 1) included an electrochemical workstation (Aut 84847),
a tubular high-temperature furnace, and an electrolytic cell. The electrolytic cell used
a molybdenum wire as the working electrode (WE), a graphite crucible as the counter
electrode (CE), and a molybdenum wire as the reference electrode (RE). The molybdenum
wire was sheathed in a protective alumina sheath.
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Figure 1. Schematic diagram of the experimental system. 1—Stainless steel bar; 2—working electrode;
3—reference electrode; 4—graphite crucible (counter electrode); 5—molten salt; 6—tubular high-
temperature furnace; 7—electrochemical workstation.

Before electrochemical tests were conducted, molten salt electrolysis (42 wt% NaF–
58 wt% Na3AlF6) was subjected to vacuum drying. Pre-electrolysis was carried out using
the constant potential electrolysis method to remove impurities. The electrolyte was mixed
with niobium oxide and titanium oxide, and the mixture was placed in a crucible in
the electrolytic cell. The electrolytic cell was then placed in a tubular heating furnace.
The temperature was increased while argon gas (purity ≥ 99.99%) was introduced at a
flow rate of 0.5 L/min. When the temperature reached 950 ◦C and the materials were
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completely melted, the electrolytic cell was set up and connected to the electrochemical
workstation. After the workstation was started and the control software Nova 1.0 was
initiated, the open circuit potential (OCP) of the electrolysis cell was tested, and electrode
potentials were adjusted. Subsequent tests were conducted using a three-electrode system
for cyclic voltammetry (CV) and square wave voltammetry (SWV). The test schemes are
listed in Table 1.

Table 1. Experimental scheme.

Electrolyte System Test Method Scan Rate

NaF–Na3AlF6 CV 50 mV/s
NaF–Na3AlF6–2 wt% Nb2O5 CV, SWV 50 mV/s, 75 mV/s, 100 mV/s
NaF–Na3AlF6–2 wt% TiO2 CV, SWV 50 mV/s, 75 mV/s, 100 mV/s

NaF–Na3AlF6–2 wt%
Nb2O5–2 wt% TiO2

CV 50 mV/s

3. Results and Discussion
3.1. Electrochemical Behavior of NaF–Na3AlF6 Molten Salt

Figure 2 shows the cyclic voltammetry curve of NaF–Na3AlF6 molten salt. No oxides
were added to the system, and hence, there should be no elemental electrodeposition.
However, a reduction peak can be observed at point A (−0.50 V) in the figure. This is likely
because Al2O3 from the protective alumina sheath around the molybdenum wire electrode
dissolved into the molten salt.
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1223 K).

3.2. Electrochemical Behavior of the NaF–Na3AlF6–2 wt% Nb2O5 Molten Salt System

Figure 3 shows the cyclic voltammetry curve of the NaF–Na3AlF6–2 wt% Nb2O5
molten salt system on a Mo electrode. There are four reduction peaks in the negative scan
from 0.5 V to −1.5 V. Compared to the cyclic voltammetry curve of the NaF–Na3AlF6
molten salt system, additional reduction peaks (A, B, and D) are observed after TiO2 was
added. The corresponding potential of reduction peak C (−0.50 V) is consistent with
the peak potential that is observed in the cyclic voltammetry curve of the NaF–Na3AlF6
molten salt system. It is believed that this is caused by dissolution of the alumina tube,
corresponding to the reduction peak of Al3+. The reduction peaks at A, B, and D have
potentials of 0.09 V, −0.38 V, and −0.68 V, respectively, and this indicates that the reduction
process of Nb5+ is divided into three steps.
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Figure 3. Cyclic voltammetry curve of the NaF–Na3AlF6–2 wt% Nb2O5 molten salt system on the
Mo electrode (scan rate: 50 mV/s; temperature: 1223 K).

Figure 4 shows cyclic voltammetry curves of NaF–Na3AlF6–2 wt% Nb2O5 obtained
at different scan rates. It is observed that both the cathodic peak current density and the
corresponding cathode peak potential vary with respect to the scan rate. The absolute value
of the ratios of each reduction peak current density to the corresponding oxidation peak
current density is not equal to one. Both the oxidation and reduction peak current densities
increase with the scan rate. The reduction peak potential shifts to a lower potential, and the
oxidation peak potential shifts to a higher potential.
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Figure 4. Cyclic voltammetry curves of the NaF–Na3AlF6–2 wt% Nb2O5 molten salt system at
different scan rates (scan rate: 50 mV/s, 75 mV/s, and 100 mV/s; temperature: 1223 K).

Figure 5 shows the relationship between the reduction peak potential of Nb5+ and
the logarithm of the scan rate. The data indicate that there is a nearly linear relationship
between the reduction peak potential and the logarithm of the scan rate. By combining
data for the changes in oxidation–reduction peak current density and potential with respect
to the scan rate, it is deduced that the first step in the reduction of Nb5+ is an irreversible
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process. For an irreversible electrochemical reaction process, the difference in values
between the peak potential and the half-peak potential, which is expressed as

∣∣∣Ep–Ep/2

∣∣∣,
should satisfy Equation (1) [23]. According to Equation (1), the charge transfer coefficient
(α) of the reduction of Nb5+ at the Mo cathode is calculated to be approximately 0.97.∣∣∣Ep − Ep/2

∣∣∣ = 1.857RT
αn F

(1)

where Ep represents the peak potential (V), Ep/2 is the half-peak potential (V), R is the gas
molar constant [8.314 J/(mol·K)], T is the temperature (K), α is the charge transfer coefficient,
n is the number of electron transfers, and F is Faraday’s constant (96,485 C/mol) [24]. n
is calculated as nA = 3 and is based on the electron transfer number at this potential, as
obtained in the following text.
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the NaF–Na3AlF6–2 wt% Nb2O5 molten salt system.

Figure 6 shows the relationship between the reduction peak A current density and the
square root of the scan rate. As seen in the figure, the current density value of the reduction
peak for Nb5+ increases with an increase in the scan rate, and there is a linear relationship
with the square root of the scan rate. This indicates that the reaction is controlled by the
diffusion of Nb5+ in the system [25]. At this point, the relationship between the peak current
density and the scan rate can be calculated using the Randles–Sevcik equation, which can
be expressed as Equation (2) [26].

Ip = 0.4958
(

anF
RT

) 1
2
nF(Dv)

1
2 AC0 (2)

where Ip represents the peak current density (A), D is the diffusion coefficient (cm2/s), v is
the scan rate (V/s), A is the electrode working area (cm2), and C0 is the initial concentration
of Ti4+ (mol/cm3).

Using the previously obtained charge transfer coefficient (α) of 0.97 and assuming
complete ionization of Nb2O5 in the molten salt, the diffusion coefficient D of Nb5+ in the
NaF–Na3AlF6 system at 950 ◦C is calculated to be approximately 3.57 × 10–6 cm2/s.
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Figure 7 shows the square wave voltammetry curve of the NaF–Na3AlF6–2 wt% Nb2O5
molten salt system on the Mo electrode. Four reduction peaks (RI, RII, RIII, and RIV) are
observed. Among them, the reduction potential of peak RIII corresponds to the reduction
potential of Al3+, whereas the reduction potentials of RI, RII, and RIV correspond to niobium
ions. After Gaussian fitting of the square wave voltammetry curve and combining Equation
(3) [27], which relates the half-peak width W1/2 of the reduction peak to the number of
electrons transferred in the reduction reaction, the number of electrons transferred for
different reduction peaks can be calculated as follows:

W1/2 =
3.52RT

nF
(3)

where W1/2 represents the half-peak width (V), F is Faraday’s constant (96,485 C/mol), T is
the Kelvin temperature (K), and R is the gas constant (8.314 J/(mol·K)).
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The following are found from the calculations: nI = 0.82 ≈ 1, nII = 3.36 ≈ 3, nIII = 3.41 ≈ 3,
and nIV = 1.37 ≈ 1. Therefore, it is inferred that the pentavalent niobium ion under-
goes a three-step reduction in the NaF–Na3AlF6 system, and these steps are as follows:
Nb(V)→Nb(IV)→Nb(I)→Nb. The reduction of Al3+ [Al(III)→Al] occurs at −0.5V. The
results for square wave voltammetry and cyclic voltammetry agree well in terms of the
measured reduction potentials.

3.3. Electrochemical Behavior of the NaF–Na3AlF6–2 wt% TiO2 Molten Salt System

Figure 8 shows the cyclic voltammetry curve of the NaF–Na3AlF6–2 wt% TiO2 molten
salt system on a Mo electrode. There are three reduction peaks in the negative scan from
0.5 V to −1.2 V. The corresponding potential of reduction peak B is consistent with the peak
potential that is observed in the cyclic voltammetry curve of the NaF–Na3AlF6 molten salt
system, corresponding to the reduction peak of Al3+. The reduction peaks at A and C have
potentials of −0.43 V and −0.84V, respectively, and this indicates that the reduction process
of Ti4+ is divided into three steps. There is a current density disturbance at C, which should
be caused by metal phase precipitation.
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electrode (scan rate: 50 mV/s; temperature: 1223 K).

Figure 9 shows cyclic voltammetry curves of NaF–Na3AlF6–2 wt% TiO2 obtained at
different scan rates. Figure 10 shows the relationship between the reduction peak potential
of Ti4+ and the logarithm of the scan rate. There is a nearly linear relationship between
the reduction peak potential and the logarithm of the scan rate. By combining data for
the changes in oxidation–reduction peak current density and potential with respect to the
scan rate, it is deduced that the first step in the reduction of Ti4+ is an irreversible process.
According to Equation (1), the charge transfer coefficient (α) of the reduction of Ti4+ at the
Mo cathode is calculated to be approximately 0.28.

Figure 11 shows the relationship between the reduction peak A current density and
the square root of the scan rate. The current density value of the reduction peak for Ti4+

increases with an increase in the scan rate, and there is a linear relationship with the square
root of the scan rate. This indicates that the reaction is controlled by the diffusion of Ti4+

in the system. Using the previously obtained charge transfer coefficient (α) of 0.28 and
assuming complete ionization of TiO2 in the molten salt, the diffusion coefficient D of Ti4+

in the NaF–Na3AlF6 system at 950 ◦C is calculated to be approximately 9.92 × 10–7 cm2/s,
which is much less than the diffusion coefficient D of Nb5+.
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Figure 10. Relationship between the reduction peak A potential and the logarithm of the scan rate in
the NaF–Na3AlF6–2 wt% TiO2 molten salt system.

Figure 12 shows the square wave voltammetry curve of the NaF–Na3AlF6–2 wt%
TiO2 molten salt system on the Mo electrode. Three reduction peaks (RI, RII, and RIII) are
observed. Among them, the reduction potential of peak RII corresponds to the reduction
potential of Al3+, whereas the reduction potentials of RI and RIII correspond to titanium ions.
After Gaussian fitting of the square wave voltammetry curve and combining Equation (3),
the following are found: nI = 3.36 ≈ 3, nII = 2.85 ≈ 3, and nIII = 0.77 ≈ 1. Therefore, it is
inferred that the reduction of Al3+ [Al(III)→Al] occurs at –0.5V, and the tetravalent titanium
ion undergoes a two-step reduction: Ti(IV)→Ti(I)→Ti.
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3.4. Electrochemical Behavior of the NaF–Na3AlF6–2 wt% Nb2O5–2 wt% TiO2 Molten
Salt System

Figure 13 shows the cyclic voltammetry curve of the NaF–Na3AlF6–2 wt% Nb2O5–
2 wt% TiO2 molten salt system. By combining this with the cyclic voltammetry curve of the
NaF–Na3AlF6–2 wt% Nb2O5 system (Figure 3), the reduction processes and corresponding
reduction potentials of the NaF–Na3AlF6–2 wt% Nb2O5–2 wt% TiO2 system are obtained
and listed in Table 2. There are noticeable differences between the reduction potentials of
TiO2 and Nb2O5 in NaF–Na3AlF6 molten salt. When both TiO2 and Nb2O5 are present,
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the deposition potential of niobium metal (−0.64 V) differs from the deposition potential
of titanium metal (−0.77 V). This difference in deposition potentials enables the selective
electrolytic separation of the two.
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Table 2. Reduction processes and corresponding reduction potentials of Nb2O5 and TiO2 in different
molten salts.

Reduction Process

Reduction Potential

NaF–Na3AlF6–
2 wt% Nb2O5

NaF–Na3AlF6–
2 wt% TiO2

NaF–Na3AlF6–
2 wt% Nb2O5–2 wt% TiO2

Nb (V)→Nb (IV) 0.09 V – −0.07 V
Ti (IV)→Ti (I) – −0.43 V −0.43 V

Nb (IV)→Nb (I) −0.38 V – −0.46 V
Nb (I)→Nb −0.68 V – −0.64 V

Ti (I)→Ti – −0.84 V −0.77 V

4. Conclusions

The separation of niobium and titanium is crucial for the efficient utilization of niobium
resources in the Bayan Obo polymetallic coexistence mine. Using selective electrolysis
on molten salts offers a promising approach for achieving this separation. However,
systematic studies on the electrochemical behavior of Nb2O5, TiO2, and their mixtures in
NaF–Na3AlF6 molten salt have been lacking. In this paper, cyclic voltammetry and square
wave voltammetry were used to study the reduction mechanism of niobium oxide and
titanium oxide in NaF–Na3AlF6 molten salt. The results revealed significant differences
in the diffusion coefficients and reduction steps of Nb5+ and Ti4+ during reduction at a
molybdenum cathode. At 950 ◦C, the diffusion coefficient of Nb5+ during reduction at
a molybdenum cathode was 3.57 × 10–6 cm2/s. Also, in the NaF–Na3AlF6 system, Nb5+

underwent a three–step reduction as follows: Nb(V)→Nb(IV)→Nb(I)→Nb. The diffusion
coefficient of Ti4+ during reduction at the molybdenum cathode was 9.92 × 10–7 cm2/s, and
Ti4+ underwent a two–step reduction in the NaF–Na3AlF6 system: Ti(IV)→Ti(I)→Ti. When
Nb2O5 and TiO2 were both present in the NaF–Na3AlF6 system, the deposition potential of
niobium metal (–0.64 V) differed from that of titanium metal (–0.77 V). These differences in
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diffusion coefficient, reduction step, and deposition potential enabled selective electrolytic
separation of niobium and titanium.

In future work, we plan to use selective electrolysis to produce high-purity niobium
metal from mixtures of niobium oxide and titanium oxide based on the differences in their
electrochemical behaviors.
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